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ABSTRACT

The AVO-response of two-layer isotropic models for AVO-Classes 1 and 3 is investi-
gated for P-waves and converted waves. Zoeppritz re�ection coef�cients and the Weyl/
Sommerfeld-integral are utilized for the computations. Spherical wave results for RPP and
RPS are compared with plane wave re�ectivity. Depth dependence of spherical wave AVO
is found to be strongest near critical angles of Class 1. There is some similarity between
RPP and RPS for Class 1. Normalized Class 3 responses show no depth dependence. There
is no similarity between RPP and RPS for Class 3.

Anelasticity modi�es the AVO-response of two-layer isotropic models. When re�ection
amplitude losses due to attenuation are compensated for by unit re�ectivity scaling, AVO-
characteristics similar to the elastic situation are found. Q-factor dependence of spherical
wave AVO is found to be strongest near critical angles of Class 1. This Q-dependence,
to some degree, mimics depth dependence of elastic comparisons. Normalized spherical
wave Class 3 responses show a mild Q-factor dependence for the highest attenuation levels
modelled atQP1 = 100. Wavelet stretch of converted wave AVO re�ection traces is observed
in addition to a phase rotation of all anelastic trace examples when compared to the elastic
situation.

INTRODUCTION

Amplitude-versus-offset analysis was introduced by Ostrander (1984) and is also men-
tioned in a paper by Hron et al. (1986) as amplitude versus distance. AVO-analysis and
AVO-inversion are now widely accepted tools in seismic exploration. The common ap-
proach is plane-wave analysis, and linear approximations of the Zoeppritz equations are
utilized to this end. For these approximations small incidence angles and small param-
eter changes are assumed. In recent years, three-parameter AVO-inversion has been in-
vestigated for the extraction of density information (e.g. Downton and Lines, 2001). It
was observed that, for reasonably accurate density estimates, larger offsets/angles are re-
quired than normally used for two parameter inversion, preferably even postcritical events
if present (Downton and Ursenbach, 2006). Linearized approximations begin to break
down at larger angles and are not applicable near critical points. Even �exact Zoeppritz�
is a plane wave approximation to the real world. Winterstein and Hanten (1985) show that
cylindrical wave modeling results in a much better �t of seismic data than does plane wave
modeling near critical angles. Instead of the amplitude jump at the critical angle predicted
by plane-wave theory, they �nd a more gradual amplitude transition for cylindrical wave
models and actual data. The question arises as to what the spherical wave AVO-response
might be. Krail and Brysk (1983) attempted to address this question, but incorporated a
number of approximations. This modeling study employs only one minimal approximation
(see Theory section) and investigates the spherical wave AVO-response for AVO-Classes 1
and 3.

All rocks encountered in nature are anelastic to some degree. Anelasticity causes atten-
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uation and velocity dispersion of seismic waves. Velocity dispersion means velocities are
functions of frequency. This frequency dependence of seismic velocities can be quanti�ed
by frequency independent quality factors Q (Kjartansson, 1979). Q-factors are useful for
amplitude/phase compensation and as lithology indicators, but it is well known that plane
wave AVO-responses are also Q-factor dependent (see for example Carcione et al., 1998).
What, then, is the spherical wave AVO-response in anelastic situations? This modeling
study seeks also to quantify the sensitivity of spherical wave AVO-responses (Class 1 and
3) with respect to �nite Q-factors.

THEORY

Spherical-wave re�ections in elastic media

Plane-wave particle motion re�ection and transmission coef�cients for elastic isotropic
media in welded contact are given by the Zoeppritz equations. The formalism for express-
ing spherical wave fronts as contour integrals over plane waves goes back to Weyl (1919).
The theory describing the interaction of a spherical wave with a planar interface is well
established (see for instance Aki and Richards, 1980). In this section we outline the deriva-
tion of expressions appropriate to the solid-solid elastic interface. We begin by considering
displacement potentials for monochromatic P- and S-waves above and below the interface.

