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Elastic wave-equation migration for laterally varying isotropic 
and HTI media 

Richard A. Bale and Gary F. Margrave 

SUMMARY 
Prestack wave-equation migration of isotropic or anisotropic elastic seismic data is 

described as vector wavefield extrapolation, plus an imaging condition for combinations 
of shot and receiver wave-modes.  For azimuthally anisotropic data, the effect is to 
combine the (normally separate) steps of shear-wave splitting correction and migration 
into a single migration step.  This enables a more accurate correction of the shear waves 
based upon the local propagation direction.  The algorithm is extended to laterally 
varying medium with two different forms of generalized phase shift operators.  The first, 
which we call “phase shift plus adaptive windowing” (PSPAW), is appropriate for 
anisotropic media described by several parameters.  The second, based on conventional 
phase shift plus interpolation (PSPI), has been formulated for isotropic media, but is 
computationally intractable for general anisotropic media.  In both cases, the spatial 
interpolation methodology is applied both to the phase shift and to the modal 
decomposition and recomposition steps. 

The PSPAW algorithm has been applied to modelled data, first for a faulted isotropic 
model, and then for a model with a faulted layer which is transversely isotropic with a 
horizontal symmetry axis (HTI).  The anisotropic elastic migration unravels the effect of 
shear-wave splitting as a natural consequence, a task which we show isotropic migration 
fails to do.   

The isotropic PSPI algorithm has recently been applied to a new elastic version of the 
well-known Marmousi model, to test the ability of this algorithm with highly variable 
media.  The preliminary results are encouraging, especially for the shallow imaging of 
the converted wave data. 

INTRODUCTION 

Imaging elastic data in the presence of azimuthal anisotropy, for example in vertically 
fractured reservoirs, is complicated by shear-wave splitting.  Conventionally, this is 
tackled by horizontal component rotations to isolate the fast (S1) and slow (S2) shear 
waves.  The separate S1 and S2 data may then be separately migrated, or simply 
recombined into a single shear-wave dataset after a vertical shift to align them before 
migration.  There are some approximations implicit in this approach, which is essentially 
based on vertical propagation theory.  For example, the rotation step assumes that the 
polarizations are orthogonal and lie within the horizontal plane.  In fact for shear waves 
arriving at oblique angles the polarizations cannot be correctly handled by horizontal 
rotation, since they are not orthogonal within that plane.  Furthermore, the shear-wave 
velocities for azimuthally anisotropic media are dependent on propagation direction.  The 
“fast” and “slow” shear-wave velocities may even cross over at larger phase angles.  
There is no single static shift that will correctly align the two shear waves for all angles.  
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To overcome these limitations, the shear-wave rotation and shift operators should both be 
dependent upon phase angle.  The central idea of this paper is to incorporate the 
correction for shear-wave splitting within the migration extrapolation. This contrasts with 
the usual approach, which treats them as two separate problems.   

Wavefield extrapolation is at the heart of the class of migration algorithms commonly 
referred to as wave-equation migration.  A wavefield extrapolator, as used in such 
migration schemes, generates the wavefield at depth zz ∆+  from the wavefield at depth 
z, given the medium parameters over the depth interval, such that the medium may be 
approximated as invariant with respect to z over the interval.  In the derivation of a 
wavefield extrapolator, an important concept is the one-way wave equation.  Use of a 
one-way wave equation avoids some of the complexity associated with multiple 
scattering, is more robust to velocity errors, and is in general more computationally 
efficient than methods based on the full two-way wave equation. In cases where the 
medium parameters depend upon depth alone, the (scalar) one-way wave equation can be 
derived by a simple factorization of the two-way wave equation in the frequency-
wavenumber domain. This gives rise to a phase-shift algorithm.  In more realistic cases 
where the medium varies laterally, a standard approach is to assume a solution of the 
same form, but where the velocity is a function of lateral position.  This gives rise to 
pseudodifferential operator type methods, such as the generalized phase shift plus 
interpolation (GPSPI) algorithm, and the nonstationary phase shift (NSPS) algorithm 
(Margrave and Ferguson, 1999). The GPSPI algorithm is an analytic formulation of 
Gazdag and Sguazzero’s (1984) PSPI algorithm; in GPSPI an extrapolation operator is 
designed uniquely for each output point. 

