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Reflected P1S1 and critically refracted P1P2S1 arrivals near a 
branch point – higher order approximations in terms of special 
functions 

P.F Daley 

ABSTRACT 

The high frequency solution to the problem of a 1 1P S  reflected wave at a plane 
interface between two isotropic homogeneous halfspaces, designated 1 and 2, in the 
vicinity of the branch point 1

2 2p p α −= = , is developed. In reflection seismology, sub-
critical reflections are often all that is required or wanted for data processing. However, 
there is a possibility, when a high velocity contrast exists between two layers, resulting in 
the branch points due to the P and possibly even S – wave velocities in the second layer, 
that both may influence the recorded seismic traces at relatively small offsets. Apart from 
a distorted (compared to the zero order geometrical optics approximation to the arrival) 
wavelet, the presence of critically refracted (head) waves may possibly be seen on the 
traces. If the time duration of the wavelet is pulset , the reflected and critically refracted 
waves are collectively designated as the interference wave in the corresponding offset 
range. Only the occurrence of a critically refracted P – wave will be considered here. The 
possibility, given the proper velocity distribution, of a critically refracted wave due to the 
branch point at 1

4 2p p β −= =  may be derived in a similar manner. 

INTRODUCTION 
Both the acoustic and elastic cases of a saddle point in the vicinity of a branch point 

for a 1 1PP  reflected wave have been treated in a comprehensive manner in the literature, 
for example, Červený and Ravindra (1970) and Brekhovskikh (1980). In each of these 
works a different conformal mapping is introduced so as to incorporate a real parameter 
in the solutions by high frequency methods involving the evaluation of integrals of the 
Sommerfeld type. After stating this, it should be noted that the motivation for considering 
the 1 1PS  reflected arrival is partly due to the fact that in the 1 1PP  reflected case the saddle 
point location may be obtained analytically, while in the 1 1PS  case this must be done 
numerically.  

Another reason for revisiting this problem type is the increasingly apparent fact that 
anelasticity plays a significant role in seismic wave propagation in media related to 
hydrocarbon deposits. To obtain analytical expressions for wave types, such as the 
reflected 1 1PP , 1 1PS , and related critically refracted waves, a thorough understanding of 
the formalism required to obtain solutions for these problems in the elastic case is an 
important and useful precondition. In the elastic case the saddle points and branch point 
lie on the real axis of the complex p-plane, while in the anelastic problem, they may be 
located anywhere in that angular part, ζ , of the first quadrant of the p-plane such that 
0 4ζ π≤ < . 
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SADDLE POINT APPROXIMATION NEAR A BRANCH POINT 

The reflected 1 1P S  potential at an interface between two isotropic halfspaces may be 
written as (Aki and Richards, 1980)  

 
( ) ( ) ( ) ( )1

1 1 0 1 1
1 10

1, , expP S
p dpr z i A R J pr i h z

i p
βψ ω ω ω ω ω η ξ

ω α η

∞ ⎛ ⎞
= +⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫  (1) 

The point source of P waves is located at a point h above the interface in medium 1 
while the receiver is also located in the upper half space a distance z above the interface 
(Figure 1). The horizontal distance between the source and receiver is r , p - the 
horizontal component of the slowness vector, which is used as the integration variable, ω  
- the circular frequency resulting from a Fourier time transform of the original scalar 
potential, and ( )nJ κ  - the Bessel function of order n . The term 1 1P SR  is the displacement 

reflection coefficient obtained from using displacement potentials, while the ( )⋅  quantity 

containing it is the reflection coefficient. With the definitions 1
1 1p α −= , 1

2 2p α −= , 
1

3 1p β −=  and 1
4 2p β −=  the radicals, jη  and jξ , j=1,2, may be written as 

 
( ) ( )1 22 2 , 1, 2. Im 0j j jp p jη η⎡ ⎤= − = ≥⎣ ⎦  (2) 

 
( ) ( ) ( )1 2 1 22 2 2 2

2 , 1, 2. Im 0j j j jp p p jξ β ξ−
+ ⎡ ⎤= − = − = ≥⎣ ⎦  (3) 

The particle displacement is obtained from the 1 1P S  reflected displacement potential 
using the relation 

 
( ) ( ) ( ), , ,0, 0,0,r z u wω ψ= = ∇×∇×u

, (4) 

