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ABSTRACT

Wavefield extrapolation by spatially variable phase shift is currently a very competi-
tive depth migration technique. In this paper, we present prestack migration results of the
Marmousi synthetic dataset using a new adaptive Gabor wavefield extrapolation.

Gabor depth imaging algorithm can be used to approximate the generalized phase-shift-
plus-interpolation or the non-stationary phase shift, which are two extreme cases in Gabor
imaging schemes. Therefore, there are many ways to explore wavefield extrapolations with
Gabor imaging method. The key to an efficient Gabor imaging algorithm is to develop
an adaptive partitioning scheme that only localizes the wavefield as required by the lateral
velocity variation. We have tested three methods of adaptive partitioning, however, those
two presented previously have their limits and they are relatively more difficult to imple-
ment in 2D (for 3D imaging) than the one we will describe. We present the details of the
new adaptive partitioning method in 1D (for 2D imaging). The extension of the partition-
ing method to 2D will be described in another paper in this volume. This method creates
adaptive partitions using a controlled lateral position error. Software has been developed
using the new adaptive partitioning algorithm, reducing substantially computation burden
in depth imaging when compared to the full generalized phase-shift-plus-interpolation in-
tegral. The performance of Gabor depth imaging using this adaptive partitioning algorithm
is illustrated with images from prestack depth migration of the Marmousi dataset.

INTRODUCTION

Migration with phase shift (Gazdag, 1978) (also referred to as wavefield extrapola-
tion with phase shift) was proposed for accurate and efficient depth imaging over other
wave-equation migration methods such as those using the finite difference algorithm (e.g.
Claerbout and Doherty, 1972; Loewenthal et al., 1976). An important property of phase-
shift wavefield extrapolation is its unconditional stability, and it is easy to extend to higher
dimensions (e.g., 3D) (Gazdag and Sguazzero, 1984). However, this is not always the case
for other wave-equation migration methods. Phase-shift wavefield extrapolation shows its
promising features in migrating seismic data, especially in 3D due to its accuracy, speed
and relative simplicity. One drawback for the Gazdag (1978) phase-shift method is its as-
sumption of uniform lateral velocity structures, which is not desirable in many practical
cases. In the real world, velocity structures are mostly heterogeneous with strong velocity
fluctuations in the lateral dimensions, making it undesirable to use the phase-shift method.
To address the problem, phase shift plus interpolation (PSPI) was invented (Gazdag and
Sguazzero, 1984). PSPI method is implemented by use of a set of reference (laterally
homogeneous) velocities to compute extrapolated wavefields; the final wavefield extrapo-
lation is obtained by interpolating with velocities corresponding to certain lateral positions.
Kosloff and Kessler (1987) came up with a generalized phase-shift (GPS) to extend the
phase-shift method to arbitrary velocity structures using an eigenvalue decomposition tech-
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nique. Stoffa et al. (1990) used an alternative wavefield extrapolation algorithm, split-step
Fourier migration, dealing with lateral velocity variation while keeping the advantages of
the phase-shift method, i.e., accuracy and efficiency. Other phase-shift wavefield extrap-
olation methods such as ‘phase-screen propagator’ (Wu and Huang, 1992; Roberts et al.,
1997; Rousseau and de Hoop, 2001; Jin et al., 2002) are also provided for accurate imag-
ing of abrupt velocity variations in such geological settings as salt-dome environments.
The generalized phase-shift (GPS) method and the split-step Fourier method compute thin-
lens phase delay (related to velocity variations) in the space-frequency domain and calcu-
late phase-shift due to velocity perturbations in the frequency-wavenumber domain. Jin
and Wu (1998) tested windowed phase-screen propagators andshowed improved results
of depth imaging compared to those from old phase-screen methods. Margrave and Fer-
guson (1999); Ferguson and Margrave (2002) used a non-stationary phase shift (NSPS)
method and a generalized phase shift plus interpolation (GPSPI) to improve migration re-
sults, where wavefield extrapolations were done totally in the Fourier domain using exact
velocity variations.

