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ABSTRACT

Detailed expressions are derived for generalized reflections from point sources in a
two-layer medium possessing vertical transverse isotropy. First, the displacements
resulting from P-wave and S-wave point sources in a homogeneous medium are derived.
It is shown that these are given by integrals over the corresponding plane-wave
displacements. The generalized reflection coefficients are then derived and are seen to be
integrals over plane-wave reflection coefficients.

INTRODUCTION

In a previous series of investigations, the generalized reflection coefficients from point
sources in two-layer isotropic media were studied to clarify their potential implications
for AVO (amplitude variation with offset). The influence of spherical-wave effects on
different AVO classes was investigated for conventional and converted-wave reflections
in both elastic media (Haase & Ursenbach, 2004a) and anclastic media (Haase &
Ursenbach, 2004b). A highly accurate approximation was also presented to allow more
rapid calculation in the case of P-waves in elastic media (Ursenbach & Haase, 2004).

Although the same theory of generalized reflections is in principle known for VTI
(vertical transverse isotropy) media (e.g., Rommel, 1992; Tsvankin, 2001), the explicit
expressions available for isotropic media (Aki & Richards, 1980) are not published for
the anisotropic case. This paper will begin with the theoretical result given by Tsvankin
(2001) and from these derive explicit expressions for generalized reflections in a two-
layer VTI medium. Thus this study provides the theoretical basis for calculations carried
out on VTI media (Haase & Ursenbach, 2005a,b).

The first step follows Tsvankin’s derivation of the Weyl integral for a homogeneous
VTI medium. Then we obtain detailed versions of this for P-waves (equation 10) and for
S-waves (equation 15). Next we demonstrate that these can be expressed in terms of
plane-wave displacement parameters (equations 16 and 17), with notation due to
Graebner (1992). From these we obtain the central result of this paper, the generalized
reflection coefficients for a two-layer medium (equations 34-37).
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THEORY
Weyl integral for point forces in a homogeneous, VTI medium

Tsvankin (2001) shows that the frequency spectrum of the displacement is given by
(see his equation 2.25):

S(@,) = —— [ H'Fe™dk
27) @
(1)
where @ is the frequency, X is the spatial Cartesian coordinate, and K is the wave vector.
F is the direction and magnitude of a point force, FAX)h(t), where &X) is a 3-D delta

function, h(t) represents the source pulse, and, if the force is oriented along the i axis,
then F can be written as F =B(J,,,0,,,0,;). H is related to the Christoffel matrix and is

given by [cf. Tsvankin (2001), p. 14]

C, pl2 + Ces pz2 +Css pz% P (Cll _Cee) PP, (C13 +Css) P, Ps
H= ( 1 )plpZ C66p12+cllp22+c55p32_p (C13+C55)p2p3
(€3 +Cs5) PPy (CstCss) PPy i+ (P +P3)-

Where the cjj are elastic constants, the p; are slowness components ( p = K /w), and p is

the density of the medium. Equation 1 is converted to a Weyl integral by integrating over
ks to yield (cf. equations 2.26 and 2.27 of Tsvankin (2001))

%) —io(pX+PyX+ Py %)
S(a,x) =~ (P, py)e PR dp,dp,

(2)
where vis an index for the three eigenvalues of H, so that ps'” are poles of the kernel in
equation 1, and U(V) is given by the residue of H'F at the poles:

y di(H) P =P
U™ (p,, p,) =Res| “ L F 255 HE . 3
(P.P.) es[det(H) } { iy N G)

Recalling that F is oriented along the i axis, we can obtain slightly more explicit
expressions using the p,P = ¢and p;&Y) = n poles, which are of interest to us:

B(H;Y, Hal HyY)
2C33C55§(§2_77 )(p_c55|:pl + p;:I—C%fz)
o H )

2(333(:5577(772 -¢& )(p_css [ pr+ pzz}_C“nz)

U™ (p,, p,) = (4)

U(Sv’i)(pla pz) = (5)

The adjoint matrix elements are complicated, and we will defer evaluating them as they
must first be manipulated further.
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Point-sources for P-waves

The point source for a P-wave is represented by six equal-magnitude point forces
oriented in the six axial directions away from the origin, as indicated in the diagram
below:

