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ABSTRACT

This study combines the technique of amplitude variations with offset, or AVO,
analysis with the theory of poroelasticity to derive a linearized AV O approximation that
provides the basis for the estimation of fluid, rigidity and density parameters from the
weighted stacking of pre-stack seismic amplitudes. The method proposed is a
generalization of the two AV O approximations introduced by Gray et al. (1999) using the
formulation introduced by Russell et al. (2003). After a review of linearized AVO
theory, we present the theory of our approach. We then apply our method to both model
and real datasets.

INTRODUCTION

When an incident P-wave wave strikes a boundary between two elastic media at an
angle greater than zero, a phenomenon called mode conversion occurs, in which reflected
and transmitted P and S'waves are created on both sides of the boundary, as shown in
Figure 1.

incident
P-wave

FIG. 1. Mode conversion of an incident P-wave.

The amplitudes of the reflected and transmitted waves can be derived by solving the
following matrix equation (Zoeppritz, 1919):
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Notice that the necessary parameters for the solution of the problem involve the
individual P-wave velocity, Swave velocity and density values on each side of the
boundary, as well as the incident, reflected and transmitted angles, all of which can be
derived from the incident P-wave angle using Snell’s law. Although equation (1) will
give precise values of the amplitudes of the reflected and transmitted waves, it does not
provide an intuitive understanding of the effects of the parameter changes on the
amplitudes, and is also difficult to invert (that is, given the amplitudes, what are the
underlying elastic parameters which caused those amplitudes.) For these reasons, much
current amplitude variation with offset (AVO) work and pre-stack inversion is based on
linearized approximations to equation (1). These linearized approximations will be
discussed in the next section, and we will discuss how we can re-parameterize the
equations for various combinations of three physical parameters. P-wave velocity, S
wave velocity and density; P-wave reflectivity, Swave reflectivity and density
reflectivity; P-wave velocity, Poisson’s ratio and density; the two Lamé coefficients and
density; bulk modulus, shear modulus, and density.

Although the discussion of the various linearized approximations in the next section is
a summary of existing work, it sets the stage for the next part of our development, in
which we consider not only the velocities and densities themselves, but the effect of the
fluid component of the velocity and density of the reservoir rock. In the theory
developed independently by Biot (1941) and Gassmann (1951), we consider four
components of the reservoir rock: its matrix, pore/fluid system, saturated state, and dry
state. Thisisillustrated in Figure 2.
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FIG. 2. In Biot-Gassmann theory, a cube of rock is characterized by four components: the rock
matrix, the pore/fluid system, the dry rock frame, and the saturated frame. (Russell et al., 2003).
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Based on these considerations the poroelasticity theory of Biot and Gassmann alows
us to incorporate a term for the fluid component of the in-situ reservoir rock into the
expression for the P-wave velocity. This will be discussed in the section on
poroelasticity theory. Finally, we will combine poroelasticity theory and linearized AVO
in such a way that the fluid component of the in-situ reservoir rock can be estimated
using standard AV O least-squares extraction techniques. We will finish with both model
and real data case studiesthat illustrate the method.

LINEARIZED AVO APPROXIMATIONS

It has been shown (Bortfeld, 1961, Richards and Frasier, 1976, Aki and Richards,
2002) that, for small changes in the P-wave velocity, Swave velocity and density across
a boundary between two elastic media, the P-wave reflection coefficient for an incident
P-wave as a function of angle can be approximated by the following linearized sum of
three terms:

Rpp(9)=[ 1 }Avp {—4sin29}AvS+F_2gnze}A_p

2cos’ 0| V, Y Vs 12 v |, 2

where Vp, Vs and p are the average velocity and density values across the boundary, AVp,
AVs and Ap are the differences of the velocity and density values across the boundary,
@is the average of the incident and refracted angles, and . = Vp/Vs for the in-situ
(saturated) rocks. By “small” changes, we mean that equation (1) is valid where each
ratio Ap/p (which we refer to as “reflectivity” terms) isless than approximately 0.1. If we
know the relationship between offset and angle for a seismic CMP gather, equation (1)
can be used to extract estimates of the three reflectivities from the gather using a
weighted least-squares approach. Equation (2) has also been used to perform Bayesian
inversion for velocity and density (Buland and Omre, 2003). Since equation (2) was
developed independently by Bortfeld, Aki and Richards, we will refer to it as the
Bortfeld-Aki-Richards (B-A-R) equation.