(Aki and Richards, 1980) or, in rotationally invariant cylindrical coordinates, as 

 
( ) ( )

2 1, , , ,r z u w r
r z r r r
ψ ψω ⎛ ⎞∂ ∂ ∂⎛ ⎞= = ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

u
 (5) 

yielding the horizontal component of particle displacement as 

( ) ( ) ( ) ( ) ( )21
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i p
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and the vertical component: 

( ) ( ) ( ) ( ) ( )2 21
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∫ . (7) 
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Figure 1. A schematic of a general reflected 1 1PS  arrival (light), the point at which critical 

refraction begins, cr  and a general critically refracted arrival, 1 2 1P P S , in the first (upper) medium 

where the ray has travelled a distance  along the interface in the second (lower) medium before 
returning to be recorded as a disturbance in the upper medium. The quantities P

cθ  and VS
cθ  are 

the critical P  and VS  angles. 

 

Only the horizontal component, ( ), ,u r z ω  will be considered here in detail as the vertical 

component, ( ), ,w r z ω , follows the same derivation route. Modifying the integral by 
replacing the first order Bessel function in equation (4) by the Hankel function of order 1 
and type 1, equation (6) becomes (Abramowitz and Stegun, 1980) 

( ) ( ) ( ) ( ) ( ) ( )12 1 1
1 1 1 1 1

1 1

, , exp
2 P S

A p dpu r z i R p H pr i h z
ωβ ξω ω ω ω η ξ

α η

∞

−∞

⎛ ⎞
= − +⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫  (8) 

Introducing the asymptotic expansion for ( ) ( )1
1H prω  and retaining only the first term 

in that expansion, 

 
( ) ( ) ( )1
1

2 exp 3 4H pr i pr
p r

ω ω π
πω

⎡ ⎤−⎣ ⎦∼
, (9) 

results in equation (8) having the form 
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( ) ( ) ( ) ( )
1 2

3 2 41 1
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1 1. .

, , exp
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s p

A p dpu r z e R p i rp h z
r
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α ηπ
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∫ (10) 

where " . ."s p  indicates that the integral will be evaluated at the saddle point (Figure 2), 
given as the solution of  

 

( ) ( )0 1 10 at , with
df p

p p f p rp h z
dp

η ξ= = = + +
 (11) 

so that 

 

( )
0

0
1 1

0 .
p p

df p h zr p
dp η ξ

=

⎛ ⎞
= − + =⎜ ⎟

⎝ ⎠��  (12) 

A quantity superscripted with a tilde is evaluated at the saddle point, 0p . It is convenient 
to introduce the change of variable describing a saddle point contour, in terms of the real 
variable y,  

 
( ) ( )1 2 1 22 2 2 2 4

1 1 0 , real,ip p p p ye y yπ−− = − − − − ∞ < < ∞
. (13) 

so that 

 
4

1

ip dp dy e π

η
−=

. (14) 

This mapping is a variation of that used by Červený and Ravindra (1970) under the 
assumption that the major contribution to the saddle point contour integral occurs at 

( )0 0p p y= = . Employing the standard saddle point procedure and expanding ( )f p  in 

a Taylor series about 0p p=  ( )0y =  results in 

 
( ) ( )

22 2
2

0 2 2
0 0y y

df dp d f dp df d pf p f p y y
dp dy dy dpdp dy= =

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎢ ⎥≈ + + + +⎜ ⎟⎢ ⎥
⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

"
 (15) 

Since 0df dp ≡  at the saddle point, equation (15) reduces to 

 
( ) ( )

22
2

0 2
0y

d f dpf p f p y
dydp

=

⎡ ⎤⎛ ⎞
⎢ ⎥≈ + +⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

"
 (16) 

where the quantities requiring definition are 
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( )

0

2

2 2 3 2 3
1 1 1 1p p

d f p h z
dp α η β ξ

=

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠��  (17) 

and 

 0

22
21

0

i

p p

dp e
dy p

πη −

=

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

�

 (18) 

The result of this is that (15) may be written as 

 
( ) ( )

2
21

0 2 3 2 3
01 1 1 1 0y

h zi f p i f p y
p
ηω ω ω

α η β ξ
=

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥≈ − + +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

�
"��  (19) 

or in a simplified notation 

 
( ) 2 2 .PSi f p i a yω ωτ ω≈ − + "