According to the method of moments (Krebes, course notes), the effect of two oppositely
directed forces is given by applying a derivative to equation 2 along the direction of the
two forces. If we restrict consideration to the P-wave emanating from such a point source
(v=P), but sum over the three Cartesian coordinate directions, equation 2 becomes

3
S (a), X) — Zis(v:mi)(a), X)
i=1 8Xi
— %) J-oo J-oo iU(P,i)(p], pz) ie—iw(plxl+pzx2+§x3) dpldpz
4r* =t is OX;
0)2 © Pw M3 (P,i) —ia)(plx1+p2x2+§x3)
:_472_2 J‘_w_[_w iZ:l:piU (P, Py) | dp,dp, (6)

o I B(Y mHL Y. pH:LY pHLY)

472'2 - 700_2C33C55§(§2 _772)(10_(:55 I: pl2 + pzz}_c“gz)

e—iw( P1X1+pzxz+§x3)dp dp
1 2

We now define po=+/p; + p; . In particular we define p, = p,cos¢ and p, = p,sing to
produce (cf. Tsvankin, Eq. (2.28))
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©| & i : —iw(pyrcos(g—a)+<&z
$%(@,%) =~ ) {Z piU""(p, cos ¢, p, sin ¢) }e (e pydpyd b
i=1
__ 27 po —B( poTrP COS ¢: poTrP Sin ¢a éTzP) e—ia)( Por cos(g—a)+£2) podp0d¢
Ar’? 2C33C55§(§2 _772)
o e—la)(porcos(¢ a)+&z) p
pTPc0s¢ p,T.” sing, T —dp,d¢
877 C33C55'[ I ’ ’ ) (f _772) 4 ’
(7)

We have also substitutedX, =rcosa, X, =rsina and X; =z, and note that £ and

ndepend on py but not on ¢ so all ¢dependence is given explicitly in the above
expressions. The quantities T," and T," result from summing and simplifying the adjoint
matrix elements in equation 6. They can be expressed as

TrP =Css pg + (C33 - [Cl3 +Css ])52 —-pP (8)
sz = (Cll _[Cl3 +C55]) p02 +C55§2 —-pP )

We will now focus on the ¢ dependence of equation 7. From the last line we can isolate
three integrals. First,

2 .
J-O”COS ¢e7|wp0rcos(¢—a)d¢
= 2 —iwp,yrcos¢
_I cos(p+)e d(g+a)
a
2z .
- Io cos(g+a)e P dg
2 ‘
= IO (cos ¢ cos o —sin gsin ar)e P ¢ d g

27 . 27 )
= COS OZIO COS ¢e*lwpor(>05¢d¢ _ SinaJ-O Sin ¢eflwp0rcos¢d¢
=cosa(—2xi)Jd,(wp,r)—sina -0

Second,
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IOZE sin ¢e—i{up0rcos(¢—a)d ¢’
-[ T Sin(g+ @) P (¢ + ar)
a b
_ 2z —iwpyrcos¢g
=], sin(¢+a)e dg,
_ 2z . : —lwpyrcos¢g
—.[O (singcosa +sina cosg)e dg,

: 27 —iwp,rcosg 2T —iwp,rcosg
:smacj0 cosge ™ d¢+cosaj0 singe " *’dg
=sina(-27zi)J,(wp,r)—cosca -0

Thirdly,
'[02” e—iwpurcos(¢—a)d¢
— jzﬁﬂz e—i{uporcos¢d (¢ + a)
a
— J-OZ” e—i(upﬂrcos¢d¢

=27, (wp,r)

Here Jy and J; are zeroth- and first-order Bessel functions, obtained using standard
identities. Substituting these results back into equation 7 yields the final expressions for
P-waves emanating from a point source in a homogeneous VTI medium:

Ba)2 ® . . . e_iwéz
o=l ["PoTrPJl(a’por)COSa,—'ponJl(wpor)SIna,foJo(wpor)](52 N Uz)%dpo

3355

Transforming from (S, Sy, S;) to (Sr, Se, S;) further yields

B 2 —iwéz

0 . e
axc,c J ["poTrPJI(wpor)aO,f'J’Jo(wporﬂ(52 nz)?dpo. (10)
33755 —

S (w,x) =

Point-sources for SV-waves

The point source for an SV-wave is somewhat more complicated than for a P-wave.
The required toroidal motion can be produced by a combination of sixteen equal-
magnitude point forces oriented about the origin as indicated in the diagram below (cf.
Figure 6.11 in Aki & Richards (1980).):