There are several important algebraic re-arrangements of equation (2). First, it can be
transformed into the three term sum given by

R..(6) = A+ Bsin*4+Ctan®*#sin’é,
©)

1

whereA=R,, =§[AVP LA

Voo p

} is a linearized approximation to the zero-offset P-

This
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eguation, which was initially derived by Wiggins et a. (1983), is the basis of much of the
empirical amplitude variations with offset (AVO) work performed today and has the
advantage that an estimate of % iS not needed in the weighting coefficients used to

wave reflection coefficient, B =
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extract the three parameters (generally called the intercept, gradient, and curvature
terms).

A second re-arrangement of equation (1), by Fatti et al. (1994) (based on an earlier
eguation by Smith and Gidlow (1986)), is given by

R..(8) = [L+ tan? 0]R., +[_—285in2 9}&0 {25‘;‘2 0 —%tanz Q}RD

sat sat

(4)

AVs +A—’O} is a linearized

where Re is equal to the A term from eguation (3), Rg, :[ v
s Y

approximation to the Swave reflectivity, andR, :A—'O is the linearized density
P

reflectivity term from equation (2). Equation (4) has been used both to extract the

reflectivity terms from a CMP gather and as the basis for impedance inversion (Simmons

and Backus, 1996, Hampson et a., 2006), although it does require an estimate of j in

the weighting coefficients.  Since equation (4) was developed by Smith, Gidlow and

Fatti, we will call it the Smith-Gidlow-Fatti (S-G-F) equation.

Another way of re-formulating equation (1) involves transforming to parameters
which are nonlinearly related to velocity and density. This involves the use of
differentials as well as algebra. For example, Shuey (1982) transformed the second term

in equation (3) to from dependence on Vs and AVs to dependence on Poisson’s ratio o =
(7—2)/(2y-2) and changes in Poisson’sratio (Ao). Shuey’s gradient term B is written

B= A{D—2(1+ D)l_za} AT
l1-0 | (1-0)", (5)
whereD = AV, Ve AL 0=22"% p5= o,—o0,. Since Shuey did
AV, IV, +Apl p 2A 2

not provide his derivation of this term, and we are not aware of its publication anywhere
in the literature, the derivation is given in Appendix A.

More recently, Gray et al. (1999) re-formulated equation (1) for two sets of
fundamental constants: A, x# and p, and K, x4 and p, where we recall the following

relationships:
/l+2ﬂ /K+gy
VP: =
P P, (6)
- [t
P . (7)

and
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As with Shuey’s work, this re-formulation required the use of both algebra and

differentialsrelating 4, x and K to Vp, Vsand p. Gray et a.’s two formulations are given
as

Rop () = [ 1 sec PLY 1(1520 06— 2sin? ej e (1 1seczejA—’o
4 272, A 7a\2 u \2 4 P (8
and
Rpp(a)z(l— ! Jeeczg® %(1sec 60— 2sn? ajA/" (1 1seczé’jA—p
4 3y K 7a\3 u \2 4 P (9

The similarity between equations (8) and (9) can be easily noted. The only differences
are that the 1/2 factor in the first and second terms in equation (8) changes to 1/3 in the
first and second terms in equation (9). To understand the significance of this observation,
we will first review the elements of poroelasticity theory as presented by Russell et al.
(2003).

POROELASTICITY THEORY

The purpose of the present study is to show how the two formulations from Gray et al.
can be generalized using the work of Russell et al. (2003). In that study, the authors used
poroelasticity theory (Biot, 1941, and Gassmann, 1951) to equate the 4, i, p and K, i, p
sets of parameters using the model shown in Figure 2. Biot (1941) used the Lamé
parameters and showed that (Krief et al, 1990)

A = Ay + B°M
: (10)

where Ag isthe 1% Lamé parameter for the saturated rock, Aqry is the 1% Lamé parameter
for the dry frame, S is the Biot coefficient, or the ratio of the volume change in the fluid
to the volume change in the formation when hydraulic pressure is constant, and M is the
modulus, or the pressure needed to force water into the formation without changing the
volume. Conversely, Gassmann started with the bulk and shear moduli, and derived the
following relationship (Krief et al, 1990):

Kg = Kgy + 8°M
, (11)
where Kg is the bulk modulus of the saturated rock, Kgry is the bulk modulus of the dry
rock, and fand M are the same as in equation (10). By equating equations (10) and (11),

and using equation (6) to derive the relationships among K, A and x, the following result
can be derived:

:uwt = :udry

: (12)
That is, the shear modulus is unaffected by the pore fluid. This theoretical result has a
strong intuitive basis, since we know that fluids do not support shear stresses, only
compressive stresses.
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Gassmann further showed that
ﬁ — 1 dry
Kn | (13)
and
M Ko Ky, (14)

where Ky, is the bulk modulus of the matrix material and Ky is the bulk modulus of
thefluid. The advantage of using the Gassmann formulation given in equations (12)
through (14) is that we can model our particular gas sand using these parameters,
athough it is often difficult to obtain reliable estimates for Kqry unless an in-situ S-wave
log has been measured. It should also be noted that the Ky term can be derived from
knowledge of the water and hydrocarbon components by the equation

1 _1=5 S
Ky Ke Kw, (15)

where Sy is the water saturation and Ky, and K, are the hydrocarbon and water bulk
modulii, respectively. These equations will be used in a later section to perform
modeling.

