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ABSTRACT

In previous work we have computed spherical wave AV O responses for a maximum
depth of 2000 m. A significant difference between spherical wave responses and plane
wave comparisons near the critical angle for AVO Classes 1 and 2 had been observed.
We have extended spherical PP wave Class 2 computations to 4000 m and 8000 m depth.
At 8000 m depth the difference is small and probably negligiblein practical situations.

INTRODUCTION

When isotropic spherical wave AVO responses were presented in previous reports
(Haase and Ursenbach, 2004a and 2004b) we gave results for AVO Classes 1 through 4
but only for depths of 500 m, 1000 m and 2000 m. Recently the question came up as to
what the spherical wave AV O behavior at larger depths would be, with an emphasis on
Class 2 P-wave responses. We have repeated the Class 2 computations for additional
depths of 4000 m and 8000 m. The results are presented in this report. Similar to AVO
Classl, there are critical angles for spherical wave Class 2 responses and the main
departures from plain wave comparisons are observed near the critical P-wave angle.
Unique to our Class 2 example is a zero response at zero degrees of incidence angle
(normal incidence). Even at 2000 m depth there are significant differences between
spherical wave and plane wave Class 2 PP responses near the critical angle. At what
depth levels are these differences negligible?

SOMMERFELD/WEYL INTEGRAL COMPUTATIONS

The starting point for our expanded depth computations is the numerical integration
algorithm employed in previous work. In order to keep wrap around under control the
trace length must be doubled with every doubling in depth, which means doubling the
number of frequency points. The computing time is more than doubled because of an
increased number of steps in the numerical integration also. Table 1 lists the layer
parameters we have used for all Class 2 AVO computations. Figure 1 shows the resulting
Class 2 AVO curves for 4000 m and 8000 m depth, the previous result for 2000 m depth
and a plane wave comparison. The response ripples beyond the critica point are
decreasing with depth. They are caused by the 5/15-80\100 Hz Ormsby wavelet utilized.
Increasing the bandwidth and increasing the smoothness of the amplitude spectrum
would also decrease these response ripples. Even though the 8000m response is still
distinguishable from the plane wave response in this model study, in areal data situation
this small difference could be expected to “hide” under the noise floor.
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Table 1. Layer Parameters.

Class | ai/[m/s] | Bi/[m/s] | pi/[kg/m3] | ax/[m/s] | B2/[m/s] | p2/[kg/m?]
1 2000 879.88 | 2400 2933.33 | 1882.29 | 2000
2000 879.88 | 2400 2400 | 1540.05 | 2000
2000 879.88 | 2400 1963.64 | 1260.04 | 2000
2000 1000 2400 1598.77 | 654.32 | 2456.43

AW

SPHERICAL WAVE ZOEPPRITZ EXPLORER COMPUTATIONS

The underlying approach here is to change the order of integration with the
Sommerfeld integral, prescribe a suitable wavelet and do an analytical inverse Fourier
transform. This amounts to a computation of weighting functions for the remaining
integration over the horizontal slowness p. With increasing depths these weights are
narrower and narrower which results in a decrease of computing time. This trend is the
opposite of what is observed previously with numerical inverse Fourier transforms.
Figure 2 shows the spherical wave Zoeppritz explorer result for Class 2 AVO. Because a
Rayleigh wavelet is employed here, which has a smoother amplitude spectrum than the
Ormsby wavelet utilized above, there are fewer or no response ripples. The general trend
of depth dependence is the same as obtained under the previous heading, thereby
validating those resullts.

CONCLUSIONS

Class 2 PP wave AVO responses have been computed by the Sommerfeld/Weyl
integral for 4000 m and 8000 m depths and are validated by a different method. With
increasing depths the spherical wave AVO response approaches the plane wave
comparison more and more. At 8000 m depth the difference is so small as to likely be
under the noise floor for practical situations.
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FIG. 1. AVO Class 2 spherical wave PP reflection coefficient.
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CREWES Spherical Zoeppritz Explorer
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FIG. 2: Spherical-wave reflection coefficients calculated for the Rayleigh wavelet (h = 4 and fO =
40 Hz) and for the same earth parameters as in Figure 1. a) 2000 m. b) 8000 m.
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