CREWES Research Report — Volume 17 (2005) 5



Ursenbach and Haase

3 3 F,

By a procedure analogous to the method of moments, the effect of these combinations of
point forces can be generated by applying particular 2™-order derivatives to equation 2.
The choice of 2"-derivative can be deduced from inspection of the above diagrams. The
first set, denoted Fy, are equivalent to applying 0°/0x0z to the solution for the point
force (B,0,0). The second set, denoted Fy, are equivalent to applying 6°/dydz to the
solution for the point force (0,B,0). The third set, denoted F;, are equivalent to applying
—-0° /x> —0° /0y’ to the solution for the point force (0,0,B). We note that these operators
are exactly the components of the double curl applied to an SV-wave potential for
isotropic media in order to obtain SV-wave displacements (see Aki and Richards (1980),
p. 217). If we now restrict consideration to the SV-wave emanating from such a point
source (v = SV), but sum over the three Cartesian coordinate directions, equation 2
becomes

82 62 2 62
S(SV) (0), X) — _S(V:SV,I) (0)’ X) + _S(V:SV,Z) (a)’ X) _ {_ + _js(V—SVJ) (a)’ X)

0oX0z oyoz x> oy
i(() o 82 —iw( X+ Py Xy +17X
= —472-2 joojqoo|:U(SVJ)(pl, pz)ﬁe (P X+ PaXo +77%3) +i|dp1dp2

3
:‘Zz I_w'[_w[p]nu(sv,n + U —(p2 4 p2 ) USY ]e-m(plx1+pzxz+nx3>dpldp2 (11
where

— (V) —(SV) — (V)
p177U1 +p277U2 _(p12+ p;)U3
ad

_ B(p177Hlald + pz’7H1&2d _(p12 + p;)Hlasd, p177H;fl + pz’7H2&;l _(p12 + p;)sz plﬂH;? + pan;;l _(p12 + p;)H;;)
2C3305577(’72_fz)(p_css[pf"' p22:|_c66’72)

As in the P-wave case we define po =+/p; +p;, P, = P,cosé, and p, = p,sing. We
further evaluate the Hijadj to produce (cf. Tsvankin, Eq. (2.28))
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=3
1)
SV (w,X) = p

D cos g+ USY? gin é)— pgu(SV,B):Ie—ia)(porcos(qﬁ—a)wjz) podpod¢

2z

Bp0 7T cos g, 7T > sin g, pOTZSV)

e—i(u( Pof cos(p—a )+nz) podpod ¢
2(:3305577 (772 - é:z )

—iw(pyrcos(p—a)+nz)

(&)

Bo J‘MJ. (UTSV cos ¢, nT > sin ¢, poTSV)e

pg
= —dp,d 12
87[2C33C55 0 n Podé (12)

We have also once again substituted X, =rcosa, X, =rsina and X; =z, and note that £
and 77 depend on py but not on @, so all ¢dependence is given explicitly in the above
expressions. The quantities T,°" and T,°" result from summing and simplifying the
adjoint matrix elements in equation 6 (MAPLE was used to assist in this procedure).
They can be expressed as

TV =c,n’ +(Cc, +2C)ps — p (13)

TzSV zcllpg+(Cl3+2C55)772—p (14)

The ¢ dependence of equation 12 is dealt with in the identical fashion to that in equation
7. The procedure applied to equation 12 yields the final expressions for SV-waves
emanating from an SV-point source in a homogeneous VTI medium:

iBw’ 2
oy o (7T @R sose, T 3 @R0sing: BT Jo (0P nz)%dpo

—iwéz

SV (@, x) =

Converting from (S, Sy, S;) to (S, Sg, S;) further yields

—iwéz

iBo® o, . e :
[ (-T2 9, @Pg0), 0, B, TS 3y (@) ) e 2 dp, (15)
(&-n*) n

47cC..C

33755

SV (@, X) =

Relationship to plane-wave solutions

Graebner (1992) has shown that plane waves in a homogeneous VTI medium are
eigenvectors of the equations