If equations (13) and (14) are substituted into equation (11) the result is the expression
often seen in rock-physics textbooks (e.g. Mavko et a 1998). However, we have chosen
to retain the use of the term /°M for the difference between the dry and saturated cases to

emphasize its independence from the first term. Using M, we can rewrite the equation
for P-wave velocity (equation (6)) for the saturated case with lambda and mu as

v, =\/ dry +2u+ M
Psat , (16a)
or with the bulk and shear modulii as

Vp =\/Kdry+g:u+ﬁ2M

Psat : (16b)
Both equations (16a) and (16b) can be written more succinctly as:

V. = f+s
"N P (17)

where f is a fluid/porosity term equal to /M, and s is a dry-skeleton term which can be

written either as K, +3u or A, +2u. Note that in equations (16) and (17) we have

assumed that i = g, = fy, . In Russell et a. (2003) this formulation was applied to
inverted seismic data, where we estimated the P and S'wave impedances, Zp and Zs,

dry
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rather than velocities Vp and Vs. However, in this study, we will assume that the
velocities are of prime importance. Therefore, note that we can extract thetermsf and s
by re-arranging equations (7) and (17) to get

f=(pVv2), - 72, (V)

: (18)

and
S= Yyl
: (19)
2
A K
where 75, {V—"} =T 2= W +g. (Note that the termy;, was labeled c in
S dry lu lu

Russell et a., but we have chosen to emphasize its physical significance in this study)
Finaly, notice that by dividing f through by x and realizing thatu = (pV?),,, we

getf /u=ys —7ay-

sat !

There are several approaches to estimating %ryz. The first is to estimate the dry-rock
Poisson'sratio, oy, Noting that thisis given by

C. = ;/jry -2
dry — 2
27/dry -2 . (20)

Generally, the accepted value of ogry is in the order of 0.1, which corresponds to a
Ve/Vsratio of 1.5, or a y;,, value of 2.25.

A second approach is to perform laboratory measurements. Murphy et al (1993)
measured the Kqr,/ ratio for clean quartz sandstones over arange of porosities and found
that this value was, on average, equal to 0.9. This corresponds to a c value of 2.233. If

the Kary/u2 value is rounded to 1.0, this implies a oy of 0.125, and a corresponding 7,
value of 2.333.

Thus, there are a range of values of 7/d|—y2 that depend on the particular reservoir being
studied. Table 1 shows a range of these values and the range of their equivalent elastic

constant ratios. The value of %ryz in this table ranges from a high of 4, meaning that
Aarylpt isequal to 2, to alow of 1 1/3, meaning that Kqr,/x is equal to 0.
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Table 1. A table of various values of the dry rock Vp/Vs ratio squared and their relationship to
other elastic constants.

ydry™2  (Vp/Vs)dry  odry Kdry/ 1 Adryl u

4.000 2.000 0.333 2.667 2.000
3.333 1.826 0.286 2.000 1.333
3.000 1.732 0.250 1.667 1.000
2.500 1.581 0.167 1.167 0.500
2.333 1.528 0.125 1.000 0.333
2.250 1.500 0.100 0.917 0.250
2.233 1.494 0.095 0.900 0.233
2.000 1.414 0.000 0.667 0.000
1.333 1.155 -1.000 0.000 -0.667

THE GENERALIZED ELASTIC CONSTANT AVO EQUATION

As shown in Appendix B, if we start with the Aki-Richards formulation given in
eguation (2) and use the differential given by

Af :a—fAVP +a—fAVS +a—pr

Ve dVs p (21)

we can re-parameterize equation (2) using the parameters 7/dry2 and . The find
equation iswritten

2 2 2 2
RPP(9)= 1- ydzry SeC—e £+ J/drzy Seczg_izsinzg A_'U+|:l_sec—€j|A_p
4 | f |4y Vet u o124 ]p (22

sat

Equation (22) will be referred to as the f-m-r (fluid-mu-rho) equation since it gives us
new physical insight into the relationship between linearized AV O and poroelasticity and
isageneralization of the equations of Gray et al. (1999). The first thing to note about this
equation is that the scaling parameter in front of the fluid term Af/f proportiona to one
minus the ratio of the saturated and dry V/Vp ratios. If 2, = 74, this term goes to zero,
implying that there is no fluid component to the reservoir (i.e. we are dealing with a
perfectly “dry” rock). Also, since we can never have a situation in which je/ yary > /

