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ABSTRACT

We demonstrate the construction of window functions for processing time-variant sig-
nals such as seismic data logs, which preserve both local amplitudes and local energies.
This is a key step in nonstationary filtering that allows the localization of signals without
introducing spurious energy artifacts.

INTRODUCTION

A key step in the processing of a time-variant signal such as a seismic log is to localize
the signal, in order to extract or modify time-dependent features of the signal. Such fea-
tures might include spectral content, energy, noise levels, and the resulting modifications
could include time-variant filtering (see Margrave, 1998), nonstationary deconvolution
(see Margrave et al., 2002) and Q-correction (see Grossman et al., 2002). A common
approach is to break-down a signal s(t) into many individual slices, sn(t), n = 1, 2, 3, . . .,
each of which are made short enough in duration as to be effectively stationary in their
spectral properties. The spectral nature of each individual slicesn(t) is then taken as being
indicative of the instantaneous spectrum of the full signals(t) at the corresponding moment
of time.

Typically, the signal is decomposed, or localized, through the use of a sliding window
function. In this case, each slicesn(t) is defined as the product of the original signals(t)
with some specific windowing functionwn(t),

sn(t) = wn(t)s(t), (1)

where each windowing function is simply a translation in time of a singlemother-window,
w(t):

wn(t) = w(t− nT ). (2)

The positive constantT is called thewindow spacing; throughout this article we will take
T = 1.

In many cases, the window functions are designed without any detailed knowledge of
the signal to be analyzed, and chosen with generic features to enhance the signal processing
steps. For instance, the mother-window is generally real-valued, smooth, symmetric about
t = 0, and with support in some interval[−N/2, N/2] which has a length of N times the
window spacingT = 1. Hamming, Hanning, and Blackwell windows are familiar choices
(as in Rabiner and Gold (1975) or Karl (1989)). With the support of the mother-window in
the interval[−1, 1], only immediately neighbouring signal slices would exhibit any overlap
between each other.

A common requirement is that the superposition of slices should recover the full signal
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itself: ∑
n∈Z

sn(t) = s(t) (3)

for all t ∈ R. This translates into the followingpartition of unitycondition on the window-
ing functions: ∑

n∈Z

wn(t) = 1, for all t ∈ R. (4)

In terms of translates of a mother-window, the condition can be rewritten as∑
n∈Z

w(t− nT ) = 1, for all t ∈ R. (5)

We call this theamplitude criterion.

In the applications we are interested in, it is useful to require that the superposition of
theenergyof the slices should recover the original energy; that is∑

n∈Z

|sn(t)|2 = |s(t)|2, for all t ∈ R. (6)

In terms of the windowing functions, this requires∑
n∈Z

|wn(t)|2 = 1, for all t ∈ R. (7)

For translates of a mother-window, this amounts to the condition∑
n∈Z

|w(t− nT )|2 = 1, for all t ∈ R. (8)

We will refer to this condition as theenergy criterion.

When only two windows overlap, the amplitude and energy conditions give two equa-
tions in two unknowns,

wn(t) + wn+1(t) = 1, w2
n(t) + w2

n+1(t) = 1, (9)

which have only the trivial solutionswn(t) = 1, wn+1(t) = 0 andwn(t) = 0, wn+1(t) = 1.
These correspond to the boxcar windows, which is a simple and somewhat uninteresting
case.

In this article, we demonstrate the construction of continuous mother-window functions
with compact support which meet both the amplitude and energy criteria. We demonstrate
the possible solutions for overlaps of sizeN = 3, 4, 6 and discuss the general construction.

AN ASYMMETRIC SOLUTION WITH OVERLAP N = 3

In the case where three adjacent windows may overlap, we have two equations in three
unknowns,

wn(t) + wn+1(t) + wn+2(t) = 1 (10)

w2
n(t) + w2

n+1(t) + w2
n+2(t) = 1 (11)
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FIG. 1. A 3-overlap, energy-preserving window.

which can be recognized as the intersection of a planex + y + z = 1 with a sphere
x2 + y2 + z2 = 1, and thus is a circle embedded in three dimensions. A reasonable solution
is to parameterize the circle to produce the mother-window,

w(t) = 1
3

+ 2
3
cos(2π

3
t), for − 1 ≤ t ≤ 2, (12)

which is displayed in Figure 1. To demonstrate the amplitude and energy-preserving con-
ditions, we show in Figure 2 that the translates of the window function sum to one, and in
Figure 3, that the translates squared also sum to one.

It is also possible to re-parameterize the window to give a smoother version, which is
also differentiable at the cutoff. For instance, we may set

w(t) = 1
3

+ 2
3
cos(2π

3
u(t)) (13)

where
u(t) = t− 1

2π
sin(2πt). (14)

The resulting window function is shown in Figure 4.

SYMMETRIC SOLUTIONS WITH OVERLAP N = 4, 6

Allowing for four windows to overlap, we can obtain a symmetric mother-window
function, supported on the interval[−2, 2], of the form

w(t) = 1
4

(
1 + (1 +

√
3/2) cos(π

2
t) + cos(πt) + (1−

√
3/2) cos(3π

2
t)

)
, (15)

which is shown in Figure 5. A second symmetric solution is obtained by reversing the signs
on the

√
3/2 in the parameters above.
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FIG. 2. Window translates summing to one.