 (20) 

Here PSτ  is the travel time of the 1 1PS  reflected wave from source to receiver 

( )( )0PS f pτ =  and 2a  is implied from equation (19). As previously mentioned a tilde 
over any quantity indicates that it is to be evaluated at the saddle point. Introducing the 
modified 1 1PS  reflection coefficient ( )1 1P SR p  from equation (A.19) together with the 
definition of 2η  from equation (A.31) and ε±  from (A.29) into equation (10) has 

 

( ) ( ) ( )

( ) ( )

2 2

2 2

3 2 21 1
1 0

1 0

1 22 4
2 0

, ,
2

PSi i a y

i a y

A
u r z e e C p e dy

r p

C p ye e dy

ωτ π ω

π ω

ωβ ξω ω
α π
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∫

∫

�

 (21) 

This equation may be partially evaluated as 

( ) ( ) ( )

( ) ( ) 2 2

1 2
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+ ⎥

⎦
∫

�

 (22) 

Consider the integral in equation (22), . .s pI , separately as 

 
( ) 2 21 22 4

. . .i a y
s pI ye e dyπ ωε ε

∞
− −

+ −
−∞

= +∫  (23) 
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Introduce the variable change  

 
( )4 2 4i is e yeπ πε− −

−= +
 (24) 

so that 

 
dy ds=

 (25) 

and 

 
( )2 2 2 2 2 4 2 4exp exp 2 exp .ia y a s s e i aπω ω ε ω ε− −⎡ ⎤⎡ ⎤ ⎡ ⎤− = − − −⎣ ⎦ ⎣ ⎦⎣ ⎦  (26) 

Thus . .s pI  may be written as 

 
( )1 22 4 3 8 2 2 2 2 4

. . exp exp 2i i
s pI i a e is a s i s a e dsπ πε ω ε ω ω ε

∞
− −

+ − −
−∞

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦∫  (27) 

whose solution may be obtained in terms of the Parabolic Cylinder Function of order 
"1 2"  as (Gradshteyn and Rhyzik, 1980) 

 
( )

1 42 2 4
3 8 2

. . 1 23 6 exp 1 .
2 2

i
s p

i aI e D a i
a

π π ω εε ω ε
ω

− −
+ −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦  (28) 

The horizontal component of the 1 1PS  reflected displacement may then be written as 

 

( ) ( ) ( )

( )
( )

( )

21 1
1 02

1 0

2 4
3 8 2

2 0 1 21 42

, ,
2

1 exp 1
22

PSi i

i

A
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r p a

i aC p e D a i
a
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π

ωβ ξω ω
α

ω εε ω ε
ω

−
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⎛ ⎞
= +⎡⎜ ⎟ ⎣

⎝ ⎠

⎤⎡ ⎤ ⎥⎡ ⎤− −⎢ ⎥ ⎣ ⎦⎥⎣ ⎦ ⎦

�

 (29) 

Adding and subtracting the term ( )2 0 2C p η�  from equation (29) yields 

 

( ) ( ) [

( )
( )

( )

21 1
1 12

1 0

2 4
3 8 2

2 0 1 21 42

, ,
2

1 exp 1
22

PSi i
P S

i

A
u r z e e R

r p a

i aC p e D a i i
a

ωτ π

π

ωβ ξω ω
α

ω εε ω ε ε
ω

−

− −
+ − −

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⎤⎧ ⎫⎡ ⎤⎪ ⎪⎥⎡ ⎤− − +⎨ ⎬⎢ ⎥ ⎣ ⎦ ⎥⎣ ⎦⎪ ⎪⎩ ⎭⎦

�

 (30) 

The above analysis of the VPS  reflection from a plane solid – solid interface in 
welded contact is accomplished using a modified saddle point approach for the special 
case of a saddle point near a branch point. Apart from the zero order geometrical optics 
contribution to the reflected arrival there is an additional correction term to account for 
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the saddle point being in the vicinity of a branch point. The effect of the correction term 
may be seen at both pre- and post- critical offsets and becomes less of a factor at offsets 
removed from the critical distance. If the high frequency approximation 

( ) 21 2 4
1 2

zD z z e−∼  is introduced into equation (30) the [ ]⋅  term is zero, leaving only the 
zero order term in the reflected wave solution. 