(since, as seen from equations (10) and (11), the saturated values for K or A will always
be greater or equal to the dry values), the scaling coefficient for the fluid term will always

be positive or zero. Secondly, if we let 7§ry =2, equation (22) reduces to the A, i, p
formulation as given in equation (8). Finaly, if we let 7d2ry =4/3, it reducesto the K, 4,
p formulation given in equation (9).
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But do these values of 2 and 4/3 make physical sense? As discussed by Russell et al.
(2003), these values are not appropriate for typical saturated rocks since, if we refer back
to Table 1, avalue of 4/3 implies adry rock Poisson’s ratio of -1 and avalue of 2 implies
adry rock Poisson’sratio of O, neither of which is physically realistic. A value of 2.333,
which implies from Table 1 that (K/u)ary = 1 and the dry rock Poisson’s ratio is 0.125, is
more appropriate for rocks such as sandstones. In fact, Dillon et al. (2003) measured

¥4, values as high as 3 for unconsolidated sandstonesin Brazil.

Next, note that the scaling term for Au/u is also dependent on both yg, andyg, .
However, the 1/ 2, term can be factored out of both terms in the brackets and can be
thought of as an overall scaling factor, leaving a first term dependent on ;/jry minus a

second term that isindependent of either velocity ratio. Thus as the 7§ry value goes up,
this scaling coefficient increases.

Lastly, the density term isindependent of ¥, andyZ, , and is only afunction of sec’6.
Thus, the density scaling will always have the same values as a function of angle,
regardless of 7§ry and yZ, , and will aways change from positive to negative at 8 = 45°
(Where cos’6 = ¥). Physically, this makes sense since both 7jry andyZ, arefunctions of

a velocity ratio, in which the density term cancels. Note, however, that this is not the
same as saying that the extracted density term Ap/p is independent of fluid, since its
value will depend on the actual amplitudes of the seismic data.

The computed curves for the various cases are shown in Figures 3 and 4. In Figure 3,
the coefficients for the three terms are shown for yZ, = 4 and three different values of

yjry (1.333, 2.0 and 2.333). As discussed in the previous paragraph, the density term
does not change, and so in Figure 3 can be used as a reference for the other two curves.
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gamma_dry"2 = 1.333, gamma_sat"2 =4 gamma_dry"2 =2, gamma_sat"2 =4
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FIG. 3. Weighting coefficients for Af/f, Au/u, and Ap/p as a function of angle, with }/;t =4 inall
cases and for (a) 7§ry =1.333, (b) 7§ry = 2.0, and (c) j/jry =2.333.

We can make several general observations based on the three separate plots shown in
Figure 3. First, the weighting of the fluid term increases as we go out to higher angles,

but the value of this term goes down as the y, / 7%, ratio increases, as was mentioned

earlier. Second, the weighting on the rigidity term decreases out to about 50 degrees but
then starts to increase. Also, the overall weighting on this term increases as the

;/jry/;/;t term increases. Finally, the weighting on the density term decreases as a
function of angle and eventually becomes negative at 45 degrees, as predicted.

In Figure 4, the weighting coefficients for Af/f and Au/u are shown separately, as a
function of the three values of yg, , again with a constant value of ¥, .  This figure

makes it clearer than Figure 3 that the weighting for Af/f goes down as ;/jry increases, but
the weighting for Au/u goes up as ;/(fry increases. This makes physical sense if we recall
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that yjry represents the square of the dry rock Vp/Vs velocity ratio and y2, represents the
square of the saturated rock Vp/Vs velocity ratio. Thus, as yjry increases for a fixed value

of y2, , their product decreases, reducing the effect on Af/f, but increasing the effect on
the Au/u term.

f coefficients, gamma_sat™2 =4 ~ mu coefficients, gamma_sat"2 =4

0.8

Angle (degrees) Angle (degrees)
—— gamma dry"2=1.333 —— gamma_dry*2=1333
2=20 gamma_dry"2 =2.0
=== gamma_dry2=2333 =++- gamma dry"2=2333

3 (b)
FIG. 4. Weighting coefficients for (a) Af/f, and (b) Au/u as a function of angle with 2,

=4 inall cases, and for y§, =1.333,2.0and 2.333.