The above remarks apply to scalar-wave equation extrapolators.  Strictly speaking, 
these are only appropriate for migration in acoustic media. Nevertheless, they have been 
highly successful when applied to the migration of P-wave data obtained from 
conventional seismic surveys.  Nevertheless, there are disadvantages in using a scalar-
wave equation for extrapolating elastic-wave data.  Firstly, the scalar-wave approach 
assumes that each wave-mode can be handled independently of the others, yet conversion 
between modes is commonplace.   Secondly, scalar wavefield extrapolation cannot keep 
track of changes in polarization, which occur during wave propagation.  Finally, it is 
difficult to account fully for effects of anisotropy, such as shear-wave splitting, using a 
scalar extrapolator.  For these reasons it is preferable to approach elastic wavefield 
extrapolation from a vector (or, more accurately, tensor) wave equation standpoint. 

In last years CREWES report we described an algorithm for extrapolation of elastic 
wavefields, and an extension to laterally variable media (Bale and Margrave, 2003a, 
2003b).  The laterally variable algorithm was formulated in terms of generalized PSPI 
(GPSPI) and NSPS type methods.  The GPSPI version was actually implemented using 
fixed spatial windows.  

After briefly reviewing the previous work, this paper will introduce two new 
algorithms for the extrapolation, and apply them within a prestack migration. First, we 
modify the GPSPI theory to get an adaptive extrapolation algorithm appropriate for 
anisotropic elastic media.  We will refer to this as “phase shift plus adaptive windowing”  
(PSPAW).  Second, we propose an alternative elastic PSPI extrapolator that is more 
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closely related to the standard PSPI algorithm of Gazdag and Sguazzero. This can be 
applied when the medium is elastic and isotropic.  We then describe imaging conditions 
that can be used with either of these extrapolators in a prestack shot record migration.  In 
other words, we are describing two related migration algorithms, where one is applicable 
to either isotropic or HTI media, and the other is optimized for isotropic media. 

In the examples section, we test the anisotropic version of the migration on a synthetic 
model containing a faulted HTI layer.  This more efficient isotropic migration code is 
also applied on a new elastic version of the well-known Marmousi model. 

THEORY 
The theory required for elastic wavefield extrapolation is based on eigen-solutions to 

the Kelvin-Christoffel equation and the theory of anisotropic propagator matrices (Fryer 
and Frazer, 1984; 1987). For wave propagation in a 2-D, laterally homogeneous, HTI 
medium with horizontal slowness ωxx kp = , the elastic extrapolation operator is 
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each mode in layer n.  In the HTI case, the squared slownesses can be analytically 
determined from the solution of one quadratic and one linear equation (the choice of sign 
for the square root is based upon whether an up- or down- going solution is required). 
The 6-by-3 matrix nD  contains the eigenvectors, )(ˆ M

nb , for each mode, (quasi-) P, S1 and 
S2, which are solutions to the one-way wave equation Abb ωiz =∂∂  in layer n.  A is 
referred to as the system matrix in geophysical propagator matrix theory (e.g. Fryer and 
Frazer, 1984).  In the mechanics literature it is referred to as the fundamental elasticity 
matrix (e.g. Ting, 1996, p145).  The components of A are functions of the elastic 
constants, horizontal slowness, and frequency. It embodies a combination of the stress-
strain relationship (generalized Hooke’s Law) and Newton’s equation of motion.  Layer n 
lies between nz  and 1+nz . Both nD  and nΛ  depend on xp , but not on ω, nor on x, in this 
case. 

In words, equation (1) states the following: decompose the displacement-stress 
wavefield at depth nz  into the three eigenstates for layer n which are the elastic modes; 
propagate each mode using the vertical slowness for that mode; recombine the modes at 
the new depth 1+nz .  The vector b is, by design, continuous in the presence of medium 
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discontinuities between horizontal layers. Therefore, we may proceed using the 
extrapolated b as the boundary condition for the next depth step. 