An incident monochromatic spherical wave has the P-wave displacement potential

φinc =
1

R
exp

(
iω
R

α1

− iωt

)
. (1)

where R is the distance from the source, ω is frequency, t is time, and α1 is the P-wave
velocity of the upper layer (in which the source is located.) In Cartesian coordinates this
can be written as an integral over plane waves, exp[±i(kxx + kyy + kzz)], subject to the
dispersion relation, kz =

√
ω2/c2 − k2

x − k2
y . Such an expression is called the Weyl inte-

gral. If the interface is horizontal, and the media are isotropic, or at least are limited to
vertical transverse isotropy, then one can assume cylindrical symmetry, and the Weyl inte-
gral can be reduced to the Sommerfeld integral. This expresses φinc in terms of cylindrical
waves, which can be constructed by integrating together all common-azimuth plane waves.
De�ning r ≡

√
x2 + y2, θ ≡ tan−1(y/x), kr ≡

√
k2

x + k2
y , and θk ≡ tan−1(ky/kx), then

∫ ∞

0

exp[±i(kxx+ kyy + kzz)]dθk

=

∫ ∞

0

exp[±i(krr cos(θk − θ) + kzz)]dθk

= 2πJ0(krr)e
±ikzz

These cylindrical waves appear in the Sommerfeld integral which, following Aki and
Richards (1980), we write as

φinc = Aiω exp(−iωt)
∫ ∞

0

p

ξ1
J0(ωpr) exp(iωξ1|z|)dp. (2)
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Here we have transformed from wavenumber to slowness notation, where kr/ω is the hor-
izontal slowness p, and kz/ω is the vertical slowness ξ (for P-waves) or η (for SV-waves).
The constant A represents the amplitude of the incident wave.

The potentials for re�ected and transmitted waves can, by symmetry considerations,
also be written in terms of cylindrical waves, but the waves are not necessarily spherical,
so an arbitrary p-dependent weighting factor must be included in the integrand, i.e.,

φRPP = iω exp(−iωt)
∫ ∞

0

B(p)
p

ξ1
J0(ωpr) exp(−iωξ1z)dp (3)

ψRPS = iω exp(−iωt)
∫ ∞

0

C(p)
p

ξ1
J0(ωpr) exp(−iωη1z)dp (4)

φTPP = iω exp(−iωt)
∫ ∞

0

D(p)
p

ξ1
J0(ωpr) exp(iωξ2z)dp (5)

ψTPS = iω exp(−iωt)
∫ ∞

0

E(p)
p

ξ1
J0(ωpr) exp(iωη2z)dp (6)

where ψ represents an S-wave displacement potential. Note that the boundary conditions
as z → ±∞ dictate the sign of the exponent. In this case we assume that if k2

z < 0, then
kz will be positive imaginary for positive frequencies and negative imaginary for negative
frequencies.

Next we generate equations to solve for B(p), C(p), D(p) and E(p). These are ob-
tained by boundary conditions relating displacement and stress across the interface. The
displacement is obtained from the potentials by the relation (Aki and Richards, 1980)

u = ∇φ+∇×∇× (0, 0, ψ). (7)

Carrying this out in cylindrical coordinates yields the non-zero displacement components
ur and uz. The stress components which must be continuous across the interface are

τzr = µ

(
∂ur

∂z
+
∂uz

∂r

)
, (8)

τzz = λ∇ · u + 2µ
∂uz

∂z
, (9)

where λ and µ are the usual Lamé constants. These operations are applied �rst to φinc +

φRPP , ψRPS to obtain u(1)
r , u

(1)
z , τ

(1)
zr , and τ (1)

zz , then similarly for the lower layer. The re-
�ection and transmission properties are independent of the location of the interface, so it is
convenient to de�ne it at z = 0. We then set u(1)

r (z = 0) = u
(2)
r (z = 0) and similarly for

other displacement and stress components. Each of these four equations can be collected
into a single integral, the integrand of which must equal zero for each value of p. This
yields four algebraic equations linear in A,B,C,D, and E. Comparing the results to those
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for plane waves (Aki and Richards, 1980) yields the relations

B(p) = Aeiξ1hRpw
PP (p) (10)

C(p) = Aeiξ1h 1

iωp

β1

α1

Rpw
PS (p) (11)

D(p) = Aeiξ1hα2

α1

T pw
PP (p) (12)

E(p) = Aeiξ1h 1

iωp

β2

α1

T pw
PS (p) (13)

where αi, βi are the P-wave and S-wave velocities of the ith layer. Substituting these ex-
pressions into equations 3 to 6 yields explicit expressions for the displacement potentials
of re�ected and transmitted waves, and shows that they are given as integrals over the
analogous plane-wave re�ection and transmission coef�cients for the interface.