WEIGHTED PARAMETER EXTRACTION

It should also be noted that equation (22) is similar to equations (2), (3), (4), (8) and
(9) inthat al of these three term linearized AV O expressions can be expressed as

RPP (9) =ap, + bpz + CP;,
(23)

wherea, b, and c arefunctionsof 8 andV.2/VZ (dry or wet), and p,, p,, and p, are
functionsof V,, Vg, p, o, f,or z.  The only differences among the equations are the

parameters we wish to compute and the values needed to compute the constants a, b and
c. Table 2 summarizes these various values, where B-A-R stands for the Bortfeld-Aki-
Richards equation, and S-G-F stands for the Smith-Gidlow-Fatti equation.

Note that the equations in Table 2 have been ranked based on the complexity of what
we need to know in order to compute the constants, where for the first two equations
(Wiggins and Shuey) we only need to know the angle of incidence, for the next two
equations (B-A-R and S-G-F) we need to know angle and the saturated Vp/Vs ratio, and
for the generalized f-m-r equation discussed in this section, we need to know angle and
the saturated and dry Vp/Vsratios. Thus, although the advantage of equation (22) is that
we can extract the fluid component directly, the disadvantage of this equation is that we

now need to estimate both 5, and »Z, in the weighting coefficients. To determiney;, ,
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more research needs to be done on rocks that don't fit the standard Biot-Gassmann
model, such as shales and fractured carbonates.

Table 2. The parameters needed to estimate the various terms in the 3-term linearized AVO
expressions considered in this paper.

Need to know Able to compute

Method a b c P4 P Ps
Wiggins| o 0 0 | Ry | GW¥op) 52
Shuey | ¢ 0 o | R, | GW,.0.p) "??
AV, AV, Ap

B-A-R o 2 ¥ | ke s s i

0V |0V v, 7. P

SGF| @ 872 874 | R, R, %
Af Ap Ap
FHP 10,70 5|0V s V| © ¥ i ) >

Appendix C explains the mathematics involved in actually extracting the three
parameters from a seismic gather using the least-squares approach. Let us now look at
model and real data examples of the implementation of equation (22).

MODEL EXAMPLE

A model was next created consisting of two sands, both of which had the same
physical parameters except for fluid content. The top sand was modeled as water-wet,
with Ky = 1.0, and the second sand was modeled as a gas sand with Ky = 0.1. For each
sand Kgy = 3 MPa and ¢ = 3 MPa, which meant that Kgy/x = 1.0 in both sands. The
mineral bulk modulus, K, of each sand was set to a value of 40 MPa, the generally
accepted value for sandstone. In the wet sand, the density was set to 2.0 g/cc and in the
second sand to 1.8 g/cc. Using equations (11) through (16), the velocities of the two
sands could then be computed. The overlying wet sand velocities were Vp = 2259 m/s
and Vs = 1225 m/s. The underlying gas sand velocities were Vp = 1977 m/s and Vs =
1291 m/s. As expected by Biot-Gassmann theory, the P-wave velocity drops and the S-
wave velocity increases across the boundary. Utilizing equations (2) and (22) we can
now compute the AVO curves at the elastic boundary interface for the Bortfeld-Aki-
Richards and f-m-r approaches, respectively. These curves are shown in Figure 5.

12 CREWES Research Report — Volume 18 (2006)
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AVO Cumrves - Kf1 = 1. Kf2=0.1, c=2.333

-0.11

-0.12

-0.13

-0.14

Amplilude

-0.15

-0.16

-0.17 o
Angle(degrees)

— Vp.Vsrho
=== fmurho

FIG. 5: The fit between curves derived from equations (2) and (21), where we modeled a wet
sand over a gas sand for which Kgiq drops from 1.0 to 0.1 and (K/uw)ary = 1 in both sands.

Notice that although the two curves are not exact, they are very close. Thus, we can
feel confident that if whether we extract the terms using the f-m-r method of one of the
standard Aki-Richards reformulations, the reconstructed amplitudes will match our
Seismic observations.

In computing the curves in Figure 5 there is one very important point that should be
made (and can serve at a large source of error if not observed). The termy?2, that
appears in both equations (2) and (22) must be computed differently for each equation.
That is, in equation (2) 2, can be computed using its normal definition of (VeIVe) 2,
where Vp and Vs are the average values of the velocities across the boundaries. However,
in equation (22) the terms ¥, and 5, must be re-parameterized using the coefficients f,
Kary and g, which are the averaged fluid term, dry rock bulk modulu and shear modulus

across the boundary. Utilizing equation (16) through (19), the new expressions are
written

K

dry

4
+ —
3, (24)

2 _
}/dry -

and
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7;& = i-l— Kdry 4
uoou 3, (25)

Since Kgry and ¢ don’t change between layers, we can re-write equation (25) as

f
y;t =—+ y§ry
Hu : (26)
which is identical to a formulation we derived earlier after equation (19). To show how
crucial this step is, if we use the velocity averages we get a value of 2, =2.835 for

example shown in Figure (5), but if we use elastic parameter averages, we get a value of
2
Ve =2.873.