We now consider generalization of the above to spatially variable media. The key 
modifications are that nΛ  and nD  now depend on both xp  and x.  The GPSPI form of 
equation (1) is  
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Equation (2) can be considered as a Fourier integral operator in the standard (Kohn 
Nirenberg) calculus.  An anti-standard (adjoint) form of equation (2) can also be written, 
describing NSPS elastic wavefield extrapolation (Bale and Margrave, 2003b).  Of course, 
this generalization is approximate and accounts only for one-way wavefield transmission 
effects.  Mode conversion can only occur at the horizontal boundaries represented by the 
depth steps in our marching algorithm. A dipping boundary is in effect approximated by a 
"staircase" of horizontal boundaries. Whether or not we have made a useful 
approximation to the complete elastic migration problem will be only become clear after 
much algorithmic testing. 

Adaptive windowing algorithm: PSPAW 
Equation (2) as written is very expensive, since it is not an inverse Fourier transform, 

but rather a Fourier integral operator and therefore cannot be performed using an FFT.  A 
practical implementation of this equation involves some form of windowing or 
interpolation.  The traditional PSPI approach (Gazdag and Sguazzero, 1984) is to 
compute several wavefields with reference velocities, return each to the spatial domain 
with inverse FFTs, and interpolate the results.  An alternative approach, which  we refer 
to as “phase shift plus windowing” (PSPW), uses spatial windowing operators applied to 
the inverse transformed data.  In the case of anisotropic elastic wavefield extrapolation, 
the traditional approach has a major drawback, which we now explain.  

The minimum number of parameters required to represent an HTI medium is six, 
which can be defined (among various equivalent ways) as: 00 , βα , the P- and S-wave 
velocities for propagation along the symmetry axis; γδε ,, , the Thomsen parameters; and 
φ , the orientation of the axis of symmetry within the horizontal plane.  If we assume that 
only 5 reference values are selected for each parameter, then the total number of 
reference operators required is 1562556 = . This is clearly intractable, unless the 
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dependence on the parameters is somehow decoupled.  In general this is not possible.  In 
the next section we examine the special case of an isotropic medium, where the 
parameter dependence is approximately separable.  Here, we focus on the spatial 
windowing approach instead. 

We use a variation of PSPW with variable size windows, which we call “phase shift 
plus adaptive windowing” (PSPAW).   The PSPAW algorithm is related to the adaptive 
Gabor method (Grossman et al., 2002), although the Gabor transform is not actually used 
here.  In PSPAW, spatial windows are constructed by combining elementary small 
windows, called “atoms”, into larger windows, referred to as “molecules”.  The 
molecules are built up along the horizontal spatial direction until some acceptance 
criterion is violated.  At this point a new molecule is started.  In this way, large windows 
are used when the velocity variation is mild, but smaller windows are used in areas of 
rapid variation.   For the scalar extrapolation of Grossman et al., the acceptance criterion 
is based on changes in velocity.  For the elastic HTI case we are considering here, this is 
not possible, because there are 3 modes, each with a velocity which depends upon phase 
angle.  Instead we apply the following procedure: 

1. Phase slowness is computed for P, S1 and S2 modes, for a fixed set of phase angles 
using the anisotropic parameters at the spatial center of each atom. 

2. Within each molecule, a record is kept of the average, minimum and maximum phase 
slownesses, for each phase angle.  The average is computed using Schoenberg and 
Muir’s (1989) calculus for addition of anisotropic layers.  In addition, the average, 
minimum and maximum symmetry-axis azimuths are recorded. 

3. A new atom is accepted to the current molecule on condition that including it does 
not cause the range between minimum and maximum slowness to exceed some limit, 
for any mode.   This limit is determined by requiring that the maximum phase error 
does not exceed one-half a cycle, at the maximum frequency, over the entire depth 
range. 

4. A new atom is accepted only if the symmetry axis variation within the molecule will 
remain less than some specified limit (we use 10°).   

5. If either criteria in 3 or 4 are violated a new molecule is created starting with the 
current atom. 
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FIG. 1. Phase velocity curves as a function of horizontal position and phase angle for a depth 
step which transitions from an HTI medium (left) to an isotropic medium (right).  Upper sheet is 
the P-wave slowness, lower sheets are S1 and S2 slownesses. 