The �nal result is that the required potentials may be calculated as

φRPP = Aiωe−iωt

∫ ∞

0

RPP
p

ξ
J0(ωpr)e

iωξ(z+h)dp (14)

ψRPS = Aiωe−iωt

∫ ∞

0

(
1

iωp

β

α
RPS

)
p

ξ
J0(ωpr)e

iω(ξh+ηz)dp (15)

Re�ections from an elastic interface are computed �rstly by introducing particle motion re-
�ection coef�cients given by the Zoeppritz equations. Secondly, particle motion u is com-
puted from equation 7 and from the potentials given by equations 14 and 15. Thirdly, it is
assumed that displacement is parallel to the ray direction for PP re�ected waves, and per-
pendicular for PS waves. Other displacement components are neglected. (This is the sole
approximation in the procedure and introduces very little error (Ursenbach et al., 2006)).
Fourthly, normalization by the maximum particle motion magnitude for unit re�ectivity
leads to spherical wave PP and PSv re�ection coef�cients. The integrations shown in equa-
tions 14 and 15 proceed one frequency point at a time. When all frequency points are
computed for the desired output bandwidth, the time domain response is found by inverse
Fourier transform. Quadrature traces are determined by Hilbert transform. From these two
trace types amplitude and phase of re�ected spherical waves can be calculated

Extension to anelasticity

A mathematical treatment of anelasticity can be found in Aki and Richards (1980).
They show that causality requires velocity dispersion and derive the following equation:

ν(ω) = νref

(
1 +

ln(ω/ωref)

πQ
− i

2Q

)
, (16)

where Q is a frequency independent quality factor. As in the elastic case before, spherical
wave displacements u are computed from the potentials φRPP and ψRPS .

The integrations shown in equations 14 and 15 again proceed one frequency point at a
time. However, in the anelastic situation velocities are complex and must be recomputed
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for every frequency point, according to equation 16. The P-wave quality factor for the top
layer (QP1) is assumed to be known for the computations and is listed in the �gures. QP2
(for the bottom layer) as well as S-wave quality factors QS1 and QS2 are calculated with the
aid of empirical equations (Waters, 1978; Udias, 1999).

1

QP

=
( const.

α

)2

, (17)

and
QS = QP

4

3

(
β

α

)2

. (18)

MODELING

An actual gas-sand reservoir from the prairies is utilized to derive two layer models for
this study. Density ρ1 is 2400 kg/m3 for the layer just above the reservoir. P-wave velocity
α1 = 2000 m/s is dictated by a reservoir depth of 500 m and a corresponding two-way
traveltime of approximately 500 ms. The layer parameters for AVO-Classes 1 and 3 shown
in Table 1 are adapted from Rutherford and Williams (1989). Output signal bandwidth and
linear edge tapers are determined by choosing a 5/15-80/100 Hz Ormsby wavelet as the
source signature. Free surface effects are not considered in this study. A P-wave point
source and spherical wave fronts are assumed for the computations.

Table 1. Elastic parameters for two-layer models.

Class α1/[m/s] β1/[m/s] ρ1/[kg/m3] α2/[m/s] β2/[m/s] ρ2/[kg/m3]
1 2000 879.88 2400 2933.33 1882.29 2000
3 2000 879.88 2400 1963.64 1260.04 2000

Figures 1 and 2 show AVO-response magnitudes computed from trace envelopes. AVO-
Class 1 comparisons are given in Figure 1a (for PP-waves) and Figure 1b (for converted
waves). Similarly, AVO Class 3 results are shown in Figure 2. Plane wave comparisons are
added to all AVO magnitude responses in order to highlight the impact of spherical wave
fronts. Figures 3 and 4 display spherical wave PP and PS-re�ection traces for AVO Classes
1 and 3. These trace displays are scaled individually in order to accommodate maximum
amplitudes. Clipping of maximum trace amplitudes is indicated by colour changes.