C11p2 +C55q2 —-p (C13 +C55) pq (UJZ(OJ
(Cl3 + Css) P Css p’ +C33q2 —P )V 0
where (u,v) = (l,,m,) for the eigenvalue q = &, and where (u,v) = (mg,—14) for g = 7. Here
p signifies the same as py above. Graebner obtains explicit expressions for |; and m; by
multiplying the first equation by u, the second by v, and then subtracting one from the
other. His equations 5 and 6 follow directly. There are, of course, other ways the

equations can be manipulated. In particular, if, for q = &, we multiply the first equation by
¢, the second by p, and then subtract we obtain

CREWES Research Report — Volume 17 (2005) 7



Ursenbach and Haase

a

m, &1/

I, pTS

Similarly, if, for q = 7, we multiply the first equation by p, the second by 7, and then add
we obtain

m, T

Iﬁ - pTZSV :

Thus, within an arbitrary scaling factor, we can rewrite equations 10 and 15 as

—iwéz

S®(w,x) = a)zj'w(_ilaJl(a) p,N),0, maJO(a)pOr))(;—z)%dpo : (16)
’ -1
SV (w,x) = iaﬁj:’(_imﬁJl(a)por),O,IﬂJo(wpor))%%gdpo. (17)

Derivation of displacement reflection coefficients

Above we considered waves originating from a point source at the coordinate system
origin in an infinite homogeneous medium. Now we consider a P-wave in a two-layer
VTI medium beginning at a point source at (0,0,h), where h < 0. The interface passes
through the origin, so the point source is above the interface. The wave can be detected at
a receiver above the interface (z < 0) as 1) a direct wave, 2) a reflected P-wave, or 3) a
reflected SV-wave. It can also be detected at a receiver below the interface (z>0) by 1) a
transmitted P-wave, or 2) a transmitted SV-wave. As the initial wave contacts the
interface, varying amounts of energy go into the four reflection/transmission modes, and
these amounts are determined by enforcing four boundary conditions, namely, continuity
of various components of displacement and traction across the welded interface.

Our objective is to see how to incorporate plane-wave reflection and transmission
coefficients into point-source expressions. We consider the expressions due to Graebner
(1992). The essential plane-wave form is given in his equations 9 and 10. These differ
from the expressions here in the sign of the z-term of the exponential factor for the
downgoing incident wave. To be consistent with this we can modify equations 16 and 17
of this paper by replacing (—1) with i. We then proceed to write down (cf. Graebner’s
equations 11 and 12) the r and z components of (the frequency spectrum of) the
displacement above and below the interface:
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S/ (w,r,2<0) =i j: J(@ por)(AIa,lei“@‘z‘“‘ +Bl, e + (—iwp,)Cm, e " )olpO (18)
S/ (w,r,2<0) = j: Jy(@p,r)(Am, e —Bm, e + (iewp,)Cl, & )dp, (19)
S, (@,1,220)=i[ " J,(@p,r)(DI, €% + (-iwp,)Em, e )dp, (20)
S, (@,1,220) = ["J,(@p,r)(Dm, . — (<iwp,)El,, £ p, (1)

By comparison with equation 16 we can see that A oc @’ p, / [(flz —7712)51} . Applying the

boundary conditions will then yield the ratios Rpp = B/A, Rps= C/A, Tpp = D/A, Tps = E/A.
These require the following (frequency spectra of) traction components as well:

7. (01,2 SO):C;{@S, +@}

oz o0z
= aci, [ 3,(@pyN)(=A(&l,. + pom,., )& + B(&L,, + pym, e (22)

+(-lwp,)C (771mﬂ,1 — p0|ﬂ’l)e—iml7lz)dp0
o(rS’ .

= Ia)J.O JO(a) pOr)(A(C;—S pOIa,l + C;3§1ma,l )eiw§]|27h‘ + B (Cl+3 pOIa,l + C;}flma,l )e*i’”flz (23)

+ (—ia)po)C (C1+3 pomﬂ,l - C;3771|ﬂ,1 )e*iw'hz ) dpo

and similarly for 7, and 7, . The boundary conditions then are

S/ (w,r,z=0)=S, (w,r,z=0) (24)
S, (w,r,z2=0)=S, (w,r,z=0) (25)
7 (0,r,2=0)=1,(w,r,2=0) (26)
7, (0,r,2=0)=1,(w,r,2=0) (27)