Step 1 is illustrated in Figure 1, displayed as phase velocity instead of slowness.  For 
the isotropic part of the model, to the right, the P velocity is constant with phase angle, 
and both S velocities are equal and constant.  For the HTI part, to the left, there are 
variations in all three velocities with phase angle, and the separation of S1 and S2 
velocities is evident. 

Step 4 is important for two reasons.  First, it does not make sense to compare two S1 
or two S2 phase slowness curves from nearby positions, unless the two symmetry axes 
are also closely aligned.  Second, the decomposition and recomposition matrices 1−

nD  and 

nD  in equation (2) are also subject to spatial variation, which depends on both the 
velocities and also the orientation of the symmetry axis. 

Alternative algorithm for isotropic media: PSPI  

In the special case of an isotropic medium with constant SP VV /  ratio, the 
polarizations and phase shifts employed in equation (2) can be controlled for each mode 
by a single parameter.  In particular, the vertical slownesses (which determine the phase 
shifts) for P-wave and S-wave modes are 

 221 x
P pq −= α  (3a) 

and  2221 1 x
SS pqq −== β  (3b) 

where α  and β  are the P-wave and S-wave velocities for the layer in question (we drop 
the layer suffix, which is superfluous here). 
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The P-wave and SV-wave eigenvectors for an isotropic recomposition matrix nD  are 
calculated in Appendix A.  The P-wave eigenvector depends on the S-wave velocity as 
well as the P-wave velocity.  In contrast, the S-wave eigenvector depends only on the S-
wave velocity.   

If we assume the SP VV /  ratio is constant within each layer then each eigenvector is 
controlled by a single parameter – the velocity of the corresponding wave-mode.  In this 
case, we can employ a “conventional” PSPI approach as follows: 

1. Choose N reference P-wave velocities { }Nαααα ,,,, 321 … and define N reference S-
wave velocities based on the constant SP VV /  ratio, 0γ , by 0γαβ JJ =  for 

NJ ,,1…= .  

2. For each reference P-wave velocity, decompose the wavefield using the 
decomposition matrix designed with that velocity. 

3. Extrapolate P-wave and S-wave wavefields using the appropriate vertical slowness 
for that mode. 

4. Interpolate the results for both P and S wavefields at each output location based upon 
local velocity, and the two bracketing reference velocities for each mode. 

Even if the SP VV /  ratio varies within the layer, the above algorithm, with some 
modifications, will still be accurate for all steps except for computing the P-wave 
amplitudes.  We begin by computing the SP VV /  ratio based upon the ratio of mean P- 
and S-wave velocities, α  and β , over the aperture of the migration for each shot.   

 βαγ =ave  (4) 

Next, we adjust the range of  P- and S-wave velocities as follows: 
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This is done to ensure that the reference velocities chosen are matched via a constant 
SP VV /  ratio.   

The P and S references velocities are then selected based upon the harmonic sampling 
criteria of Gazdag and Sguazzero (1984).  Since the actual SP VV /  ratio varies laterally, 
the interpolation of P- and S-wave wavefields does not always use the corresponding 
reference values.  For example, the P-wave might be interpolated using reference (P-
wave) velocities J and J+1, whereas the S-wave might be interpolated using reference (S-
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wave) velocities K and K+1. This is possible since the phase shifts dependence on 
velocity is decoupled.  

For the modal decomposition and recomposition, with variable SP VV / , the situation is 
more complicated.  The composition matrix depends on both P and S velocities.  We do 
not want to compute 2N  versions of nD  and 1−

nD  corresponding to every possible 
combination of P and S velocity, which would be prohibitively expensive.  Instead we 
use corresponding reference velocities, so that the SP VV /  ratio is always aveγ .   In 
addition, we keep track of distinct displacement-traction vectors Pb  and SHb , SVb , 
enabling the appropriate local velocity to be employed for each mode as described in 
Appendix B.  

In the case of the P-wave, this will result in a slight error, since the decomposition 
matrix includes a dependence on the SP VV /  ratio.  Numerical tests indicate that this error 
is relatively small for reasonable variation of SP VV / .   

