Gabor Depth Imaging

Gabor depth imaging using a new adaptive partitioning
algorithm

Yongwang Ma and Gary F. Margrave
ABSTRACT

Wavefield extrapolation by spatially variable phase shift is currently a very competi-
tive depth migration technique. In this paper, we present prestack migration results of the
Marmousi synthetic dataset using a new adaptive Gabor wavefield extrapolation.

Gabor depth imaging algorithm can be used to approximate the generalized phase-shift-
plus-interpolation or the non-stationary phase shift, which are two extreme cases in Gabor
imaging schemes. Therefore, there are many ways to explore wavefield extrapolations with
Gabor imaging method. The key to an efficient Gabor imaging algorithm is to develop
an adaptive partitioning scheme that only localizes the wavefield as required by the lateral
velocity variation. We have tested three methods of adaptive partitioning, however, those
two presented previously have their limits and they are relatively more difficult to imple-
ment in 2D (for 3D imaging) than the one we will describe. We present the details of the
new adaptive partitioning method in 1D (for 2D imaging). The extension of the partition-
ing method to 2D will be described in another paper in this volume. This method creates
adaptive partitions using a controlled lateral position error. Software has been developed
using the new adaptive partitioning algorithm, reducing substantially computation burden
in depth imaging when compared to the full generalized phase-shift-plus-interpolation in-
tegral. The performance of Gabor depth imaging using this adaptive partitioning algorithm
is illustrated with images from prestack depth migration of the Marmousi dataset.

INTRODUCTION

Migration with phase shift (Gazdag, 1978) (also referred to as wavefield extrapola-
tion with phase shift) was proposed for accurate and efficient depth imaging over other
wave-equation migration methods such as those using the finite difference algorithm (e.g.
Claerbout and Doherty, 1972; Loewenthal et al., 1976). An important property of phase-
shift wavefield extrapolation is its unconditional stability, and it is easy to extend to higher
dimensions (e.g., 3D) (Gazdag and Sguazzero, 1984). However, this is not always the case
for other wave-equation migration methods. Phase-shift wavefield extrapolation shows its
promising features in migrating seismic data, especially in 3D due to its accuracy, speed
and relative simplicity. One drawback for the Gazdag (1978) phase-shift method is its as-
sumption of uniform lateral velocity structures, which is not desirable in many practical
cases. In the real world, velocity structures are mostly heterogeneous with strong velocity
fluctuations in the lateral dimensions, making it undesirable to use the phase-shift method.
To address the problem, phase shift plus interpolation (PSPI) was invented (Gazdag and
Sguazzero, 1984). PSPI method is implemented by use of a set of reference (laterally
homogeneous) velocities to compute extrapolated wavefields; the final wavefield extrapo-
lation is obtained by interpolating with velocities corresponding to certain lateral positions.
Kosloff and Kessler (1987) came up with a generalized phase-shift (GPS) to extend the
phase-shift method to arbitrary velocity structures using an eigenvalue decomposition tech-
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nique. Stoffa et al. (1990) used an alternative wavefielthpaiation algorithm, split-step
Fourier migration, dealing with lateral velocity variatievhile keeping the advantages of
the phase-shift method, i.e., accuracy and efficiency. IQthase-shift wavefield extrap-
olation methods such as ‘phase-screen propagator’ (Wu arahdd 1992; Roberts et al.,
1997; Rousseau and de Hoop, 2001; Jin et al., 2002) are aisaed for accurate imag-
ing of abrupt velocity variations in such geological segsras salt-dome environments.
The generalized phase-shift (GPS) method and the spfitFstarier method compute thin-
lens phase delay (related to velocity variations) in theesgeequency domain and calcu-
late phase-shift due to velocity perturbations in the fesgry-wavenumber domain. Jin
and Wu (1998) tested windowed phase-screen propagatorsheneed improved results
of depth imaging compared to those from old phase-screehadst Margrave and Fer-
guson (1999); Ferguson and Margrave (2002) used a nosaayi phase shift (NSPS)
method and a generalized phase shift plus interpolatiors@Pto improve migration re-
sults, where wavefield extrapolations were done totallyhanFEourier domain using exact
velocity variations.