REAL DATA EXAMPLE

Let us finish by looking at an actual example of the f-m-r approach encompassed in
equation (21) using a shallow gas sand example from Alberta. Figure 6 isadisplay of a
seismic stack which exhibits a “bright-spot” anomaly and structural high at 630 msin the
centre of theline. A successful gaswell was drilled at CDP 330 on the line, and the sonic
log from this gas well has been splice into the section. Notice the low velocity associated
with the gas sand.

It is well known that neither the structural high nor the “bright-spot” shown on the
section in Figure 6 is unambiguous when it comes to predicting gas sands. In fact,
similar anomalies encountered on lines close the one shown here have false “bright-
spots” caused by hard carbonate streaks and coals which lead to the drilling of
unsuccessful wells. However, the use of the AVO method will help us to more
accurately predict the presence of gas (although the AVO method is not totally
unambiguous, and is insensitive to the actual hydrocarbon percentage in the reservoir).

CDP 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 330 334 338 342 346 350 354 358 362 366 370 374 378 382 386 390

"
‘”E"____l, ol sl ser b lelne nloeiliras b fualng. sl D‘El':”"_["ww ol fenliln s lep Lo foslla dlmedbn s el nanlls sall

WBlllllllﬁll}lliﬁiﬁliﬂ}}},l}}JJJJJBJ _J»»)»)»)) ‘eJJJJJJ))J))JJ» e 1
f !<<<<<<<<<<< <<<<<<

4 4 | {dddevviranvoaid saaasaddid] muu 1;44‘41‘111111

uu -- [ :]_ﬁﬁ; :_“:j5 Wi i _:__::_ W __ gﬁﬁ """

FIG. 6. The stack of line from Alberta showing a shallow “bright-spot” anomaly at 630 ms which
is due to a gas sand.
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Figure 7 shows some of the gathers from the line shown in Figure 6. Note that the gas
sand zone has a pronounced AVO increase with offset, usually indicative of a Class 3
anomaly (in which the anomalous sand is of lower acoustic impedance than the
surrounding sediments).
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FIG. 7. The input gathers used to extract f-m-r parameters.

There are many approaches to interpreting the AVO anomaly shown on the gathers of
Figure 7, such as intercept/gradient analysis, P and S-impedance inversion, and so on.
All will do areasonable job of delineating the gas sand. However, let us now apply the f-
m-r analysisto thisline.

In our analysis, we used a time-varying 2, that was derived from the measured sonic

log values and the S-wave values derived from this log using the mudrock equation Vp
=1.16Vs +1360 m/s, and a constant y; value of 2.333. Figure 8 shows the extracted Af/f

section, where red indicates a negative change and blue a positive change. On the Af/f
section, notice the decrease in the fluid term as the gas sand is encountered and the
increase as the underlying shale is encountered. Both of these observations make
physical sense, since the gas sand should show a drop in its fluid effect as it is
encountered on the section. Also, note how well the gas sand is delineated, giving a clear
indication of both itslateral and vertical extent.
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FIG. 8. The Af/f fluid modulus extraction for the data shown in Figures 6 and 7.

Next, Figure 9 shows the extractedAu/u rigidity section, where red again indicates a
negative change and blue a positive change.
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FIG. 9. The Auw/u rigidity modulus extraction for the data shown in Figures 6 and 7.

On the section shown in Figure 9, notice the increase in the rigidity as the gas sand is
encountered and the decrease as the underlying shale is encountered. Again, both of
these observations make physical sense, since the rigidity term should be an indicator of
the sandstone matrix, which is greater than the rigidity of the surrounding shales.

Thus, both the fluid and rigidity terms have proven to be excellent indicators of the
makeup of the reservoir which has been delineated by this line. On the other hand, the
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Ap/p section which was extracted on this line was felt to be not very meaningful, because
of the very short offsets, which limited the angular aperture to less than 30 degrees. On
datasets in which we have an angular aperture out to 45 degrees or more, it is felt that the
density section would be more reliable.

CONCLUSIONS

In this study, we combined the technique of amplitude variations with offset (AVO)
analysis with the theory of poroelasticity to derive a linearized AV O approximation that
provides the basis for the estimation of fluid, rigidity and density parameters from the
weighted stacking of pre-stack seismic amplitudes. We showed that, by using the
poroelasticity formulation discussed by Russell et al. (2003) and developed initially by
Biot (1941) and Gassmann (1951), the proposed method is a generalization of the two
AV O approximations introduced by Gray et a. (1999).