Imaging Conditions 
During elastic wavefield extrapolation the displacement wavefield is decomposed into 

three wave-modes P, S1 and S2, in each layer.  For the forward extrapolation of the 
down-going wavefield from the source, these are given by the vector of wave-mode 
amplitudes 

 ( ) srcDD
TD

S
D
S

D
PD www ,

1
21 bDw −== . (6) 

For backward extrapolation of the up-going wavefield from the receiver, they are given 
by the wave-mode vector 

 ( ) rcvUU
TU

S
U
S

U
PU vvv ,

1
21 bDv −== . (7) 

In these and subsequent equations, the layer subscript n is omitted, while sub- and 
superscripts U, D, src and rcv are used to distinguish up- from down-going, and shot 
from receiver wavefields. The wave-mode amplitude wavefields, Dw  and Uv  are 
byproducts of the extrapolation of shot and receiver wavefields using equations (1) or (2). 

The goal of elastic migration, assuming a P-wave source, is to produce images 
corresponding to P-P reflectivity, and P-S reflectivity for the isotropic case, or P-S1 and 
P-S2 reflectivity for the HTI case.  (Additional images such as S1-S2 are also possible, if 
the source generates shear energy.)  To obtain these images we must apply an imaging 
condition.  A correlation imaging condition between the corresponding elements of 
equations (3) and (4) is written 
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where MNI  is the image for down-going mode M, and up-going mode N, where 
{ }.2,1,, SSPNM ∈  The overscore here denotes complex conjugation.  

A deconvolution imaging condition is written 
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where the division is stabilized by the addition of the small real value,ε .  

The deconvolution imaging condition is used in our examples. 

Other considerations 
Both the PSPI and PSPAW algorithms described above are implemented with a split-

step correction (Stoffa et al., 1990). The split-step correction improves the accuracy of 
extrapolation for small angles.  This is done by applying a residual phase shift in the 
spatial domain to correct for the difference between the reference and actual velocities.  
This is also referred to as the “thin-lens” correction. We also apply a related wavefield 
interpolation as described by Fu (2004) to enable image output at finer depth sampling 
than the extrapolation step. 

As pointed out in Zhang et al. (2003) there is an often neglected operator aliasing 
effect in prestack wave-equation migration.  We correct for this effect by generating 
output at half of the receiver interval, so that the spatial Nyquist wavenumber for the 
image is twice that of the extrapolated wavefields. 

EXAMPLES 

Isotropic and HTI model with fault 
The elastic wave-equation migration using the adaptive PSPI algorithm was tested on 

the isotropic model shown in Figure 2.  It was then tested on a second model which is 
identical, except that the second, faulted layer is an HTI medium with a symmetry axis at 
45° to the inline direction..  The input data for these tests were generated with a 2-D 
anisotropic pseudospectral modelling code (Bale, 2003), using a P-wave source and 3-
component receivers.  The source signature used was a zero phase Ricker wavelet with 
15Hz center frequency. 

The results of elastic migration on the isotropic dataset are shown in Figure 3.  The 
shot spacing was 200m, from 160m to 4960m.  The receiver range is from 565m to 
4555m along the surface.  Apart from better resolution on the PS section as anticipated, 
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the images are generally in good agreement.  The phase rotation present on the PS 
reflection is, we  believe, a result of a polarity change at large offset. 

Figure 4 shows the result of elastic migration applied to the HTI dataset.  The data 
were modeled using identical geometry to that used for the isotropic case.  For this 
particular case, we generate two separate PS images, one for the fast (S1) mode and one 
for the slow (S2) mode.  For isotropic layers, the SV mode is assigned to the S2 section.  
An interesting aspect is that the S1 mode only responds to the top and bottom of the HTI 
layer. It does not respond to any other interfaces – hence the absence of the flat basement 
reflector on the second image.  

Figure 5 shows the result of applying isotropic migration to the same data as used in 
Figure 4.  The velocity model was constructed by replacing the HTI layer of the true 
model with an isotropic layer having the fastest velocity for each mode.  The amplitudes 
are scaled as in Figure 4.  In addition to some loss of amplitude, which we ascribe to 
uncorrected interference between the S1 and S2 modes, there is a residual basement 
reflection on the S1 section (which corresponds to SH-wave polarization for the isotropic 
model).  This results from incorrect treatment of the polarization within the overlying 
HTI medium. 