Gabor imaging method is related to the method of Jin and WAgLand it approx-
imates GPSPI with a Gabor extrapolator. To reduce the reghoydof computation, we
applied adaptive partitioning methods using lateral viiyogradients (Grossman et al.,
2002a,b; Ma and Margrave, 2005b, 2006c¢) and the phase émbrseen the GPSPI and
the Gabor extrapolators (Ma and Margrave, 2006b). How@véiis paper we introduce a
new adaptive partitioning algorithm depending on the Htposition error criterion. The
new adaptive partitioning method is less difficult to extdram 1D partitioning to 2D
partitioning.

In the following sections, details of the adaptive Gabor efeeld extrapolation algo-
rithms will be shown.

GABOR WAVEFIELD EXTRAPOLATION THEORY
Wavefield extrapolation using GPSPI

Gabor wavefield extrapolation theory was previously désctiby Grossman et al. (e.qg.
2002a,b) and Ma and Margrave (e.g. 2005b). However, we wididdo interpret it in a
different way, trying to make it more understandable forgrahreaders.

The following convention are used in this paper for the faxvand inverse Fourier
transforms, which are

u(k,) = /Ru(a:) exp (ik,x)dz, (1)

and

u(z) = —/Rzl(k;x) exp (—ik,x)dk,, (2)
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whereu is the Fourier spectrum of, R is the real domain for integrationa, is the coordi-
nate in the Fourier domain. In the following sectioAsand /! will be used to symbolize
the forward and inverse Fourier transforms, respectively.

The generalized phase shift plus interpolation (GPSPPnwiilated as (Margrave and
Ferguson, 1999; Margrave et al., 2004, 2006)

Up (T, 2 + Az,w) /1/) ke, z,w) ( (), kyy, Az) exp (—ik,x)dk,, (3)

wherex denotes transverse coordina’réﬂfm z,w) is the Fourier spectrum (FK) af (z, z, t),
k. is called the transverse wavenumberandk. (to be defined in the following) compose
the total wavenumber vector with a magnitude:0f), Az is the step size of extrapolation
in z (vertical) directionw is temporal angular frequency andr) denotes the lateral ve-
locity at = along a slab with thicknesaz. Equation (3) extrapolates wavefields at depth
z down to depth: + Az in the frequency-wavenumber domain and transforms them int
the frequency-space domain using the inverse Fourierfoems W is called the GPSPI
wavefield extrapolator, which is a spatial phase shift temch @efined as

W (k(x), ky, Az) = exp (ik. (k(z), k) Az), (4)

k2(x) — k2, K*(z) > K2
ko (k(x), ka) = ()

iV k2 — k2 (z), K*(z) < k2

and

k(x) = . (6)
Using the convention and symbols for the Fourier transfaquation (3) is written as

Vp (1,2 + Az,w) = F? [W (k(z), ks, A2) FY (2, 2, w)] . (7)

Approximation of GPSPI

The GPSPI extrapolator is approximated using

W (k(x), ko, Az) & ) Qy W (kj, kg, Az) (8)

JEZ
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where(?; is a set of windows forming a partition of unity (POU), whicleans

> Q) =1, (9)

JEZ

whereZ denotes the integer set. The split-step Fourier operatiefined as

S:(x) = exp <iwAz (ﬁ _ %)) (10)

and W (k;, ks, Az) is a locally constant wavefield extrapolator (refer to etpret (4) and
(5)) related td:; and reference velocitiag defined as

ki = = (11)
and
~ [ Q(@)v(z)ds
K RfRQj(x)dx ' (12)

Using approximation in equation (8), GPSPI formula (3) camitten as

U2+ Azw) = 3 0(2)S;(2) / Oka, 2, )W (ks ks A2) exp (—ikor)dks (13)
R

JET

where();(z) andS;(z) arek, independent and taken out of the integrand. Using the Fourie
symbols in equation (13) gives