Gabor imaging method is related to the method of Jin and Wu (1998) and it approx-
imates GPSPI with a Gabor extrapolator. To reduce the redundancy of computation, we
applied adaptive partitioning methods using lateral velocity gradients (Grossman et al.,
2002a,b; Ma and Margrave, 2005b, 2006c) and the phase errorsbetween the GPSPI and
the Gabor extrapolators (Ma and Margrave, 2006b). However,in this paper we introduce a
new adaptive partitioning algorithm depending on the lateral position error criterion. The
new adaptive partitioning method is less difficult to extendfrom 1D partitioning to 2D
partitioning.

In the following sections, details of the adaptive Gabor wavefield extrapolation algo-
rithms will be shown.

GABOR WAVEFIELD EXTRAPOLATION THEORY

Wavefield extrapolation using GPSPI

Gabor wavefield extrapolation theory was previously described by Grossman et al. (e.g.
2002a,b) and Ma and Margrave (e.g. 2005b). However, we wouldlike to interpret it in a
different way, trying to make it more understandable for general readers.

The following convention are used in this paper for the forward and inverse Fourier
transforms, which are

û(kx) =

∫

R

u(x) exp (ikxx)dx, (1)

and

u(x) =
1

2π

∫

R

û(kx) exp (−ikxx)dkx, (2)
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whereû is the Fourier spectrum ofu, R is the real domain for integrations,kx is the coordi-
nate in the Fourier domain. In the following sections,F andF−1 will be used to symbolize
the forward and inverse Fourier transforms, respectively.

The generalized phase shift plus interpolation (GPSPI) is formulated as (Margrave and
Ferguson, 1999; Margrave et al., 2004, 2006)

ψP (x, z + ∆z, ω) =
1

2π

∫

R

ψ̂ (kx, z, ω) Ŵ (k(x), kx,∆z) exp (−ikxx)dkx, (3)

wherex denotes transverse coordinates,ψ̂ (kx, z, ω) is the Fourier spectrum (FK) ofψ (x, z, t),
kx is called the transverse wavenumber,kx andkz (to be defined in the following) compose
the total wavenumber vector with a magnitude ofk(x), ∆z is the step size of extrapolation
in z (vertical) direction,ω is temporal angular frequency andv(x) denotes the lateral ve-
locity at x along a slab with thickness∆z. Equation (3) extrapolates wavefields at depth
z down to depthz + ∆z in the frequency-wavenumber domain and transforms them into
the frequency-space domain using the inverse Fourier transform. Ŵ is called the GPSPI
wavefield extrapolator, which is a spatial phase shift term and defined as

Ŵ (k(x), kx,∆z) = exp (ikz (k(x), kx)∆z), (4)

kz (k(x), kx) =







√

k2(x) − k2
x, k2(x) > k2

x

i
√

k2
x − k2(x), k2(x) < k2

x.

(5)

and

k(x) =
ω

v(x)
. (6)

Using the convention and symbols for the Fourier transform,equation (3) is written as

ψP (x, z + ∆z, ω) = F−1

[

Ŵ (k(x), kx,∆z)Fψ (x, z, ω)
]

. (7)

Approximation of GPSPI

The GPSPI extrapolator is approximated using

Ŵ (k(x), kx,∆z) ≈
∑

j∈Z

Ωj(x)Sj(x)Ŵ (kj, kx,∆z) , (8)

CREWES Research Report — Volume 18 (2006) 3



Ma and Margrave

whereΩj is a set of windows forming a partition of unity (POU), which means

∑

j∈Z

Ωj(x) = 1, (9)

whereZ denotes the integer set. The split-step Fourier operator isdefined as

Sj(x) = exp

(

iω∆z

(

1

v(x)
−

1

vj

))

(10)

andŴ (kj, kx,∆z) is a locally constant wavefield extrapolator (refer to equations (4) and
(5)) related tokj and reference velocitiesvj defined as

kj =
ω

vj

(11)

and

vj =

∫

R
Ωj(x)v(x)dx
∫

R
Ωj(x)dx

. (12)

Using approximation in equation (8), GPSPI formula (3) can be written as

ψP (x, z + ∆z, ω) ≈
∑

j∈Z

Ωj(x)Sj(x)