Elastic Marmousi model 
The last example is the elastic Marmousi-2 model, which is isotropic but highly 

heterogeneous.  The Marmousi-2 dataset was generated by the Allied Geophysical 
Laboratory at the University of Houston (Martin et al., 2002).  It is based upon the 
standard acoustic Marmousi model but with several modifications and extensions.  
Firstly, it has been extended laterally to a total line length of 17 km.  The extensions are 
less structurally complex than the central section, but include interesting stratigraphic 
features and hydrocarbon accumulations.  Secondly, it has been submerged under 500 m 
of water.  Finally, it is an elastic model with density and shear velocity determined from 
empirical rock physics equations (Castagna et al., 1993; Greenburg and Castagna, 1992).  
The modelled data are very rich including both OBC and towed streamer data.  We have 
confined our attention to the X and Z components of the OBC dataset.   

We made use of the specialized isotropic version of the PSPI migration, as described 
above, to image this data.  Testing on this dataset is ongoing. The results included within 
this report are of a preliminary nature.  In particular, the central area poses imaging 
problems which have yet to be resolved. There are also very problematic water layer 
multiples in the data.  Nevertheless we feel these results are interesting enough to include 
here.  We focus on two parts of the model. The first corresponds to approximately the 
original Marmousi model, with much structural complexity, and velocity heterogeneity. 
The second part is a more stratigraphic area in the shallow part of the model. 

Figure 6 shows the P-wave (a) and S-wave (b) impedance sections in the central 
section, roughly equivalent to the original Marmousi area. The water layer is not shown.   

Figure 7 shows the P-P and P-S migrated images for this section of the model. Both 
images suffer somewhat from the presence of water layer multiples, and some aliased 
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diffraction noise from the water bottom.  In this regard the P-P image is more affected by 
the multiples.  Generally speaking, the P-P image is promising, whereas the P-S image is 
less clearly defined 

Figure 8 shows the P- and S-wave impedance sections from a shallow, stratigraphic 
portion of the model. This is located to the left of the area shown in Figure 6.  This area is 
considerably less structured, and the horizontal scale in figure 8 has been compressed for 
display. 

Figure 9 shows the corresponding P-P and P-S migrated images.  As seen in figure 
9(b), the shallow P-S imaging is remarkable, displaying clear resolution advantages over 
the equivalent P-P section in figure 9(b).  This is anticipated from theory, due to the 
slower S-wave velocities, but is striking nonetheless.  Also of interest are the very 
different responses to the gas sand at 0.6km depth to the left of the image.  The over-
migration of the P-P gas sand is not fully understood at present. However, the reader 
should be aware that the effect is exaggerated by the very high amplitudes of the P-P 
response to the sand, compared to the relatively low amplitude response on the P-S 
image.  Significantly, the ability of elastic wave data to provide discrimination between 
lithology and fluid is exhibited clearly in this example.   

CONCLUSIONS 
We have developed wave-equation migration for elastic seismic data using two related 

elastic wavefield extrapolators.  

The first, which we call PSPAW, is applicable in the presence of anisotropy.  We have 
specifically implemented if for HTI media, such as may be encountered in vertically 
fractured reservoirs.  The algorithm naturally focuses the separate S1 and S2 wavefields 
associated with shear-wave splitting, a task which isotropic migration cannot achieve.  By 
using an extension of the generalized PSPI method, we are able to accommodate lateral 
variations in the velocities, as well as the degree and orientation of the anisotropy.  This 
is done in an efficient way using an adaptive design. This employs as few operators as 
possible whilst satisfying a phase error criterion.  We have demonstrated the migration on 
two examples: one isotropic, and one containing an HTI layer.  The second example 
illustrates the ability of the migration to isolate the reflections arising from the top and 
bottom of the HTI layer on the S1 and S2 components.  We show that using isotropic 
migration applied to data generated with an HTI model produces residual reflections with 
incorrect polarization. 