Up(z, 2+ Az,w) & Y Q@) S;(2) P W (ky, oy Az) Fp(z,2,w) | . (14)
JEZL
Gabor Wavefield Extrapolation
To relate equation (13) to Gabor wavefield extrapolatior, @abor transform should

be introduced. Starting with the partition of unity (see atijpn (9)), one can decompose
Q;(z) as (Grossman et al., 2002a)

gj(w) = Q?(l’), 'Yj(l') = le‘ip(x% D€ [Oa 1] (15)
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whereg;(x) andv,(x) are called analysis and synthesis windows, respectivélg.farward
Gabor transform is defined as

Vy (4, 0(ka)) = F lg(a)(a)] j € Z (16)

whereV/, <j,¢3(k;$)> is called the Gabor spectrum of(z). V (j,g@(k;ﬁ) is actually a

series of Fourier transforms of the input sign&lr) windowed byg;(x), and it can be
recovered by the inverse Gabor transform

W) =V, [V, = (@) ' F[gj(x)(x)] (17)

JEZ

whereV;1 stands for the inverse Gabor transform, the inverse Fotnamsform on the
Gabor spectrum (windowed Fourier spectra) and summatienwindowsy; (z).

Since F~'F = 1, proof of equation (17) is immediate using equations (9) @ in
equation (17).

Sincep € [0, 1], we have infinitely many ways to choose the Gabor transfofrel
choosep = 0 in equation (15), then we have

gi(x) =1, v(z) = Q(z). (18)

Using equation (18) in equation (17) gives

V(@) =V VG ()] = D Q) F7HF (). (19)

JEZ

Equation (19) does nothing but transforniz) back and forth to the Gabor domain. If

we insert a wavefield extrapolatd¥’ (k;, k., Az) and S;(x) in front of F and F~, re-
spectively, in equation (19), we have exactly equation.(I4)at is why equation (14) is
called the Gabor wavefield extrapolation; it is just one afsth casesp(values) in Gabor
extrapolation schemes, an extreme case with 0. Equation (14) is the formula used as
the Gabor wavefield extrapolation approximating GPSPI énftilowing sections.

Building Adaptive Partitions

Equation (8), i.e.

W (k(z), kay Az) =Y Qy(x W (kj, by A2), (20)

JEZ
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indicates that originally2;(z,) refers to a set of narrow windows uniformly distributed
along ther coordinate. However, to calculate efficiently, we shoulduee the number of
windows to as few as possible without sacrificing accuradys Tan be done by adaptive
partitioning algorithms, where the number of partitiongetated to lateral velocity vari-
ations. There are several methods (Grossman et al., 2Q02a,land Margrave, 2005a)
available. In this paper, a new scheme is proposed for adgpdirtitioning in Gabor wave-
field extrapolation, which uses “lateral position error’asriterion.

0 X 0 Ky

Az| © ,

FIG. 1. Geometrical relationships of a local ray path between the vertical and lateral components
in the spatial (a) and wavenumber (b) domains.

Starting from a ray path of local scattering wavefield’a{see Figure 1 (a)), we can
write
xr = Aztand, (21)

wherez is the lateral coordinate)z is the extrapolation step size, afids a scattering
angle at this point. Similarly, there is a geometry relasioip between thé,, 0 andk(z)
(see Figure 1 (b)), i.e.,

k= _

sin 6

, (22)

k. w
v

wherek, is the transverse wavenumber, dndenotes the total wavenumber.

Differentiating on both sides of equation (21) and equafit®?) and rearranging gives

dr = Azsec? 8%50 (23)
ov
and
% = @ sec . (24)
ov w
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Substituting equation (24) into equation (23) and simphidyyields

cos® «96_x
sin 6 sz'

(25)

Equation (25) shows the way of estimating the velocity tarmadv with respect to
certain velocityv given Az, 6 and lateral position erroéz. This is the key formula of
choosing reference velocities for adaptive Gabor waveégtdapolation.