The same two layer model as was utilized in the elastic situation is also employed in
the anelastic study. All velocities listed in Table 1 are taken to be reference velocities here;
the reference frequency (see equation 16) is set to 50 Hz. As before, a 5/15-80/100 Ormsby
wavelet is chosen as the source signature; a P-wave point source is assumed. Free surface
effects are ignored.

Two values are assumed for the top layer P-wave quality-factor: �rstly, QP1 = 100 and,
secondly, QP1 = 387.5 . The other Q-factors are calculated from equations 17 and 18 and
are listed in Table 2.
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FIG. 1. Spherical-wave re�ection coef�cients for Class 1 AVO, (a) PP (b) PS.
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FIG. 2. Spherical-wave re�ection coef�cients for Class 3 AVO, (a) PP (b) PS.
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FIG. 3. Spherical-wave re�ection traces for Class 1 AVO, (a) PP (b) PS.
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FIG. 4. Spherical-wave re�ection traces for Class 3 AVO, (a) PP (b) PS.
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Table 2. Q-factors derived from QP1=100 and 387.5. These represent strongly and weakly attenu-
ating two-layer models.
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Class QP1 QP2 QS1 QS2
1 100 215.1 25.8 118.1
3 100 96.4 25.8 52.9
1 387.5 833.5 100 457.6
3 387.5 373.5 100 205.1

Figures 5 and 6 show anelastic spherical wave AVO-responses for Classes 1 and 3.
Plane-wave and elastic spherical-wave responses are given for comparison. PP- and PS-
re�ection traces for AVO Classes 1 and 3 of the anelastic case are displayed in Figures 7
and 8.

Scaling of Amplitudes

The appearance of computed AVO results depends on scaling. Spherical spreading must
be compensated for if results are to be compared to plane wave responses. Figure 9 shows
scaling comparisons for Class 1 PP-AVO. The layer parameters for Class 1 AVO in Table 1
give a plane wave zero offset re�ection coef�cient of 0.1. Normalizing the zero offset
spherical wave response to 0.1 gives good agreement with the plane wave response up to
about 30◦ incidence angle. Spherical spreading can be compensated for by 1/cos-scaling.
Applying 1/cos-scaling to the spherical wave response brings it much closer to a plane
wave comparison at angles well beyond critical. All normalization factors used to compute
Figures 1, 2, 5 and 6 are derived by setting re�ection coef�cients R in equations 14 and
15 to unity. Inspection of Figures 1a and 9 shows that unity-R scaling provides the highest
level of agreement between spherical wave responses and plane wave responses.

The trace displays (Figures 3, 4, 7 and 8) are scaled individually in order to accommo-
date maximum amplitudes. Clipping of maximum trace amplitudes is indicated by colour
changes.

DISCUSSION

For Class 1 AVO-models, P-wave and S-wave velocities are increasing across the inter-
face as can be seen in Table 1. Because of this velocity increase critical angles exist and
head waves are generated in Class 1 models. A head wave can be seen separating from
re�ected waves at the highest angles in Figure 3b. It also exists in Figure 3a, but is not as
evident for the angles shown. The PSv-re�ection traces in Figure 3b start with zero am-
plitude at zero angle. Then a negative re�ection (−180◦ of angle) grows stronger towards
a magnitude maximum just below 30◦. Beyond 30◦ the PSv-re�ection strength diminishes
�rst and then goes through a 90◦ phase rotation and increasing strength near the critical
angle just beyond 40◦. With angles increasing beyond that, amplitudes diminish towards
zero at 90◦ and the phase angle returns to −180◦. Figure 1a shows the magnitude of RPP
for Class 1. The greatest departure from a plane wave comparison is observed in the vicin-
ity of the critical angle. The larger the re�ector depth, the closer the spherical response to
the plane wave comparison; however, even at 2000 m depth, there are signi�cant differ-
ences. The Class 1 PSv-re�ection comparison in Figure 1b bears striking similarities to its
PP counterpart in the way it differs from plane wave behavior near the critical angle. The
depth dependence of spherical wave Class 1 AVO-responses ofRPP andRPS is quite similar
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FIG. 5. Anelastic spherical-wave re�ection coef�cients for Class 1 AVO, (a) PP (b) PS.
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FIG. 6. Anelastic spherical-wave re�ection coef�cients for Class 3 AVO, (a) PP (b) PS.
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FIG. 7. Anelastic spherical-wave re�ection traces for Class 1 AVO, (a) PP (b) PS.
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FIG. 8. Anelastic spherical-wave re�ection traces for Class 3 AVO, (a) PP (b) PS.
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FIG. 9. Scaling comparisons for Class 1 PP-AVO at 500 m. These two scaling methods may be
compared with the unit re�ectivity method used for the red line in Figure 1a.
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(including a phase rotation near the critical angle).