In addition, for offsets past the critical point there is another arrival; the critically 
refracted 1 2 1PP S  wave, which will be considered in the next section. For a wavelet of 
finite time duration there is a related range of offsets in which the reflected and critically 
refracted wave interfere with one another. This offset range is termed the interference 
zone. In this region the two arrivals are often treated as a single arrival. 

 

Figure 2. The saddle point and branch point contours corresponding to the reflected 1 1PS  

reflected ray ( )0p  and the critically refracted 1 2 1P P S  ray. The parameterizations of the contours 

are given by equations (13) and (32). The parts of the total contour are designated as . .S PΩ  and 

. .B PΩ , respectively. 
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HEAD WAVE  P1P2S1 

The 1 2 1P P S  critically refracted (head) wave which exists if the P – wave velocity ( )1α  

and hence the VS  – wave velocity ( )1β  in medium 1 (upper medium) are less than the P 

– wave velocity ( )2α  in medium 2 (lower medium). The velocity distribution assumed is 

2 1 2 1α α β β> > > . If this distribution is such that 2 2 1 1α β α β> > >  there is the possibility 
of two critically refracted waves, 1 2 1P P S  and 1 2 1PS S . There are geometrical rays paths 
associated with the critical refracted arrival(s) in both distributions. 

The contribution to the generalized reflected wave field due to the reflection of a P – 
wave from the layer – half space boundary is obtained from the integration around the 
branch cut corresponding to the component of the horizontal slowness vector p being 
equal to 1

2 2p p α −= = . The problem is stated in equation (10) of the preceding section for 
the horizontal component of particle displacement, if the saddle point contour is replaced 
by the branch cut contour, i.e. 

( ) ( ) ( ) ( )
1 2

3 2 41 1
1 1 1 1

1 1. .

, , exp
2

i
P S

b c

A p dpu r z e R p i rp h z
r

πωβ ξω ω ω η ξ
α ηπ

−⎛ ⎞
= + +⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫ (31) 

with " . ."b c  indicating branch cut. In this case the change of variable used to produce the 
branch cut integral contribution is 

 
( ) ( )1 2 1 22 2 2 2 4

1 1 2 , real, 0ip p p p ye y yπ−− = − − − < < ∞
 (32) 

The radical 2η  is again the quantity of concern as it changes sign (phase) by a factor of 
π  from one side of the branch cut to the other. Thus for this integral to have any finite 
value the integral around the branch cut must be such that it is twice the integral of y from 
0 to ∞ . It should also be noted that the major contribution to the branch cut integral 
occurs in the vicinity of ( )2 0p p y= = . In the vicinity of 2p p= , the radical 2η  may be 
approximated, using the variable change defined in equation (32), in the following 
manner 

 
( ) ( )1 4 1 41 24 2 2 3 8 1 2 2 2

2 1 2 1 22 2i iye p p e y p pπ πη −⎡ ⎤≈ − − = −⎣ ⎦  (33) 

Quantities that will be required in the computations that follow are  

 

2 2 2
4 4 1

1 2 3
1

and .
i

i idp dp d p p edye e
dy dy p

π
π πη

η

−
− −= → = = −

 

The reflection coefficient in the proximity of the branch point is approximated as 
(Equation A.22) 
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( ) ( ) ( ) ( )1 1 1 2 2 2 2P SR p C p C p pη≈ +

 (34) 

The second term is the only one that makes a contribution to the branch cut integral as 
( )2 pη  differs by π  on either side of the branch cut. The first term does not, so that the 

integration along one side of the branch cut cancels the integration along the other. 

The Taylor series expansion of the exponential term differs somewhat in this problem 
when compared to the saddle point case as here, ( ) 0df p dp ≠ , so that with 

 
( ) 1 1f p rp h zη ξ= + +

 (35) 

 
( ) ( )

22 2
2

2 2 2
0 0y y

df dp d f dp df d pf p f p y y
dp dy dy dpdp dy= =

⎡ ⎤⎡ ⎤ ⎛ ⎞
⎢ ⎥≈ + + + +⎜ ⎟⎢ ⎥
⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

"
 (36) 

where the evaluation of terms in the series at 0y =  is the same as taking their value at 