FIG. 3. Window squares summing to one.

4 CREWES Research Report — Volume 16 (2004)



Energy-preserving windows

FIG. 4. A smoothed 3-overlap window.

FIG. 5. A 4-overlap, symmetric, energy-preserving window.
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For general even integerN , a symmetric mother-window supported on interval [−N/2, N/2]
could take the form

w(t) =
N−1∑
k=0

ak cos(
2kπ

N
t), for −N/2 ≤ t ≤ N/2, (16)

for some choice of parametersa0, a1, . . . aN−1. The amplitude and energy condition reduce
to the equations

Na0 = 1

N(a2
0 +

a2
1 + a2

2 + . . . + a2
N−1

2
) = 1 (17)

a1aN−1 + a2aN−2 + . . . + aN/2−1aN/2+1 +
1

2
a2

N/2 = 0

while a peak conditionw(0) = 1 and continuity conditionw(N/2) = 0 are equivalent to

a0 + a1 + a2 + . . . + aN−1 = 1

a0 − a1 + a2 − . . .− aN−1 = 0. (18)

ForN = 6, this is five equations in six unknowns, which we can solve as a one-parameter
family of solutions, say:

a0 = 1/6

a1 = (1 +
√

5/2 cos θ)/6

a2 = (1 +
√

5/2 sin θ)/6 (19)

a3 = 1/6

a4 = (1−
√

5/2 sin θ)/6

a5 = (1−
√

5/2 cos θ)/6,

where the parameterθ can be chosen arbitrarily. For instance, Figure 6 shows the window
obtained withθ = .6 radians. This window has an advantage over theN = 4 solution in
that the negative side lobes are smaller.

GENERAL SOLUTIONS

The particular solutions described above are simply special cases of a more general
construction, which involves finding a parameterization of the intersection of a hyperplane
with a hypersphere inN dimensional space. By assuming our mother-window is sym-
metric and supported in the interval[−NT/2, NT/2], we may define theperiodic window
functionsas the superposition of non-overlapping windows:

w̃n(t) =
∑
k∈Z

wn+kN(t) =
∑
k∈Z

w(t− nT − kNT ) (20)

for n = 0, 1, 2, . . . , N − 1. Note that each of these periodic window functions consists
simply of repeated copies of the mother-window, spaced far enough apart so as not to
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FIG. 6. A 6-overlap, symmetric, energy-preserving window.

overlap each other, and shifted to the right by an amountnT . The amplitude and energy
criteria of Equations (4) and (7) can be restated in terms of the finite sums:

N−1∑
n=0

w̃n(t) = 1 (21)

and
N−1∑
n=0

|w̃n(t)|2 = 1 (22)

for all t ∈ R.

Define a parametrized curve,~γ : R → RN , called thewindow curveusing the periodic
window functions as the individual coordinates:

~γ(t) = [ w̃0(t) w̃1(t) w̃2(t) . . . w̃N−1(t) ]T . (23)

Note that~γ(t) is a closed curve and exhibits anN -fold degree of symmetry since~γ(t+T ) =
P~γ(t), whereP is the permutation matrix generated by circularly shifting all the columns
of theN ×N identity matrix one step to the right:

P =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0

 . (24)

The amplitude and energy criterion tell us the window curve~γ(t) lies on the intersection
of a hyperplane inRN with a hypersphere, and thus is a parameterization of anN − 2
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dimensional sphere. Picking an appropriate curve and parameterization gives a suitable
window function. Of course, in higher dimensions, there is more freedom in the choice of
curves. Particular solutions are given in the sections above.

SUMMARY

We have shown a construction of window functions on the real line which preserve
amplitude and energy in local reconstructions of time-sliced signals such as seismic data.
Applications of these windows include signal processing methods that require conservation
of these key quantities.

ACKNOWLEDGEMENTS

The authors would like to thank our funding partners, in particular CREWES, NSERC,
MITACS, and the POTSI sponsors.

REFERENCES

Grossman, J., Margrave, G. F., Lamoureux, M. P., and Aggarwala, R., 2002, Constant-Q wavelet estimation
via a Gabor spectral model: Canadian Soc. Expl. Geophys. Annual Meeting, Expanded Abstracts.

Karl, J. H., 1989, An Introduction to Digital Signal Processing: Academic Press Inc.

Margrave, G. F., 1998, Theory of nonstationary linear filtering in the Fourier domain with application to
time-variant filtering: Geophysics,63, 244–259.

Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V., 2002, Gabor deconvolution of seismic
data for source waveform and Q correction: 72nd Ann. Internat. Mtg. Soc. of Expl. Geophys., Expanded
Abstracts, 2190–2193.

Rabiner, L. R., and Gold, B., 1975, Theory and Application of Digital Signal Processing: Prentice Hall Inc.

8 CREWES Research Report — Volume 16 (2004)