∫

R

ψ̂(kx, z, ω)Ŵ (kj, kx,∆z) exp (−ikxx)dkx (13)

whereΩj(x) andSj(x) arekx independent and taken out of the integrand. Using the Fourier
symbols in equation (13) gives

ψP (x, z + ∆z, ω) ≈
∑

j∈Z

Ωj(x)Sj(x)F
−1

[

Ŵ (kj, kx,∆z)Fψ(x, z, ω)
]

. (14)

Gabor Wavefield Extrapolation

To relate equation (13) to Gabor wavefield extrapolation, the Gabor transform should
be introduced. Starting with the partition of unity (see equation (9)), one can decompose
Ωj(x) as (Grossman et al., 2002a)

gj(x) = Ωp
j (x), γj(x) = Ω1−p

j (x), p ∈ [0, 1] (15)
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wheregj(x) andγj(x) are called analysis and synthesis windows, respectively. The forward
Gabor transform is defined as

Vg

(

j, ψ̂(kx)
)

= F [gj(x)ψ(x)] , j ∈ Z (16)

whereVg

(

j, ψ̂(kx)
)

is called the Gabor spectrum ofψ(x). Vg

(

j, ψ̂(kx)
)

is actually a

series of Fourier transforms of the input signalψ(x) windowed bygj(x), and it can be
recovered by the inverse Gabor transform

ψ(x) = V −1

γ [Vg(j, ψ(x))] =
∑

j∈Z

γj(x)F
−1F [gj(x)ψ(x)] , (17)

whereV −1

γ stands for the inverse Gabor transform, the inverse Fouriertransform on the
Gabor spectrum (windowed Fourier spectra) and summation over windowsγj(x).

SinceF−1F = 1, proof of equation (17) is immediate using equations (9) and(15) in
equation (17).

Sincep ∈ [0, 1], we have infinitely many ways to choose the Gabor transform. If we
choosep = 0 in equation (15), then we have

gj(x) = 1, γj(x) = Ωj(x). (18)

Using equation (18) in equation (17) gives

ψ(x) = V −1

γ [Vg(j, ψ(x))] =
∑

j∈Z

Ωj(x)F
−1F [ψ(x)] . (19)

Equation (19) does nothing but transformψ(x) back and forth to the Gabor domain. If
we insert a wavefield extrapolator̂W (kj, kx,∆z) andSj(x) in front of F andF−1, re-
spectively, in equation (19), we have exactly equation (14). That is why equation (14) is
called the Gabor wavefield extrapolation; it is just one of those cases (p values) in Gabor
extrapolation schemes, an extreme case withp = 0. Equation (14) is the formula used as
the Gabor wavefield extrapolation approximating GPSPI in the following sections.

Building Adaptive Partitions

Equation (8), i.e.

Ŵ (k(x), kx,∆z) ≈
∑

j∈Z

Ωj(x)Sj(x)Ŵ (kj, kx,∆z) , (20)
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indicates that originallyΩj(xx) refers to a set of narrow windows uniformly distributed
along thex coordinate. However, to calculate efficiently, we should reduce the number of
windows to as few as possible without sacrificing accuracy. This can be done by adaptive
partitioning algorithms, where the number of partitions isrelated to lateral velocity vari-
ations. There are several methods (Grossman et al., 2002a,b; Ma and Margrave, 2005a)
available. In this paper, a new scheme is proposed for adaptive partitioning in Gabor wave-
field extrapolation, which uses “lateral position error” asa criterion.

x

θz∆

O

ray path

(a)

kk z

k x

θ

O

(b)

FIG. 1. Geometrical relationships of a local ray path between the vertical and lateral components
in the spatial (a) and wavenumber (b) domains.

Starting from a ray path of local scattering wavefield atO (see Figure 1 (a)), we can
write

x = ∆z tan θ, (21)

wherex is the lateral coordinate,∆z is the extrapolation step size, andθ is a scattering
angle at this point. Similarly, there is a geometry relationship between thekx, θ andk(x)
(see Figure 1 (b)), i.e.,

k =
kx

sin θ
=
ω

v
, (22)

wherekx is the transverse wavenumber, andk denotes the total wavenumber.