2p p= . Thus  

 
( ) 4 2 2

1̂
i

PPSi f p i e y a yπω ωτ ω η ω⎡ ⎤≈ + − +⎣ ⎦A "
 (37) 

so that equation (31) may be written more compactly as 

( ) ( ) ( ) ( )
1 4

2 2 2 4
2 1 2 181

2 22 2
1

1 2 2 2 3 4
1

0

ˆ
, , 2

ˆexp

PPSii

i

p p p
u r z A e e C p

r

y a y e y dy

ωτπ

π

ω ξβω ω ω
α π

ω ω η

−

∞
−

⎡ ⎤−⎛ ⎞
⎢ ⎥= ×⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤− −⎣ ⎦∫ A
 (38) 

where the quantities 2a  and A  are defined in the following manner 

 

2
2 2 1

12 3 32 3
1 1 21 1

ˆˆˆ
h z pa

p
η

α η β ξ
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

A

 (39) 

 
2

1 1

sin sinor .ˆˆ cos cos

V

V

SP
c c

cP S
c c

h zh zr p r r rθ θ
η θξ θ
⎛ ⎞

= − + = − − = −⎜ ⎟⎜ ⎟
⎝ ⎠

A A
 (40) 

As r is the source receiver offset, then cr  is the offset at which the critically refracted 

arrival first appears and which defines the angles P
cθ  and VS

cθ . Now, consider the integral  
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1 2 2 2 3 4

1
0

ˆexp i
HI y a y e y dyπω ω η

∞
−⎡ ⎤= − −⎣ ⎦∫ A

 (41) 

From Gradshteyn and Ryzik (1980), the following solution may be obtained in terms of 
the Parabolic Cylinder Function of order 3 2−  as 

 
( )

( )
2 2 2 3 4

1 1
3 23 4 22

3 2 ˆ ˆ
exp

8 22

i i

H
i e eI D

a aa

π πω η ω η
ω

− −

−

⎡ ⎤Γ ⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A

 (42) 

so that the horizontal component of the critically refracted wave has the form 

 

( ) ( ) ( ) ( )
1 43 2 2 4

2 1 2 181
2 23 6 2

1

2 2 2 3 4
1 1

3 22

ˆ
, ,

2

ˆ ˆ
exp

8 2

PPSii

i i

p p p
u r z A e e C p

a r

i e eD
a a

ωτπ

π π

ω ξβω ω
α

ω η ω η

−

− −

−

⎡ ⎤−⎛ ⎞
⎢ ⎥= ×⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A  (43) 

Introducing the high frequency approximation for ( )3 2D z−  ( ) 2 4 3 2
3 2

zD z e z−
−

⎡ ⎤
⎣ ⎦∼  

yields 

 
( ) ( ) ( ) ( )

1 41 4 2 2
1 2 1 21

2 21 2 3 2 3 2
1 1

ˆ
, ,

ˆ
PPSi

p p p
u r z A e C p

r
ωτξβω ω

α η
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠ A  (44) 

This form of the expression for the horizontal component of the critically refracted wave 
is in agreement with formulae obtained employing less complex methods of solution. In 
the region of 2p p=  this form of the solution cannot be used as 0=  here, yielding an 
infinite value for the displacement component. 

CONCLUSIONS 

The zero order high frequency or geometrical optics approximation for the both the 1 1P P   
and 1 1PS  reflected arrivals at an interface between two elastic media is questionable in the 
vicinity of a branch point. This refers not only to post critical reflections but also to pre-
critical reflected arrivals. The reason for this is that the basic saddle point or stationary 
phase type solution assumes in its solution method that the only quantities that are rapidly 
varying are those in the exponential terms. For a saddle point in the vicinity of a branch 

point, say at kp p= , the associated radical, ( )1 22 2
k kp pζ = − , also varies rapidly. As a 

consequence, it must be isolated in the integrand and its effects included in the solution. 
This was the main objective of this report in that a correction to the zero order high 
frequency approximation in terms of the Parabolic Cylinder Function of order 1 2  was 
derived. This additional term resulted from the rewriting of the 1 1P SR  reflection 
coefficient, presented in detail in Appendix A, and the equation obtained employed to get 
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the modified solution for the horizontal component of the reflected 1 1P S  particle 
component displacement. The vertical component follows in a straightforward manner 
from this initial analysis. For completeness the critically refracted (head) wave arrival 
corresponding to the branch point was also considered. A higher order approximation in 
terms of the Parabolic Cylinder Function of order 3 2−  was presented as well as the 
large argument formula. 
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APPENDIX A: DISPLACEMENT REFLECTION COEFFICIENT P1S1R  

