
Long wavelength surface consistent solutions

Long wavelength surface consistent solutions
John Millar and John C. Bancroft, CREWES

ABSTRACT

The surface consistent equations are a singular set of linear equations used to process
land seismic data. They attempt to project components of a seismic signal to a particular
source, or receiver coordinate. Midpoint and offset consistence may also be used.

Long wavelength errors present in a surface consistent statics solution turn up in the
stack section as a smeared or even separated wavelet. Errors in surface consistent am-
plitudes will lead to problems with AVO. Deconvolution operators will also be affected.
Conditions that will likely be problematic are areas with a sudden and persistent change in
the near surface, such as shooting over lakes, or sand dunes.

In a typical application, the solutions are calculated using a series of Gauss-Seidel itera-
tions, or using conjugate gradients. In this paper, we compare these results with a multigrid
method. Our findings show the multigrid method is able to better resolve the long wave-
lengths with no significant increase in computer time.

INTRODUCTION

The surface consistent equations are a standard tool for any land seismic processing
geophysicist. The underlying assumption behind the method is that strong effects on the
seismic signal can be attributed to the near-surface conditions and coupling quality of a
particular source or receiver. Long wavelength components of solutions to the surface
consistent equations are notoriously difficult to solve for. They are considered a likely
source of problems where near surface conditions change quickly and extend over large
distances, such as near lakes, or sand dunes.

A large portion of the conventional commercial land processing job flow relies on the
surface consistent equations (Taner and Koehler, 1981). Statics associated physically with
a particular surface location improves our confidence that we are not arbitrarily changing
the time structure of an event when applying static shifts. For AVO work, correcting for
near surface absorption and other amplitude effects are both difficult and absolutely critical
to the study. Surface consistent deconvolution is a robust and effective method to reject
noise and whiten the spectrum of the data.

In this paper we discuss the importance of resolving the long wavelength solutions, and
demonstrate that multigrid methods improve our ability to resolve the entire solution.

ITERATIVE METHODS

For many linear systems, direct solution may be impossible or take prohibitively long.
An alternative approach is to apply an iterative correction to some initial estimate. There is
a wide variety of methods available, more or less suited to different problems. A method is
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said to converge to the correct solution if it is an appropriate way to solve the system.

Jacobi and Gauss-Seidel

One of the more simple methods to apply is the Jacobi method. It works by cycling
through each unknown, and calculating the value of that unknown based on the other vari-
ables in the solution.

We wish to solve the linear system of equations,

Ax = b. (1)

Expanding the Matrix multiplication for the nth equation, out of N unknowns,

A(n, 1)xi(1) + · · ·+ A(n, n − 1)xi(n − 1) (2)
+A(n, n)xi+1(n) + A(n, n + 1)xi(n + 1)

+ · · ·+ A(n, N)xi(N) = b(n).

By rearranging equation 2, and solving for the x(n) term, the ith iteration of the Jacobi
method is given,

xi+1(n) = (3)

b(n) − 1

A(n, n)
[A(n, 1)xi(1) + · · ·+ A(n, n − 1)xi(n − 1)

+ A(n, n + 1)xi(n + 1) + · · · + A(n, N)xi(N)].

Each estimated value is corrected by re-calculating its value using every other point in
the trial solution.

The matrix A can be split into 3 separate matrices, one being a lower triangular, one
upper triangular, and a diagonal matrix,

A = L + D + U (4)



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0
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0
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Substituting 4 into 1, and rearranging,

Dx = b − (L + U)x (5)
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The Jacobi method can be written as a matrix operation,

xi+1 = D−1[b− (L + U)xi]. (6)

The smaller the D−1(L + U) term is, the less xi+1 depends on xi. This property is
called diagonal dominance. When the diagonal component D is large compared to the
sum of the off-diagonal terms, the solution depends less on the initial estimate (or the
previous iteration), and convergence is faster. Each diagonal term must have an absolute
value greater than the sum of all of the rest of the row for Jacobi to converge at all.

The Gauss-Seidel method is strongly related to the Jacobi method, only instead it takes
advantage of each newly corrected unknown as it becomes available. Analogous to equa-
tion 3, the Gauss-Seidel method is

xi+1(n) = (7)

b(n) − 1

A(n, n)
[A(n, 1)xi+1(1) + · · ·+ A(n, n − 1)xi+1(n − 1)

+ A(n, n + 1)xi(n + 1) + · · · + A(n, N)xi(N)].

The only difference between Gauss-Seidel (equation 7) and Jacobi (equation 3), is in
the underlined subscripts, or iteration number.

The theoretical effect of each Gauss-Seidel iteration is found using the singular value
decomposition of [D + L]−1U . The spectral radius (Shewchuk, 2002) is the factor each
wavelength of error is reduced with each pass. The singular values ofD−1[L + U] are used
for Jacobi iterations.

Gauss-Seidel improves the speed of convergence over Jacobi by updating the unknown
value, and using that value for each subsequent unknown. Convergence can be further
improved by varying the pattern used, such as alternating between odd and even rows
(Press et al., 1992).