To specify reference velocities; is chosen as the most frequently occurring velocity
(easily done from a histogram of the discretely sampl@d) and theryv, is obtained from
equation (25) asv; = avy, Wherea = (cos® #sin™' 65z /Az). Lettingv, denote the next
higher reference velocity and the next lower, we set the conditions

1 1 1
V1 — 5(5’01 = V3 + 5(5’03 = ’Ug(l + 5&) (26)

and

1 1 1
v + 551)1 = Uy — 5502 =wy(1 — ia). (27)

Using (26) and (27), calculation of andvs is obvious, giving

vy = 2U1 + (51]1 (28)
2—a
and
2U1 — (51]1
= —, 29
U3 2+a (29)

Proceeding in a similar way until a reference velocity exissthe range of(x), which
defines a complete set of reference velocities. The use aftequ25) in selecting distance
between reference velocities suggests that lateral pastror will be bounded byzx. This
bound may not be strictly held because equation (25) wasetewith constant velocity
theory; however, it should still be a good constraint.

Once the reference velocities are selected, they can beassegasures (see Figure 2
(b)) to build indicator functions;(x) using

1, |v(z)—wv; |= min

j(z) = (30)
0, otherwise,
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FIG. 2. Build indicator functions (a table) using the adaptive partitioning algorithm given a certain
lateral position error. In (a), we find the reference velocities according to a certain lateral position
error criterion (see equation (25)); the solid curve indicates occurrences of velocities; the dashed
lines (vertical) correspond to the reference velocity values selected by the adaptive partitioning
algorithm. In (b), we build indicator functions using exact velocity (profile) values and the reference
velocities selected in (a) (see equation (30)); the solid curve shows the velocity profile; dashed lines
(horizontal) are reference velocities created in (a).

whereuv(z) is the exact velocity at the lateral positiomndv; (j = 1,2, ..., n) are reference
velocities created by equation (25).

We convolve the indicator functiofy with a unit window (atomic window) to create
partitioning windows (forming a POU) corresponding to refece velocities used in Gabor
wavefield extrapolation. This is done by

Q(x) = (I; % ©) (z), (31)

where© is the atomic window. The atomic window can be any type of wimdsuch as
the Gaussian window, with localization propertymeans normalized convolution.

For 2D wavefield extrapolation, the partitioning schemeksan 1D; and this method
can be easily extended to 2D partitioning required for 3D @ atavefield extrapolation
(Ma and Margrave, 2006a).

To show how the adaptive partitioning method works, a fewifianing examples are
shown. In the first example, the adaptive partitioning mdtwas applied to a simple step
velocity model. Given a lateral position error criteriohgtalgorithm chooses to create
two windows corresponding to two distinct velocity segnsefsiee Figure 3 (a)), which is
expected.

The second velocity model is a bump velocity function (sepifé 3 (b)); two velocity
segments on both sides of the bump have the same velocity. vEhe adaptive partitioning
algorithm chooses two windows according to a given lateaditmon error. The green
window (dashed line) goes in from the left side, goes out amdes back again on the
right side, corresponding to one reference velocity; theebwindow (solid line) follows
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Adaptive Partitioning Using Lateral Position Error Adaptive Partitioning Using Lateral Position Error
velocity (km/s) velocity (km/s)
—window 1 —window 1
1.5 window 2 4 1.5¢ window 2

00 200 400 600 800 1000 1200 00 200 400 600 800 1000 1200

Distance (m) Distance (m)

(@) (b)

FIG. 3. Adaptive partitioning examples: In (a) a step velocity profile (shown in cyan colour) is used
to test adaptive partitioning algorithm. We see two windows (one in green-dashed line and the
other in blue-solid line) created using a certain lateral position criterion; in (b), a bump velocity
profile (shown in cyan colour) is used, since we set the velocity on both sides of the bump the same
value, two reference velocity is selected by the adaptive partitioning algorithm. As a result, we have
two windows by the algorithm given a lateral position error criterion.

the constant velocity segment in the center portion. It$® ahown that the partitioning
result of a velocity profile consisting of several kinds ofogty segments (see Figure 4).
This shows the new adaptive partitioning algorithm is ablééal with such complicated
lateral velocity variations as those in the Marmousi velpmodel.

GABOR IMAGING EXAMPLES

The Marmousi synthetic dataset has been widely used as areank for testing depth
imaging algorithms. The Marmousi velocity section used abG depth imaging in this
paper is shown in Figure 5 (a). In the Marmousi syntheticskttahere are 240 shot records
with a recording time of about 2.9 seconds. All depth mignasi using the adaptive Gabor
imaging method have been done using prestack shot recads,of which includes 241
extrapolation steps with step size&t = 12.5 meters.