The plane wave particle displacement 1 1PS  reflection coefficient at a plane interface 
between two elastic media has the form (Aki and Richards, 1980) 

 
( ) ( )1 1 2 2

1 1
1

2
P S

p ab cd
R p

D
η α η ξ

β
− +

=
 (A.1) 

where p  is the horizontal component of the slowness vector. For completeness, all of the 
steps in the rewriting of the reflection coefficient ( )1 1P SR p  will be detailed here. The 
preliminary quantities require definition 
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2D EF GHp= +
 (A.2) 

 
( )1 22 2 , 1, 2.i i p iη α −= − =

 (A.3) 

 
( )1 22 2 , 1, 2.i i p iξ β −= − =

 (A.4) 

 
1 2E b cη η= +

 (A.5) 

 
1 2F b cξ ξ= +

 (A.6) 

 
1 2G a dη ξ= −

 (A.7) 

 
2 1H a dη ξ= −

 (A.8) 

with 

 
( ) ( )2 2 2 2

2 2 1 11 2 1 2a p pρ β ρ β= − − −
 (A.9) 

 
( )2 2 2 2

2 2 1 11 2 2b p pρ β ρ β= − +
 (A.10) 

 
( )2 2 2 2

1 1 2 21 2 2c p pρ β ρ β= − +
 (A.11) 

 
( )2 2

2 2 1 12d ρ β ρ β= −
 (A.12) 

Near the branch point 1
2p α −= , the radical 2η  is the quantity which varies most 

rapidly. For this reason any approximation to ( )1 1P SR p  should reflect this. A standard 
manner in accomplishing this is rewrite equation (A.1) as 
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( ) ( ) ( )

( ) ( )
1 2 2

1 1
1 2 2

P P

A p A p
R p

B p B p
η
η

+
=

+  (A.13) 

 
( ) ( ) ( )1 1 1 1 1 1 2 2

1 1

2 2
P S

p ab p cd
R p

D
η α β η α β ξ η− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=

 (A.14) 

 
( ) ( )
( ) ( )

2

2
1 2 2 1

2 2
1 1 2

D EF GHp
b c F G a d p

b F aGp cF dG p

η η η ξ

η ξ η

= +
= + + −

= + + −
 (A.15) 

 
( ) ( ) ( )

( ) ( )
1 2 2

1 1
1 2 2

P S

A p A p
R p

B p B p
η
η

+⎡ ⎤⎣ ⎦=
+⎡ ⎤⎣ ⎦  (A.16) 

where ( ) ( ) ( )and 1, 2i iA p B p i =  are determined from equation (A.1) and subsequent 

definitions, and are given explicitly below. The approximation to ( )1 1P SR p  begins by 
multiplying equation (A.16) by unity, viz., 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 1 2 2 1 2

1 1 2 2 2
1 2 2

P S

A p B p A p B p A p B p
R p

B p B p
η

η
− −⎡ ⎤⎣ ⎦=
⎡ ⎤−⎣ ⎦  (A.17) 

 

( ) ( )
( ) ( )
( )
( )

1 1 1 1

2 1 1 1 2

2
1 1

2
2 1

2

2

A p p ab

A p p cd

B p b F aGp

B p cF dG p

η α β
η α β ξ

η

ξ

= −

= −

= +

= −
 (A.18) 

which results in an equation of the form 

 
( ) ( ) ( )1 1 1 2 2P SR p C p C p η= +

 (A.19) 

with 

 
( ) ( )

( )
1

1
1

A p
C p

B p
=

 (A.20) 

 
( ) ( ) ( ) ( ) ( )

( )
1 2 2 1

2 2
1

A p B p A p B p
C p

B p

− −⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦  (A.21) 

where ( ) ( )1, 2iC p i =  has been written in terms of ( ) ( ) ( )and 1, 2i iA p B p i = . 