Laplace equation example

To show the effect of Gauss-Seidel relaxationwe construct an example using the Laplace
equation.

Laplace’s equation takes the form

∇2p = 0. (8)

This differential equation can be solved using finite differences, and expressing the problem
as a linear system.

Lp = 0 (9)
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FIG. 2. The spectral efficiency of the Gauss-Seidel operator on different grid sizes for the Laplace
equation.

can be lowered. This down sampling is called rejection, and the anti-alias filter coupled
with rejection is called restriction.

Solving this reduced system iteratively takes far less computation time. As the number
of unknowns decreases, so does the amount of work required to complete an iteration of a
relaxation method.

The spectral radius of the Gauss-Seidel method attacks the long wavelength error far
more effectively on a coarser grid (Figure 2). Once the coarse grid solution has converged,
it is interpolated to the finer grid. This provides an initial estimate of that fine solution
whose long wavelengths have already been calculated. This is where multigrid methods
derive their strength. Interpolation tends to only introduce high frequency errors, quickly
fixed by the relaxation method.

There are many ways to incorporate the use of multiple grids or meshes to solve a
system of equations. A basic process is illustrated in Figure 4. A 9x9 system is reduced
to a 5x5, then a 3x3 system. A solution is found by iteratively or directly solving the 3x3
system. The 3 variable solution is interpolated to 5 variables, and used as the initial estimate
for an iteration method on this grid. Once the 5 unknowns have converged, we interpolate
the solution to 9 variables, to be refined by a relaxation method on the 9x9 system. This
process of interpolation and correction is repeated, until the desired accuracy is achieved.

Figure 5 shows the strength of using multiple grids to solve the sample problem with
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3. 3x3 System,Ax = b solved exactly⇒

7. 9 variable system cor-
rected iteratively

⇑ 6. 5 variable solution
interpolated to 9

5. 5 variable system cor-
rected iteratively

⇑ 4. 3 variable solution
interpolated to 5 variables

FIG. 4. A basic multigrid algorithm. A 9x9 system of equations is reduced to a 3x3 system using
anti-alias filtering. This 3x3 system is solved exactly, and its solution is interpolated to a finer grid.
The solution is repeatedly interpolated and corrected until the origional sample rate is acheived.
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Laplace equation. After only 2 corrections at each grid interval, the solution is far closer to
zero than after many iterations using the Gauss-Seidel method. This coarse grid correction
takes approximately the same calculation time as 2 Gauss-Seidel corrections.

THE EQUATIONS

We consider the problem of de-coupling separate source and receiver consistent com-
ponents of a signal from a seismic trace. This could be an amplitude, a static as calculated
by an auto-correlation with a model stack, or any number of features or attribute.

We assume a correction for each trace tij can be expressed as a contribution from the
(both unknown) ith source, Si, and the jth receiver,

tij = Si + Rj . (10)

In the case of deconvolution and amplitudes, the effect is a product,

tij = Si × Rj . (11)

So we have to use the log of the spectrum to transform the multiplication into an addi-
tion.

log tij = log Si + log Rj . (12)

Each trace contributes an equation to the linear system, which we express as a matrix
operation of the form

As = t. (13)
Here,A is a matrix of coefficients, t is a vector with all of the calculated trace values (static
shift, amplitude etc.), and s is an unknown vector of the separated source and receiver
consistent component of t.

The form of A is a sparse rectangular matrix whose coefficients are determined by the
geometry of the seismic survey. We assign a column of A to each unique shot, and one to
each unique receiver. It has as many rows as traces, which is usually much greater than the
number of columns. Its form is demonstrated best by partitioning it,

As = [As|Ar][
ss

sr
]. (14)

The unknowns ss and sr are vectors of source and receiver unknown values corresponding
to equation 10. The nth trace has a value of tn associated with it. The nth row of As is
empty except for 1 in the column corresponding to the shot, and Ar contains only a 1 in
the appropriate receiver column.

The system of equations that results from this problem is over-determined (more equa-
tions than unknowns), requiring a least squares solution,

ATA = ATb. (15)
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The classification of ATA would be that of a symmetric, positive indefinite matrix. It
is not strictly diagonally dominant, as the sum of the off diagonals is equal to the diagonal
term in each row. Trottenberg et al. (2001) implies that a necessary condition for using
multigrid methods is that the matrix be an “M” matrix. One of the conditions of “M”, is
that it be non-singular, which is not true in this case, ATA is not “M”. We can’t guarantee
multigrid will converge (Wesseling, 1992) .

2 TERMS

The above derivation is for what we call a 2 term surface consistent reduction. The 2
terms are the source location and receiver location. We show the results for this reduction
in Figure 6. The model is a random static distributed linearly, with a maximum of 8ms.
A 50ms step function in the receiver consistent term. This model attempts to simulate a
shallow bog covering the latter half of the survey. All of the shot holes were drilled into
competent rock, but the receivers over the bog would suffer a large static shift relative to
the receivers on dry land.

The synthetic survey has 200 shots, with 60 live geophones each shot. The cable moves
4 stations with each shot. There are 796 receiver stations.