Differentiating on both sides of equation (21) and equation(22) and rearranging gives

δx = ∆z sec2 θ
∂θ

∂v
δv (23)

and

∂θ

∂v
=
kx

ω
sec θ. (24)
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Substituting equation (24) into equation (23) and simplifying yields

δv =
cos3 θ

sin θ

δx

∆z
v. (25)

Equation (25) shows the way of estimating the velocity variation δv with respect to
certain velocityv given ∆z, θ and lateral position errorδx. This is the key formula of
choosing reference velocities for adaptive Gabor wavefieldextrapolation.

To specify reference velocities,v1 is chosen as the most frequently occurring velocity
(easily done from a histogram of the discretely sampledv(x)) and thenδv1 is obtained from
equation (25) asδv1 = av1, wherea =

(

cos3 θ sin−1 θδx/∆z
)

. Lettingv2 denote the next
higher reference velocity andv3 the next lower, we set the conditions

v1 −
1

2
δv1 = v3 +

1

2
δv3 = v3(1 +

1

2
a) (26)

and

v1 +
1

2
δv1 = v2 −

1

2
δv2 = v2(1 −

1

2
a). (27)

Using (26) and (27), calculation ofv2 andv3 is obvious, giving

v2 =
2v1 + δv1

2 − a
(28)

and

v3 =
2v1 − δv1

2 + a
. (29)

Proceeding in a similar way until a reference velocity exceeds the range ofv(x), which
defines a complete set of reference velocities. The use of equation (25) in selecting distance
between reference velocities suggests that lateral position error will be bounded byδx. This
bound may not be strictly held because equation (25) was derived with constant velocity
theory; however, it should still be a good constraint.

Once the reference velocities are selected, they can be usedas measures (see Figure 2
(b)) to build indicator functionsIj(x) using

Ij (x) =







1, |v(x) − vj |= min

0, otherwise,
(30)
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FIG. 2. Build indicator functions (a table) using the adaptive partitioning algorithm given a certain
lateral position error. In (a), we find the reference velocities according to a certain lateral position
error criterion (see equation (25)); the solid curve indicates occurrences of velocities; the dashed
lines (vertical) correspond to the reference velocity values selected by the adaptive partitioning
algorithm. In (b), we build indicator functions using exact velocity (profile) values and the reference
velocities selected in (a) (see equation (30)); the solid curve shows the velocity profile; dashed lines
(horizontal) are reference velocities created in (a).

wherev(x) is the exact velocity at the lateral positionx andvj (j = 1, 2, ..., n) are reference
velocities created by equation (25).

We convolve the indicator functionIj with a unit window (atomic window) to create
partitioning windows (forming a POU) corresponding to reference velocities used in Gabor
wavefield extrapolation. This is done by

Ωj(x) = (Ij ∗ Θ) (x), (31)

whereΘ is the atomic window. The atomic window can be any type of window, such as
the Gaussian window, with localization property;∗ means normalized convolution.

For 2D wavefield extrapolation, the partitioning scheme works in 1D; and this method
can be easily extended to 2D partitioning required for 3D Gabor wavefield extrapolation
(Ma and Margrave, 2006a).

To show how the adaptive partitioning method works, a few partitioning examples are
shown. In the first example, the adaptive partitioning method was applied to a simple step
velocity model. Given a lateral position error criterion, the algorithm chooses to create
two windows corresponding to two distinct velocity segments (see Figure 3 (a)), which is
expected.

The second velocity model is a bump velocity function (see Figure 3 (b)); two velocity
segments on both sides of the bump have the same velocity value. The adaptive partitioning
algorithm chooses two windows according to a given lateral position error. The green
window (dashed line) goes in from the left side, goes out and comes back again on the
right side, corresponding to one reference velocity; the blue window (solid line) follows
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FIG. 3. Adaptive partitioning examples: In (a) a step velocity profile (shown in cyan colour) is used
to test adaptive partitioning algorithm. We see two windows (one in green-dashed line and the
other in blue-solid line) created using a certain lateral position criterion; in (b), a bump velocity
profile (shown in cyan colour) is used, since we set the velocity on both sides of the bump the same
value, two reference velocity is selected by the adaptive partitioning algorithm. As a result, we have
two windows by the algorithm given a lateral position error criterion.

the constant velocity segment in the center portion. It is also shown that the partitioning
result of a velocity profile consisting of several kinds of velocity segments (see Figure 4).
This shows the new adaptive partitioning algorithm is able to deal with such complicated
lateral velocity variations as those in the Marmousi velocity model.