In the vicinity of 1
2 2p pα −= =  it is not unreasonable, as ( ) ( )1 2andC p C p  may be 

shown to be slowly varying functions of p , to make the following approximation: 
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( ) ( ) ( ) ( )1 1 1 2 2 2 2P SR p C p C p pη≈ +

. (A.22) 

However, if the problem of a saddle point in the vicinity of the branch point at 
1

2 2p pα −= =  is being considered, it is advisable to evaluate ( ) ( )1 2andC p C p  at the 
saddle point, such that 

 
( ) ( ) ( ) ( )1 1 1 0 2 0 2P SR p C p C p pη≈ +

 (A.23) 

Even in the isotropic homogeneous acoustic case, the problem of 1 1PS  reflection at the 
interface between two acoustic media results in a caustic, providing the phase of the 
reflection coefficient is taken into consideration. This is a consequence of the rapid 
variation of 2η  in this region. 

In the region 1
2 2p pα −≈ =  and 1

2 2p pα −> =  the reflected wave and the critically 
refracted wave due to the branch point at 1

2 2p pα −= =  produce what is termed the 
interference wave. 

Approximation to 2η  near 2p p=  yields: 

 

( ) ( ) ( )
( ) ( )

1 2 1 2 1 22 2
2 2 2 2

1 2 1 2
2 22 .

p p p p p p

p p p

η = − = + −

≈ −  (A.24) 

For the case of a saddle point in the vicinity of a branch point the integration contour 
often used is of the form 

 
( ) ( )1 2 1 22 2 2 2 4

1 1 0 , real,ip p p p ye y yπ−− = − − − − ∞ > > ∞
 (A.25) 

It is required during the course of computations to obtain a useable expression for 

( )1 22 2
2 2p pη = −  other than that given in equation (A.24). 

 

( )
( ) ( ) ( ) ( )

1 22 2
2 2

1 2 1 21 2 1 2 1 2 1 22 2 2 2 2 2 2 2
1 1 2 1 1 2

p p

p p p p p p p p

η = −

⎡ ⎤ ⎡ ⎤= − − − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (A.26) 

Introducing equation (A.25) into (A.26) yields 
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( ) ( )

( ) ( )

1 21 2 1 22 2 2 2 4
2 1 0 1 2

1 21 2 1 22 2 2 2 4
1 0 1 2

i

i

p p p p ye

p p p p ye

π

π

η −

−

⎡ ⎤= − − − − ×⎢ ⎥⎣ ⎦

⎡ ⎤− + − −⎢ ⎥⎣ ⎦
 (A.27) 

In the high frequency limit for a branch point near the saddle point at 1p p=  this may be 
approximated as 

 
( ) ( ) ( ) ( )

1 2 1 21 2 1 2 1 2 1 22 2 2 2 2 2 2 2 4
2 1 0 1 2 1 0 1 2

ip p p p p p p p ye πη −⎡ ⎤ ⎡ ⎤= − + − − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ (A.28) 

for 0 2p p< , and 

 
( ) ( ) ( ) ( )

1 2 1 21 2 1 2 1 2 1 22 2 2 2 2 2 2 2 4
2 1 0 1 2 1 2 1 0

ii p p p p p p p p ye πη −⎡ ⎤ ⎡ ⎤= − − + − − − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ (A.29) 

for 0 2p p>  as a branch point has been passed. Using (A.28) for 0 2p p<  requires that 

 
( ) ( )

1 21 2 1 22 2 2 2 4
1 2 1 0arg 2ip p p p ye π π−⎡ ⎤− − − + =⎢ ⎥⎣ ⎦  (A.30) 

In reduced notation, equation (A.29) has the form  

 
1 22 4

2
ii ye πη ε ε −

+ −⎡ ⎤= − +⎣ ⎦  (A.31) 

where the definitions of ε±  may be obtained from (A.29). 

APPENDIX B: PARABOLIC CYLINDER FUNCTION 

In the problem under consideration here, the Parabolic Cylinder Function (PCF) of 
complex argument, z , of a special type, specifically, z i y= +1a f , where y  is a real 
quantity, is considered. The PCF is required for all combinations of positive and negative 
z  and its complex conjugate. The problem is simplified somewhat in that if a solution can 
be obtained for D i y− +3 2 1/ a f , 0y ≥ , all other required order types, specifically 1 2ν = , 
may be obtained using the following relations: 