To fill in the background for our new method, we first presented an extensive review
of linearized AVO theory, discussing the various re-parameterizations of the Bortfeld-
Aki-Richards equation. We then discussed poroelasticity theory and followed this with
the derivation of the fluid-mu-rho (f-m-r) formulation. The key parameter that was
introduced into the AVO weighting coefficients was y;, , the square of the dry rock Ve to

Vs ratio. It was shown that the A—u—p formulation proposed by Gray et al. (1999)
corresponded toy} = 4/3, and the K—u—p formulation proposed by Gray et al. (1999)

corresponded toy} = 2.0. However, a more realistic value for sandstone reservoirs is
givenby 42 =2.0.

dry
We then applied our method to both model and real datasets. In our model study, we
modelled a wet sand over a gas sand, and showed that we could accurately model the
AVO effect using both the Bortfeld-Aki-Richards equation and the f-m-r equation.
Finally, we applied the method to a real data example over a known gas sand. By
extracting the fluid and rigidity components for this dataset, we were able to delineate the
extent of the gas sand both spatially and temporally from an analysis of both sections.

It should be pointed out that a disadvantage of this approach is that we now need to
estimate both 5, and yZ in the weighting coefficients. To determiney;,, more

research need to be done on rocks that don't fit the standard Biot-Gassmann model, such
as shales and fractured carbonates.
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APPENDIX A

Derivation of Shuey’s Equation

Shuey (1885) started with the Wiggins et al. (1983) rearrangement of the Aki-Richards
equation, given by

R.-(6) = A+ Bsin® @+ Ctan’8sin® @

, (A1)
whereA=R;, = %{AVVP +A—p} is a linearized approximation to the zero-offset P-wave
P
reflection coefficient, B = AVe 42, AVs _ 3 A_/" Yt = VplVs and C = AVe e
Ny VYa Vs Ta P ,

then sought to re-parameterize this equation as a function of Vp, o (Poisson’sratio) and p,

rather than Vp, Vs, and p. Notice that the terms A and C are independent of Vs, so will
remain unchanged in the re-parameterization. Thus, we only need to work with the B, or
gradient, term.

To transform to the new set of parameters, Shuey used a differential form that relates
Vsto Vp and o, and can be written:

= %AVP + %Aa
Ve do | (A2)

AV
First, we recall that, by definition, sis given by:
2 f—
o=t "< 5 2
2y -2, (A3)

where y =V, /Vg. Equation (A3) can beinverted to give
V.) 20-0) (V) 1-2 1-2
N R ) N ) S R V)
Vq 1-20 V, 21-o0) 20-0) (A4)

The various equivalent relationships given in equation (A4) will come in handy when
we compute the differentials in equation (A2).

Next, we note that if 4o = 0, we can rewrite equation (A2) as

— aVS
N,

dVs _ AVg Vg
Ve AV, Vg (A5)

AV AV, =

That is, if there is no change in the Poisson’s ratio, there is no change in the Vp/Vs
ratio. However, if there is a change in Poisson’s ratio between layers, as is normal, we
can write for the second term in equation (A 2):
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Vg  V¢Z 1 aVg Ve ([ Ao
=- > |= Ao=—-——— 5
o &N \(-0?) do Ns\(L-0) ). (A6)

Substituting equations (A5) and (A6) into equation (A2) and dividing both sides through
by Vs, we get:

AV AV, 7 ( Ac ]

Vo Vo 4 ((1-0) (A7)
2

wherey?Z, :“—5] . Substituting equation (A7) back into the gradient term B in

S /st

eguation (A1), we get

g AVe 4 {AVP_}/;( Ac j 2 Ap
2\/p 7;1 Ve 4 (1_0-)2
AVe 4 AV, Ao 2
A, 7; \ (1_ 0-)2 7; P
To complete the derivation, we still need to re-express the velocity ratio in terms of Vp
and o. Thisisdonein thefollowing way, using equation (A4):

A (A8)

B=

AV, _2(1— 20) AV, _(1— ZGJA_p+ Ao
N 1-0 )V, 1-0 ) p (A-0)

p

_AVP_(l—ZO'jAVP_(l—ZO') Ap AV,), Ao
v} 1-0 ) V, 1-c\p Vo) (Q-0) (A9)

p
AV, IV AVp IV, (11—
_ #_21_’_ p p(l Zo-j_'_ AO‘2
2A 2A 1-0 )| (1-0)
A_p+_AVP
P Ve

B= A{D _2(1+ D)[l_ 20}} Ao
1-0 )] (1-o0) (A10)
AV, IV

T". Thisisthe expression for B found in Shuey (1985).

where A= %( j This can be re-expressed as

where D =
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APPENDIX B

Derivation of the f-m-r equation

We start by re-writing equation (2) with the common denominator pVp>:

LoV + L VoAV, sec? 6 - 2(ApV2 + 20V AV, )sin? 6
Rep (6) =2 2

pVe . (B1)

Keep in mind that the Vp and Vs values are for the saturated rock. Next, for
convenience we will re-write equation (12), which was given as

f= pVPz - ygrypvsz (BZ)

Recall the chain rule of multi-variable calculus, which can be written for Af(Vp,Vs,p)
as

Af = a—fAVP +a—fAVS +a—pr
Vs dVs p . (B3)
Applying equation (B3) to equation (B2) gives
AF =2V, AV, — 20pVAV; + (V2 - 72 V2 Ap
: (B4)
Re-arranging equation (B4) gives
APV + 2PV AV, = = (ApVZ + 2V, AV, — Af )
7dry . (B5)
Equation (B5) can then be substituted into equation (B1) to give

Lapvzs ;pVPAVP sec? 0 - % (APVZ + 2pV,AV, — Af )sin? 6

J/dry
0) =
R (6) v ., (B6)

which can be re-arranged to give

V,pr[l—Z in’ 9) F VoAV, tsecro— % sinzo|af| 2 sne
2 C 2 Vary YVary

Ve (B7)

R-(6) =

To find the dependence on w4, note that equation (B2) can also be written
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f= pVPZ - y(?ry/u

(B8)
The chain rule for Af(Vp,u,p) can then be written
Af = a—fAVP of —Au +a—pr
Vv, ou p (B9)
Applying egquation (B9) to equation (B8) gives
Af =2pVLAV, — ¥5 AL +VEAp
' (B10)
Re-arranging equation (B10) gives
2
AV, =10 p - Lyep, o Lag
2 2 2 (B11)

Let us now evauate the second term in the numerator on the right hand side of
equation (B7) after substituting equation (B11). Thisgives

pvPAv{%secza—ésinzej (%‘W Aﬂ—lvap+ Afj(zsec 6— 2 sin? 9]

7/dry 7/dry

:Aﬂ(yzysec 0 —2sin’ 9j+V2Ap[ism 9—%5&: 9J+Af(iseczt9j

dry
Substituting equation (B12) into equation (B7) we note that several terms cancel,
giving:
2 1 1 2 7dry
VeAp| = —-sec” 0 |+ Au sec’ §—2sin* @ |+ Af sec 6
2 4 4 2
R.(6) =

Ve . (B13)
Next, we can simplify equation (A13) by dividing through by ,ovp2 to get
RP(H):( 9) Af2 yd'ysec 6-2sn’ 6 Aﬂz +(1—lseczejA—p
PV5 4 pPVe \2 4 P , (B14)

where we have aso re-arranged the terms. Equation (B14) is close to our final form, but
we would like to eliminate the pV,> term and end up with the termsAf / f and Au/ i .

To do this for the first term on the right hand side of equation (B14), note that we can
write
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2
f _ pVP2 - (?rypVS2 —1— 2 (V_sJ — 1_@
Ve ), Ve | (B15)

Ve
where we have made use of the ynotation introduced earlier. Thisimplies that

1 1=, 172)
Ve f . (B16)
For the second term in equation (B14), note that
no_pVE (V_] 1
st

Ve Ve Ve )y Y, (B17)
or
11
Ve Uy (B18)

Substituting equations (B16) and (B18) into equation (B14) leads to the final
expression:

2 2
RPP(Q): l_irzy S@CZQ £+ eryseczg_izg'nzﬁ A_,U+|:1_S€C—9:|A_p
4 Ay, f| 47 Vst u 2 4 |p (B19

APPENDIX C

Three Parameter AVO Parameter Extraction

It should be pointed out that all the three term AV O expressions that we have written
in this paper can be expressed by the general equation

RPP (9) =ap, + bpz + CP3,
(C1)
wherea, b, and c arefunctionsof 8 andV.2/VZ (dry or wet), and p,, p,, and p, are

functionsof V,, Vg, p, o, f,or . For N traces, where we know the angles, we can write
the following set of N linear equations with three unknowns:

RPP(el) = RPl =aq P+ bipz +CP;
RPP(02) = RPZ =a,P + bzpz +C, P03
RPP(QN) = RPN = ay pl+bN P, +Cy B3
which can be written in matrix form as
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Re(6) | |& b ¢ o
RPP(QZ) — a2 b2 C2 pl
: P p2 , (C2)
RPP(HN) ay bN Cn ’
or, more succinctly, as
R= MP. (C3)
This can be solved using the |east-squares inverse given by:
P=(MTM+A1)'M'R
: (C4)
1 00
where Aisapre-whiteningtermand 1 =({0 1 O
0 01
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