Figure 5 (b) shows the Gabor imaging result of the Marmoutaskt using a position
error of 5 m as criterion in the adaptive partitioning. Takia closer look at the imaging
target (a reservoir extending from distance 6000 m to 7508 depth about 2500 m, see
also Figure 5 (a)), we know that the target reservoir has laeearately imaged (compare
this portion in the image to the corresponding part in thgioal velocity structures). Ob-
serving the rest of the areas in the Marmousi image (Figueg ar{d (b)), we see that they
are all well imaged using the Gabor migration method.

We would like to push the Gabor (approximating GPSPI) imggnethod a bit more in
the accuracy direction, i.e., a smaller position criteyid®» m, was used. Figure 5 (c) shows
the result of this application. Comparing carefully to theaging result using 5 m position
error, it can be seen that there is improvement throughauséction, especially the fault
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Adaptive Partitioning Using Lateral Position Error
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FIG. 4. Adaptive partitioning on a complex velocity model. A specific colour shows a single par-
tition created by the adaptive partitioning algorithm. It can seen that at some positions there is
overlapping of different partitions, which indicates implicit interpolations in Gabor depth imaging
when windowing the wavefield to be extrapolated with such partitions.
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Marmousi Velocity Model
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FIG. 5. Marmousi velocity structures and the imaging results using the Gabor and FOCI methods.
(&) Marmousi velocity structures used in the imaging. (b) Gabor imaging result using a lateral
position error of 5 m. (c) Gabor imaging result using a lateral position error of 2.5 m. (d) FOCI
imaging result using an operator of 51 points (Margrave et al., 2006).
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areas in the shallow middle part. However, it can also becedtthat the improvement of
the reservoir image is slight. We say that 5 m criterion magbed enough for the target
imaging if the running time is more important than the higkaiation images. Using 2.5 m
position error in the Gabor imaging consumes about anotd& funning time compared
to the one using 5 m position error.

Another merit of the Gabor imaging method is shown by conipety high resolution
images. We compared the Gabor imaging result to that of a kreowellent imaging tool
FOCI (Margrave et al., 2004, 2006) (see Figure 5 (d)). Thegesdor comparison are the
best images of the two methods consuming comparable rutiniegysee Figure 5 (c) and
(d)). The close-ups from both images in the upper middle aeatshown to tell the dif-
ference between them; these zoomed-in parts are fault zonles upper-middle portions
of the Marmousi images (see Figure 6 (a) and Figure 6 (b))mRrisual observation, we
conclude that the Gabor imaging method gives a better reésolthan FOCI.

FOCI Imaging of Marmousi Velocity Model (Zoomed In) Gabor Imaging of Marmousi Velocity Model (Zoomed In)
T

400
600
800

-
1000

Depth (m)
Depth (m)
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1400F
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d_...-‘-'""-ﬂ':_-':ﬂ-ﬂ'-"'"" - 1800F _,,.-"'"'F-F"""___,‘ e

== L I L = - ¢ L Il L L i f—
4500 5000 5500 6000 6500 7000 4000 4500 5000 5500 6000 6500 7000
Distance (m) Distance (m)

(@) (b)

4000

FIG. 6. A detailed comparison between the Marmousi imaging using the FOCI and Gabor methods.
(a) FOCI imaging enlargement. (b) Gabor imaging enlargement.

CONCLUSIONS AND DISCUSSIONS

The approximation of GPSPI using the adaptive Gabor wadeértrapolation algo-
rithm has shown itself to be a very good and promising dep#uyimg method. The adaptive
partitioning algorithm helps to achieve efficient depth gmg and the imaging accuracy
and speed can be controlled using the adaptive partiticschgme.

There are still many aspects in the Gabor imaging theoryugfted in this paper. One
of those immediate research efforts will be the 3D wavefigtdapolation using the Gabor
imaging theory, which is under research, and some in-pesgresearch research results,
such as impulse response tests, have been shown in anopleerip#his volume.
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