 
D z D z D z D zp p p

p
p

* *c h a f a f a f a f= − = −and 1
 (B.1) 

together with the functional relation 

 
D z

p
e D iz e D izp

i p
p

i p
pa f a fa f a f a f=

+
+ −− − − −

Γ 1
2 1 2

2
1

2
1π

π π
/

/ /

 (B.2) 

with "*" indicating complex conjugate (Gradshteyn and Rhyzik, 1980). 
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The PCF may be written in the form of an initial value problem of a second order 
ordinary differential equation. For an arbitrary order p  and argument z  the following 
equation is valid 

 
( )

2
2

2 1/ 2 / 4 0,p
p

d D
p z D

dz
+ + − =

 (B.3) 

subject to the initial conditions 

 
D

pp

p

0 2
1 2

2 1 2

a f a f=
−

/ /

/
π

Γ  (B.4) 

and 

 

dD
dz p
p

p0 2 2
2

2 1 2a f a f= −
−

/ /

/
π

Γ  (B.5) 

Differential equation problems of this special formulation may be simplified for solution 
purposes if the following variable changes are made  

 
D z u z i v zp a f a f a f= + ,

 (B.6) 

u  and v are real functions of y, and 

 
z i y= +1a f ,

 (B.7) 

y  is a real variable. The above changes of variables yield the following initial value 
problem involving a system of first order ordinary differential equations 

 
dr
dy

p v y u= + −2 1 2 2/a f
 (B.8) 

 
ds
dy

p u y v= − + −2 1 2 2/a f
 (B.9) 

 
du
dy

r=
 (B.10) 

 
dv
dy

s=
 (B.11) 

The initial conditions for this problem at 0y =  are 
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u

p

p

0 2
1 2

2 1 2

a f a f=
−

/ /

/
π

Γ  (B.12) 

 
v 0 0a f =

 (B.13) 

 

du
dy

dv
dy p

p0 0 2 2
2

2 1 2a f a f a f= = −
−

/ /

/
π

Γ  (B.14) 

After an evaluation of numerical ODE solvers, Gear's method (Gear, 1971) for the 
numerical solution of systems of ordinary differential equations (initial value problems) 
was chosen as it provides acceptable results, partially as a result of the fact that the 
Jacobian used in the solution of equation (9) may be obtained analytically. As an adaptive 
finite difference grid method is used, a reasonably accurate solution in the problematic 
area, 0y ≈ , can be expected. There are a number of routines in various mathematical 
computing libraries, which are based on the above method, which produce little variation 
in the results and require about equal amounts of computational time. The algorithm used 
here is the IMSL routine DGEAR. 

This approach of solving an initial value problem comprised of first order ordinary 
differential equations (ODEs) produces accurate results. Rather than compute the solution 
once for a range of values, tabulate the results and write to an external device for later 
recall, it is more efficient to compute the function values as required and enhancing 
computational speed by using the restart option contained in most of the algorithms. 
Apart from an independent check of the accuracy of the ODE solver, alternative methods 
are sought, if not in the full range of interest of the independent variable, then at least in 
part, and the ODE solution used as required in all other areas. 

It has been found that by retaining the first three terms in the asymptotic expansion of 
( )3/ 2 1D i y− ⎡ + ⎤⎣ ⎦  for 0y ≥ , and using a 64 bit word in the calculations for both the ODE 

method and the asymptotic expansion, 10 to 13 floating point digits of accuracy are 
obtained. The asymptotic expansion, valid in the first quadrant of the complex z -plane 
for 1z >> , z p>> , is (Gradshteyn and Rhyzik, 1980) 

 
D z e z

p p
z

p p p p
zp

z pa f a f a fa fa f
≈ −

+
+

− − −
⋅

−
F
HG

I
KJ

− 2 4
2 41

1
2

1 2 3
2 4

/ .
 (B.15) 

The ODE solution to the parabolic cylinder function was sought at increments of 
0.01y∆ =  in the range 0.0 8.0y< ≤ . The user supplied (estimated) miny∆  was set to 

-041.0 10×  which the routine DGEAR modified to -071.0 10×  in the vicinity of 0.0y ≈ . 
Over the range, 0 8.0y< ≤ , y∆  never became larger than -035.0 10× . This is partially, 
but not totally, due to the value of the user specified relative tolerance, initially set to 

-121.0 10× . After experimentation it was reset to -101.0 10× , producing the same results as 
the previous tolerance.  