The first of these conditions yields the expression

0=i["9,(wp,r) (A", +Bl,, +(<iwp,)Cm, DI, , - (-iwp,)Em,, )dp, . (28)

In order for this to be satisfied for all values of the elastic parameters, the integrand must
vanish for each value of po. For this and the other three conditions we therefore obtain the
simpler expressions
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—Aei“éhla,l = B|a,1 + (—ia)po)Cmﬂ,1 - Dla,z _(_ia)po)Em,&2 (29)
Aei“’f'hma,l = Bma,l _(_ia)po)CIﬁ,l + Dma,z _(_ia)po)Elﬂﬂz (30)
i A (1, + oM, ) = [ B+ Pm,, )+ (Hip)C (mmy, ~ Pyl )] 31)
+Css [D(étzla,z + poma,2)+(_iwp0)E(ﬂ2mﬂ’2 = Poly )]

—Ae" (C3+36&1ma,1 +C pola,l) ( C336iM, 1 +Ci3 Pol,, 1) (- prO)C( sl =G pomﬁ'l)

(32)
D (C3_3§2ma,2 +Cp3 pola,z ) + (_ia) Po )C (C3_3772|ﬁ,2 —Cj pomﬁ,z)
We can write this conveniently in matrix notation:
Izz,l m/i’,l _Ia,2 _mﬁ,z
ma,l _Iﬂ,l ma,2 _Iﬂ,z
C5+5 (é:lla,l + pOma,l) C5+5 (nlmﬂ,l - polﬂ,l) Css (é:zla,z + poma,z) Css (772mﬂ,2 - polﬂ,z) §
Cé m,,+ Cls pO'a,l _C3+3771|ﬂ,l +C; PoMy —C;6,M, , —Cp; pola,z C3_3772|ﬂ,2 —C3PMy, (33)
e "B/ A s
e " (—iwp,)C/A| M,
e"D/A ] c (§1|a,1 + pOma,l)

“iw&h
e (-lop)E/ A _C;3§1ma,l _C1+3 pOIa,l

Comparing this to equations 13-16 of Graecbner we see thatB/A=REe @egioah
C/A Rplanewave iw&h /( Ia)po) D/A Tplanewave io&h and E/A Tplane wave Ia)§l /( |(0p0)

We can now write down the complete integrals for calculation of the generalized
reflection coefficients:
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S/ (@,r,2<0)=i["J,(@p,")A(B/ A, " "'dp,

N e plane-wave Ial iwé (h=-1) pO (34)
=lo J.O Rep (po)Jl(a)por)ﬁe : —dpo
/! g
S (@,1,2<0) = [ 3,(@p,N)A(-B/ A)m, ;4" Ve,
(35)
— 2 @ lane-wave ma,l ia)gﬁ(h—z)&
== [ R (R (@R e,
S (w,r,2<0)= i_[: J(@p,NA(C/ A)(=iwp,)m, " " dp,
(36)
® m )
2 plane-wave B.1 W(f]h,mz)&
=lo IO Res (IOO)Jl(coloor)—éz_7712 e 2 dp,
$;%(w,r,2<0) = j: Jo(wp,NA(C/A)(—iw p0)|ﬁ,lei“’(‘f‘h’”lz)dp0
(37)

o | .
— _a)Z IO Rl]:éane-wave( po)\]o(a) por) - /il - elw(éﬂh—ml) &dp0

& - S

Some comments are in order regarding evaluation of these integrals. As po approaches
/e, po/& will diverge. Therefore it is more convenient to replace (po/&;)dpo with —d&,
even though it yields slightly more complicated integration limits. Next consider whether

1 1 1 1
512—U5=[a—f—p02]—£ﬂ—12—p02}:a—f—ﬂ—12 (38)
will vanish at any point. Although the velocities «; and £ vary with direction, they will
not be equal for any ray parameter, so this term will not produce a singularity.

SUMMARY

The results of equations 34-37 provide the methodology for calculating reflection
coefficients for waves emanating from point sources in VTI media. They are explicitly
given as weighted integrals over ray-parameter of the plane-wave reflection coefficients.
They are defined for specific frequencies, and further manipulation is therefore necessary
to obtain the actual reflection coefficients exhibited in time traces. Such manipulations
have been carried out in order to present information relevant to AVO studies (Haase &
Ursenbach, 2005a,b).
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