The second extrapolator is essentially a conventional PSPI algorithm applied to both 
phase shift operators and modal composition/decomposition operators.  The key is to 
decouple the dependence on the medium parameters.  This appears only to be possible for 
isotropic media, and in this case an approximation is required for the P-wave modes.  It is 
exactly correct for constant SP VV / .  This algorithm appears to do a reasonable job on the 
isotropic, but highly variable, Marmousi-II elastic dataset.  There are a number of 
extraneous issues with these data, primarily related to the water layer, which still need 
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attention.  There also appears to be room for improvement in imaging the converted 
waves in the most structural part of the data. 
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APPENDIX A: ISOTROPIC MEDIA DECOMPOSITION MATRIX 
In this appendix we evaluate the decomposition matrix for isotropic media and show 

that the decomposition for each mode depends only on two parameters, one of which is 
the SP VV /  ratio.  To simplify notation we drop the layer index, and write the 
recomposition and decomposition matrices as D  and 1−D .    

D  is constructed from the eigenvectors  

   







=

i

i
ii τ

u
b εˆ  ,    6,,1…=i . (A1) 

where the iu  are found by solving the Kelvin-Christoffel equation, and the iτ  are related 
to them through the stress-strain relationship.  The iε  are normalization constants. The 6 
indices correspond to different modes with up and down-going wave directions.  See Bale 
and Margrave (2003a), and references therein for details.   

Once D  is known, the decomposition matrix is given simply by 

 ( )TJDD =−1 , (A2) 

where 

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33
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0I
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J . 

We consider only the down-going waves in the following analysis.  Similar analysis 
applies to the up-going waves.  In the isotropic case, using a coordinate frame such that 
SV modes are polarized in the x-z plane, the displacement eigenvector associated with 
the down-going P-wave is  
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where α  is the P-wave velocity, xp  is the horizontal slowness, and Pq  is the vertical 
slowness for the P-wave. 

The corresponding traction eigenvector is  
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where ρ  is density and β  is the S-wave velocity. 

For the SV wave-mode the corresponding eigenvectors are: 
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where Sq  is the vertical slowness for the S-waves (SV or SH). 

For isotropic propagation the SH-wave is completely decoupled from the P- and SV-
waves, and can be independently extrapolated. 

Because of the simple form of the decomposition matrix in equation (A2), the above P 
and SV eigenvectors define fully the decomposition for the corresponding modes. 

 Equation (A3) shows that even though the displacement eigenvector for the P-wave is 
independent of the S-wave velocity, the traction vector is not.  Therefore, the complete 
eigenvector D

Pb̂ , a column vector of D, is dependent on the S-wave velocity. So is the 
corresponding row-vector in the decomposition matrix 1−D .  This implies that we cannot 
exactly decouple the handling of P- and S-waves within the decomposition and 
recomposition steps.   However, in the case that βγα 0= , with 0γ , the SP VV /  ratio, 
being constant for a given layer, we can replace the dependence on β  in equation (A3b) 
with a further dependence on α . 

Surprisingly perhaps, the S-wave eigenvectors given in equation (A4) are not 
dependent on the P-wave velocity. 

 

APPENDIX B: MULTIPLE REFERENCE VELOCITY COMPOSITION-
DECOMPOSITION 

We write the composition equation in the following form: 
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SVSHP
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v
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++=
















=

=

ˆˆˆ , (B1) 

where only the down-going (or up-going) waves are considered (omitting the U or D 
superscript for brevity), where the vector v consists of the wave-mode amplitudes, and 

MMM v bb ˆ=  for { }SVSHPM ,,∈ .  The qualifiers SH and SV are used rather than S1 and 
S2, since isotropy is assumed here.  For more details on the composition equation  (B1) 
and the corresponding decomposition equation (B3) see Bale and Margrave (2003a) and 
references therein. 
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  The wave-mode specific displacement-stress vectors SHP bb ,  and SVb  are stored 
separately.  Since the spatial variation of P- and S-wave velocities is not necessarily with 
a constant ratio, at any given output location x the total displacement-stress vector 

( )ω,, zxb , a combination of these vectors, will be obtained using different reference 
values.   