Results of AVO-Class 3 modeling are very different when compared to Class 1. Table
1 shows a P-wave velocity inversion; only S-wave velocities increase across the interface.
There is no head wave (and no phase rotation) because there is no critical angle for incident
P-waves. Another interesting observation is the apparent lack of depth dependence. The
reasons for this apparent depth independence of Class 3 spherical wave AVO-responses are
�rstly the normalization and secondly the equal angle displays. Away from the critical an-
gle the Class 1 response is also increasingly independent of depth. Class 3 RPP (Figure 4a)
always has negative polarity and is nonzero for any angle. Class 3 RPS in Figure 4b begins
with zero amplitude and develops negative polarity, as before in Figure 3b. By contrast to
Class 1, it passes through zero at about 60◦ of angle and turns positive. Similar to Class 1
RPS, re�ection strength returns to zero when approaching 90◦. There is no departure from
a plane wave comparison for either RPP or RPS.

Return path differences are to be expected when anelasticity is introduced in the form
of �nite Q-factors. The smaller the Q-factors, the larger the attenuation. The return path
for converted waves is governed by QS1, which is smaller then QP1 (see Table 2). Con-
sequently, Class 1 spherical PS-wave AVO is more sensitive to decreasing Q-factors than
its Class 1 PP-wave comparison. Return path attenuation is compensated for when unit R
normalization is employed. Q-factor dependence is reduced for this normalization scheme,
as is shown by the Class 1 examples in Figures 5a and 5b. However, converted spheri-
cal waves still seem more sensitive to increasing attenuation when compared to spherical
P-waves in these examples.

Normalized Q-dependence for spherical wave AVO Class 1, as shown in Figures 5, to
some degree mimics normalized depth dependence of the elastic situation (see Figure 1).
Increasing Q-factors and increasing depths move normalized spherical wave AVO closer to
plane wave comparisons.

There is no Q-factor dependence following normalization of Class 3 spherical PP-wave
AVO-responses (Figure 6a). The normalized Class 3 converted wave counterpart in Fig-
ure 6b shows some departure for QP1 = 100 (the highest attenuation value considered).
Note the different plotting scale for the vertical axes of Figure 6b.

All trace plots in Figures 7 and 8 show phase rotations when compared to the elastic
situation. Note that these trace examples are all computed for a depth level of 500 m
and QP1 = 100 for attenuation. Amplitude clipping is indicated by colour change: black
peaks change to blue, and red troughs change to green when clipped. Also noticeable in
these trace plots is the increased pulse width of anelastic converted wave re�ections. This
wavelet stretch is indicative of a spectral band narrowed by predominant attenuation of
higher frequencies.

CONCLUSIONS

Accurate spherical-wave Rsph
PP andRsph

PS re�ection coef�cients may be calculated numer-
ically by integration over the plane wave coef�cients, Rpw

PP and Rpw
PS . Scaling by similar

results obtained using unit re�ectivity allows one to identify fundamental deviations from
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plane-wave behaviour. Class 1 models show signi�cant amplitude deviations and phase
rotations near the critical angle. This is observed even for depths of 2000 m. Class 3 mod-
els, which have no P-wave critical angle, show no fundamental deviation from plane-wave
behaviour even for depths as shallow as 500 m.

The same method can be modi�ed to calcuate accurate re�ection coef�cients in the
presence of constant Q attenuation. Q-dependence is observed for Class 1, while for Class
3 models, the Q-dependence of Rsph

PS is very weak, and is negligible for Rsph
PP .
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