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A hypocentre location method for microseismicity in complex 
regions 

Henry C. Bland and Chad Hogan 

ABSTRACT 
Complex stratigraphy and topology are challenges for conventional hypocentre 

location. A method is developed which may be used to determine the hypocentre of 
seismic and microseismic events located within regions of variable topology and 
stratigraphy. The program requires a velocity model (supplied as a 3-D grid of values), 
receiver locations (either on the surface or buried), and a set of observed first-arrival pick 
times. The velocity field is transformed into a set of travel-time cubes, one per receiver 
location, computed using a fast-marching eikonal equation solver. Candidate hypocentre 
locations may be anywhere within the search space defined by the velocity field.  Each 
candidate hypocentre location is evaluated according to a cost function. The simplest cost 
function is the square of the cumulative errors between observed first-break arrivals and 
the predicted arrival times based on the velocity field. The global minimum for all 
candidate locations is considered the best estimate of the hypocentre. The global 
minimum is determined using a pattern search technique. More complex cost functions 
may be designed which make use of the seismic trace data so as to reduce the reliance on 
human-picked first break times. The method is illustrated in a short MATLAB program.  

INTRODUCTION 
Source location is one of the classic problems in seismology. Most source location 

efforts are focused on earthquake seismology and nuclear test ban monitoring. Recently, 
there has been increased interest in source location for passive seismic reservoir 
monitoring and geohazard monitoring. In all cases the problem is the same – determine 
the time and place of the seismic event based on seismic arrivals at several seismometer 
stations. Though deterministic solutions exist for regularly-distributed sets of 
seismometers (e.g. linear arrays), a hypocentre determination using irregularly spaced 
seismometers typically requires statistical analysis techniques. 

METHOD 
We present a simple technique which may be used to compute hypocentres within a 

region of variable topology and stratigraphy. We assume that the study area is monitored 
by a set of seismometers, and that a multi-channel recording system records a seismic 
event at a multiplicity of stations. These stations may be positioned irregularly 
throughout the region of interest. Given a set of N receivers with locations ix , first-arrival 
pick times pick

it , and a 3-dimensional velocity field ),,v( zyx , we aim to locate the 
hypocentre position in Cartesian space [ ]hhhh zyxx ,,=   and find the seismic event time T. 

The first stage of the method is to convert the velocity field ),,v( zyx  into a set of N 
traveltime fields ),,( zyxiτ computed from the perspective of each receiver i. The velocity 
and traveltime fields are both represented by 3-dimensional regular grids with a grid 



Bland and Hogan 

2 CREWES Research Report — Volume 17 (2005)  

spacing .x∆  This operation is computationally expensive, and only needs to be performed 
once for a given receiver geometry and velocity model. The conversion to traveltime is 
performed using the Fast Marching Method (FMM) 3-dimensional eikonal equation 
solver (Sethian and Popovivi, 1999). The resulting set of traveltime cubes defines the 
travel time (associated with the first-arrival) between each receiver location and any of 
the grid points in the volume of interest. 

Next, we obtain the hypocentre location by finding the source location which offers 
the best match between observed and computed arrival times. The “best match” is 
determined via the objective function ( )zyxf ,, . This function evaluates to a small 
number when the match is good, and larger numbers when the match is poor. We 
iteratively consider candidate hypocentre locations in discrete (x, y, z) space until we find 
the location with the lowest objective function value. This can be performed using an 
exhaustive search of the grid space, or through the use of a global optimization technique.  

 

 

FIG. 1. Illustration time measurements for a set of three receivers.  

The objective function ( )zyxf ,,  is computed as follows. For each candidate/receiver 
combination we compute an estimate of the seismic event time T using 
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The mean of these estimates, 
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provides our best approximation to T for the current candidate location.  Next, we 
compute a series of residuals 
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Finally, we defined the objective as a function of the residuals: Typically it is either the 
L1 norm,  

 ∑ =
= N

i izyxf
1

),,( ε ,  (4) 

or the L2 norm, 

 ∑ =
= N

i izyxf
1

2),,( ε . (5) 

Cross-correlation extension 
The algorithm uses a set of pick times which must be selected by careful examination 

of first arrivals. In some cases, it is very difficult to make-out the first arrival pick times 
due to noisy or band-limited arrival waveforms. Non-impulsive seismic events also pose 
a challenge, since they may not have clearly defined first-arrivals.  To address these 
cases, we may consider modifying the objective function to directly interrogate the 
received waveform data.  