For example, assume a set of reference media NJ ,,1…=  such that JaveJ βγα = . 
Define the reference vectors using (B1) with each reference medium as JP,b  and JSV ,b  
( SHb  is independent of any parameters – and can be completely decoupled).  Suppose at 

0xx = , the local P-wave velocity α  is between Jα  and 1+Jα , whereas the S-wave 
velocity β  is between Kβ  and 1+Kβ , with  KJ ≠ .  Then we have: 

 ( ) 1,, )1(,, +−+= JPPJPPP zx bbb λλω , (B2a) 

and  ( ) 1,, )1(,, +−+= KSVSKSVSSV zx bbb λλω , (B2b) 

where 
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J
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ααλ
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−
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+
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1 . 

As noted in appendix A, the vectors Pb̂  depend on both α  and β , whereas the vectors 

SVb̂  only depend upon β .  So the only approximation involved in the above is using Jβ  
rather than Kβ  within equation (B2a).  If the variation of SP VV /  is not large, the error 
involved can be expected to be small. 

Similarly, for decomposition, we can write: 

 
( ) ( )SVSHP

T
SVSHP bbbggg

bDv

++=

= −

ˆˆˆ

1

, (B3) 

where, from equation (A2), MM bJg ˆˆ = . 

Equation (B3) can be evaluated directly, using appropriate reference velocities to 
compute Pĝ  and SVĝ  - where again SHĝ  is parameter free and decouples.  as for the 
composition equation, Pĝ  is evaluated with the correct α , but a possibly incorrect β , 
constrained by the average SP VV /  ratio.  In terms of reference vectors, they are written 
(c.f. equation B2) 

 ( ) 1,, ˆ)1(ˆ,,ˆ +−+= JPPJPPP zx ggg λλω , (B4a) 

and  ( ) 1,, ˆ)1(ˆ,,ˆ +−+= KSVSKSVSSV zx ggg λλω . (B4b) 

The result, taking into account the decoupling of the SH mode, will be 
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The cross-over terms SV
T
Pbĝ  and P

T
SV bĝ  correspond to mode converted energy.  

Alternatively, the mode conversions can be neglected, to give  
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Use of equation (B6) rather than (B5) essentially converts the elastic migration to a set 
of scalar migrations which handle transmission effects. 
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FIG. 2. Depth model used for migration example.  Fault dips downwards at 63.4° angle.  Isotropic 
VP and VS are shown here.  For HTI example, second layer is replaced by HTI medium. 

 

FIG. 3. PP and PS images from elastic wave-equation migration with of isotropic modeled data, 
from model shown in Figure 2. 
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FIG. 4. PS1 and PS2 images from elastic wave-equation migration of HTI modelled data, with the 
model shown in Figure 2, but with an HTI second layer.  

 

FIG. 5. PS1 and PS2 images from elastic wave-equation migration of HTI modeled data, using an 
isotropic model based upon the (vertical) P-wave and fast S-wave  velocities.  P-S1 corresponds 
to an S-wave polarized in the crossline direction, whereas P-S2 is polarized in the inline direction. 
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(a)  

(b)  

FIG. 6. Marmousi-2 elastic model, showing (a) acoustic (i.e. P-wave) impedance and (b) S-wave 
impedance.  This area corresponds approximately to the original Marmousi acoustic model. 
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(b)  

FIG. 7. Migrated images: (a) P-P and (b) P-S of X and Z component data from elastic modelling.  
Area shown is that of the model in figure 6. 
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(b)  

FIG. 8. Marmousi-2 elastic model, showing (a) acoustic (i.e. P-wave) impedance and (b) S-wave 
impedance.  This area corresponds to a shallow section on the left of the main structural area.  
Note that the horizontal axis has been compressed relative to the vertical, for display purposes.  
The gas sand is clearly identified by its low P-wave impedance compared to local sediments. 
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(a)  

(b)  

FIG. 9. Migrated images: (a) P-P and (b) P-S of X and Z component data from elastic modelling.  
Area shown is that of model in figure 8.  Note the superior resolution of the P-S image, and the 
significantly weaker response to the gas sand.  This is an example of fluid-lithology discrimination 
with elastic waves. 