GABOR IMAGING EXAMPLES

The Marmousi synthetic dataset has been widely used as a benchmark for testing depth
imaging algorithms. The Marmousi velocity section used in Gabor depth imaging in this
paper is shown in Figure 5 (a). In the Marmousi synthetic dataset, there are 240 shot records
with a recording time of about 2.9 seconds. All depth migrations using the adaptive Gabor
imaging method have been done using prestack shot records, each of which includes 241
extrapolation steps with step size of∆z = 12.5 meters.

Figure 5 (b) shows the Gabor imaging result of the Marmousi dataset using a position
error of 5 m as criterion in the adaptive partitioning. Taking a closer look at the imaging
target (a reservoir extending from distance 6000 m to 7500 m in depth about 2500 m, see
also Figure 5 (a)), we know that the target reservoir has beenaccurately imaged (compare
this portion in the image to the corresponding part in the original velocity structures). Ob-
serving the rest of the areas in the Marmousi image (Figure 5 (a) and (b)), we see that they
are all well imaged using the Gabor migration method.

We would like to push the Gabor (approximating GPSPI) imaging method a bit more in
the accuracy direction, i.e., a smaller position criterion, 2.5 m, was used. Figure 5 (c) shows
the result of this application. Comparing carefully to the imaging result using 5 m position
error, it can be seen that there is improvement throughout the section, especially the fault
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FIG. 4. Adaptive partitioning on a complex velocity model. A specific colour shows a single par-
tition created by the adaptive partitioning algorithm. It can seen that at some positions there is
overlapping of different partitions, which indicates implicit interpolations in Gabor depth imaging
when windowing the wavefield to be extrapolated with such partitions.
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FOCI Imaging of Marmousi Velocity Model
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FIG. 5. Marmousi velocity structures and the imaging results using the Gabor and FOCI methods.
(a) Marmousi velocity structures used in the imaging. (b) Gabor imaging result using a lateral
position error of 5 m. (c) Gabor imaging result using a lateral position error of 2.5 m. (d) FOCI
imaging result using an operator of 51 points (Margrave et al., 2006).
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areas in the shallow middle part. However, it can also be noticed that the improvement of
the reservoir image is slight. We say that 5 m criterion may begood enough for the target
imaging if the running time is more important than the high resolution images. Using 2.5 m
position error in the Gabor imaging consumes about another 50% running time compared
to the one using 5 m position error.

Another merit of the Gabor imaging method is shown by competitively high resolution
images. We compared the Gabor imaging result to that of a known excellent imaging tool
FOCI (Margrave et al., 2004, 2006) (see Figure 5 (d)). The images for comparison are the
best images of the two methods consuming comparable runningtime (see Figure 5 (c) and
(d)). The close-ups from both images in the upper middle partare shown to tell the dif-
ference between them; these zoomed-in parts are fault zonesin the upper-middle portions
of the Marmousi images (see Figure 6 (a) and Figure 6 (b)). From visual observation, we
conclude that the Gabor imaging method gives a better resolution than FOCI.

FOCI Imaging of Marmousi Velocity Model (Zoomed In)
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FIG. 6. A detailed comparison between the Marmousi imaging using the FOCI and Gabor methods.
(a) FOCI imaging enlargement. (b) Gabor imaging enlargement.

CONCLUSIONS AND DISCUSSIONS

The approximation of GPSPI using the adaptive Gabor wavefield extrapolation algo-
rithm has shown itself to be a very good and promising depth imaging method. The adaptive
partitioning algorithm helps to achieve efficient depth imaging and the imaging accuracy
and speed can be controlled using the adaptive partitioningscheme.

There are still many aspects in the Gabor imaging theory untouched in this paper. One
of those immediate research efforts will be the 3D wavefield extrapolation using the Gabor
imaging theory, which is under research, and some in-progress research research results,
such as impulse response tests, have been shown in another paper in this volume.
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