VanDecar and Crosson (1990) suggest computing the cross-correlation between all 
possible pairs of traces to estimate delays and quantify timing uncertainties. After 
applying a bandpass Chebyshev filter they compute a preliminary arrival time using a 
single-trace phase-picking algorithm. They go on to compute the trace-to-trace truncated 
cross-correlation for a pair of traces i and j and extract only the peak cross correlation 
value ( )max

ijij τφ , for the associated delay time max
ijτ . The cross-correlation derived relative 

delay time is then given by 

 max
ij

p
j

p
iij ttt τ−−=∆ , (6) 

where p
it and p

jt are the previously auto-picked (approximate) arrival times. The cross 
correlation coefficient between the ith and jth is then 

 
( )

ji
ijij

ijr
σσ

τφ max

=  (7) 

where iσ and jσ is the standard deviation of the ith and jth traces computed over the 
correlation window located about max

ijτ . 

VanDecar and Crosson finally derive a least squares estimation for the estimated pick 
times for each trace using 
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We believe that this technique could be incorporated into the calculation of the objective 
function in Equations 1 through 5, resulting in a method for hypocentre location which 
does not require hand picking of arrival times. 

IMPLEMENTATION 
The Fast Marching Method (FMM) of Sethian and Popovici (1999) is designed for 

orthogonal coordinate systems. It is unconditionally stable which makes it suitable for 
traveltime computation from complex velocity models: It constructs solutions which are 
consistent with the exact solution for large gradient jumps in velocity. The algorithm is 
also able to resolve any overturning propagation wavefronts. Typically, the number of 
receivers is small and their position is fixed in space. The permanence of the 
configuration is ideally suited for pre-computing a traveltime cube for each receiver 
location. The grid size has a large effect on computation time: The FMM algorithm is of 
the order O(N log N), where N is the total number of grid points. A halving of the grid 
size increases N by a factor of 8, so careful consideration must be given to both the grid 
size and the extent of the search space. 

Both the FMM eikonal solver and the iterative hypocentre location solver were 
implemented in Matlab. The FMM eikonal solver runs rather slowly in Matlab due to the 
presence of large non-vectorized code. A test, executed on a PC with an Athlon 1800+ 
processor took 60 seconds for a value N=8000 (a cube of 20 elements per side). Even 
with the inefficiency of Matlab for scalar operations, the algorithm is fast enough to be 
usable. To further increase the speed of repetitive locations, traveltime cubes are stored to 
disk for re-use.  

The sample implementation uses a “pattern search” method for finding the global 
minimum objective function value. This method belongs to the family of direct search 
methods which work without the calculation of a gradient. This is fortunate, as the 
velocity field is permitted to contain discontinuities.  

The algorithm sequentially compares each candidate solution with the “best” obtained 
up to that time. It uses a strategy for determining the next candidate solution, based on 
earlier results. A set of fixed direction vectors define the grid search pattern (typically, 
look north, south, east and west, in the 2-D case).  Multiplying these direction vectors by 
a scalar called the mesh size determines the new set of candidate locations. If any of the 
locations are an improvement, the mesh size grows. If none of the candidates were an 
improvement, the mesh does not move, but it shrinks.  
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FIG. 2. A sample of the pattern search in action. Here, the global minimum (indicated by a red 
star in (a)) is obtained through movement and refinement of the pattern search mesh. Illustration 
after Kolda, Lewis, and Torczon (2003). 

Initial tests show that the pattern search works well, particularly if the pattern vectors 
utilize a maximum positive basis of 2N.  In order to obtain the most accurate solution, we 
allow off-grid interrogation of the traveltime volume with the aid of a 3-dimensional 
interpolation function (Matlab’s interp3 function).  

The structure of the program is such that other optimization techniques may be 
substituted for the pattern search. Included in the code, is the ability to perform an 
exhaustive search. It remains untested for large values of N due to its poor speed. One 
other tested method is the “Genetic Algorithm.” Due to this algorithm’s complexity, we 
did not fully evaluate its function in this environment. 
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FIG. 2. Tests were performed using a four layer model of a mountain with a thrust fault. The 
orange region above the surface has air velocity, while the other three layers are assigned 
appropriate rock velocities. 

CONCLUSION 
We have presented a technique to compute hypocentres in regions of complex 

stratigraphy and topology. Based on a preliminary implementation and tests with a 
synthetic dataset, we believe the method works well. Further testing and validation will 
be the focus of future work. 
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