The long wavelength component of the solution is not well imaged by the Gauss-Seidel
method. The error (lower 2 panels of Figure 6 ) for the shot and receiver consistent statics
form an ’S’ shaped curve in either direction. The multigrid and conjugate gradient methods
both appear to have a linear drift.

Both multigrid and conjugate gradients have a constant or linear residual error. Inter-
mediate wavelengths are resolved very well.

When the error of Figure 6 is included in a stack section, the result is in Figure 7. A
40hz ricker wavelet is convolved with a spike at a constant time for each trace. Each trace
has a static shift applied equal to the error, and is sorted by its midpoint and stacked. Only
100 midpoints either side of the center of the survey are plotted.

It appears as though both the multigrid and the conjugate gradients did a good job of
removing the surface consistent static. The Gauss-Seidel solution has caused the wavelet
to stack poorly, and smear the energy over 20ms. This is an important observation, demon-
strating that the error is a resolution problem.

It is suspected that the very long wavelength error remaining in the multigrid and con-
jugate gradient solutions cannot be reduced. The equations are rank deficient by 1. Without
external constraints the solution may always be off by a constant, or near linear amount.
In practice this is not of concern, the resulting difference in the stack is a bulk shift of all
traces, which does not effect the quality of the data.
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FIG. 6. The results from a 2 term surface consistent reduction. The top two axes show the calcu-
lated solutions for the shot and receiver components, the bottom axes show the error.

4 TERMS

When calculating surface consistent amplitudes, deconvolution operators, or when in-
cluding residual NMO terms for statics, it is often good to use more terms. Most commonly,
offset and midpoint bin components are calculated along with shot and receiver station.
Ground roll is concentrated in the offset consistent component. Removing the offset con-
sistent signal is a good noise reduction method. Forcing the midpoint consistent term to be
smooth puts a realistic geologic constraint on the equations (Cary and Lorentz, 1993).

Introducing additional terms also introduces more singular values. The 4 term surface
consistent equations for the same synthetic survey as Figure 6 are rank deficient by 13.
Without a damping factor the solution becomes unstable, and grows exponentially. To
stabilize the process, we introduce a damping factor, µ, and solve

[ATA + µD]x = ATb. (16)

The D matrix is the main diagonal of ATA, (see equation 4). With a small damping
factor, the equation becomes diagonally dominant, so convergence to a minimum L-2 norm
is provided. For this example µ = 0.01 stabilizes the solution well.

Figure 8 shows the 4 terms of the solution, and Figure 9 shows the error. The conjugate
gradient method does not seem to handle the new terms well. Multigrid performed better
than other methods.
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To show the effect the long wavelength error has on 4 term data, we assume the data
comes from an amplitude correction. A surface consistent amplitude is calculated for each
trace. The mid-point and offset consistent components are both identically 1, so there
should be no amplitude anomalies in the corrected gathers.

In Figure 10 the wavelets depicted should all have the same amplitude. Each of the
groups of lines correspond to traces that share the same midpoint. As we move across the
surface consistent anomaly, the lines in each group diverge, indicating that the amplitude of
that trace within the mid-point bin is not constant, as it should be. The lines corresponding
to the multigrid gathers have the least spread, indicating that the multigrid solution provides
the most accurate amplitude response.

Figure 11 shows some interesting statistics about the error in the amplitudes. The stan-
dard deviation of the error in each mid-point bin relates directly to the amount of possible
error in the amplitude response. The multigrid method outperforms both Gauss-Seidel and
conjugate gradient clearly in this test.

CONCLUSIONS

Multigrid methods have shown themselves to improve the resolution of long wave-
lengths in the surface consistent solutions. The quality of these solutions has a direct con-
nection to the quality of the final seismic section. Two term solutions, when applied to
statics, may reduce the number of iterations necessary for a processor to correct statics and
velocities in the standard land processing flow. Resolving the solutions more accurately
gives us more confidence that we are not arbitrarily assigning statics, and possibly harm-
ing structure. Improvement in the error relating to amplitudes may be reduced as much as
30-40 % when the 4 term reduction is applied using multigrid.

The multigrid method does not sacrifice any significant computer time compared to the
Gauss-Seidel solutions. There is some overhead associated with multigrid approaches. A
solution is not realized at all until after a calculation time close to that of 6 iterations of
Gauss-Seidel. Once a solution is available, there is much less error compared with other
methods.

To implement multigrid requires almost no change to the overall processing flow, mak-
ing deployment for this purpose attractive.

The major test of the new method will be how it reacts to field seismic data. The results
from the synthetic examples presented in this paper show good promise in our ability to
improve seismic images using multigrid to calculate long wavelength surface consistent
solutions.
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FIG. 7. The predicted stack section arising from using the various methods to solve the surface
consistent equations for statics.

FIG. 8. The solutions for a 4 term reduction. Each term is given a separate axes.
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FIG. 9. The error for the 4 term reduction.
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FIG. 10. A view of the pre-stack variability of the amplitudes generated using the 4 term reduction.
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FIG. 11. Mean and standard deviation of the pre-stack variability of the amplitudes generated using
the 4 term reduction. A wider standard deviation means a larger AVO error.
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