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ABSTRACT

Adaptive partitioning algorithms in 1D have been developed and applied to improve
the 2D Gabor imaging efficiency. These algorithms reduce the computation redundancy in
Gabor imaging without sacrificing accuracy. A new adaptive partitioning algorithm in 1D
using lateral position error as the criterion is described in another paper in this volume. In
this paper, we extend the adaptive partitioning technique to 2D as required for 3D Gabor
depth imaging. Some tests of the 2D adaptive partitioning are presented to show that the
algorithm works properly 2D horizontal slices of 3D velocity models. We also present
some results of 3D impulse response tests using the Gabor extrapolator.

INTRODUCTION

Gabor wavefield extrapolation can be used to approximate the generalized phase shift
plus interpolation (GPSPI) (Margrave and Ferguson, 1999; Margrave et al., 2004, 2006)
and the non-stationary phase shift (NSPS) methods (Ferguson and Margrave, 2002). Gabor
imaging is easily formulated using a conventional Gabor transform which employs narrow
localizing windows at all locations. This is unnecessary when the lateral velocity variation
is very small. In these cases, we may use fewer wider localizing windows (or partitions)
instead of many narrow ones, resulting in lower computational effort without sacrificing
accuracy. The challenge is to find the optimal window width as dictated by the lateral
velocity variation. With such adaptive partitioning algorithms, we are able to control the
trade-off between computation speed and imaging accuracy.

We have investigated three criteria for adaptive partitioning. The first one was described
by Grossman et al. (2002); this method used the lateral velocity gradient to control the
number of windows (partitions). The threshold was set proportional to the relative velocity
variation along the lateral coordinate. This works very well in the Gabor depth imaging on
the Marmousi dataset (e.g. Ma and Margrave, 2005b). However, some tests showed that
this method is direction-dependent; i.e., when doing adaptive partitioning in an opposite
direction, one can get a different set of partitions. Also, the threshold is somewhat arbitrary,
having no direct link with imaging accuracy, and must be set by intuition.

In the second adaptive partition algorithm, Partitions are generated according to the
phase error between the GPSPI extrapolator and the Gabor extrapolator (an approximation
to the former one) (Ma and Margrave, 2005a). The algorithm has been applied in Gabor
depth imaging, and good imaging results were also presented (Ma and Margrave, 2006b).
Also, it is not obvious how to extend either of these first two methods to the 2D partitioning
required for 3D imaging.

The third criterion is called adaptive partitioning using an estimation of lateral position
error. Lateral position error is implicitly related to the phase error; however, it is easier to
implement in 2D (or higher dimensions).
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In the following sections, we will demonstrate how to ext¢he adaptive partitioning
with lateral position error criterion from 1D to 2D.

METHOD
Approximation of GPSPI in 3D

The Gabor extrapolator has been developed as an approamttthe GPSPI extrap-
olator. GPSPI extrapolation is an “locally homogeneousveild extrapolation method;
3D extrapolation with GPSPI can be explicitly written astéafMargrave and Ferguson,
1999; Margrave et al., 2004)

1 N .
VY (z,y,Az,w) = 1 Y (kg ky, 0,w0) W (k(2,y), ks, ky, A2)
T R2
-exp (—i(kyx + kyy))dk,dk,, (1)
where
w
k(z,y) = , (2)
(#,9) v(x,y)

x andy denote the transverse coordinatesandk, are the transverse wavenumbérs,k,
andk, (to be defined in the following) compose the total wavenunvieetor whose mag-
nitude isk, Az is the extrapolation step size,is temporal angular frequency, andr, y)

is the velocity, which is allowed to vary only laterally witha single depth step. Equation
(1) extrapolates wavefields from depildown to depthAz in the frequency-wavenumber
domain and transforms them into the frequency-space dousang a generalized inverse
Fourier transform. ¢ (kz, ky, 0,w) is the Fourier spectrum af (x,y,0,t) (Seismic data
recorded on the surface) defined as

~

¥ (key iy, 0,0) = | ¥ (2,9,0,t) exp (i(kyx + kyy — wt))dzdydt. (3)

RB

Equations (1) and (3) indicate the convention for the fodhamd inverse Fourier trans-
forms in this paper.WW in (1) is called the GPSPI wavefield extrapolator, definedhas t
spatial phase shift operator

W (k(z,y), ke, ky, Az) = exp (ik, (k(z,y), kg, ky) Az) (4)
and
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\/kz2 (z,y) — (k2 + k), K(z,y) >k + k]
kz (k(x,y),kx,ky) = (5)
i (8 +02) — K(w,), W(,y) < K2+ 2.

The development of the Gabor approximation to the GPSPapatator is very similar
to the one shown in another paper in this volume (refer to MhMargrave, 2006a); i.e.,

W (k(x,), ko, ky, Az) =Y Q2 9)Si(, )W (j, ko, ky, Az) | (6)
JEZ
where w
kj=— ()
Uj

and(2; is a set of 2D windows forming a partition of unity (POU) in 2Bhich means
> Qiay) =1, (8)
JEZL

whereZ is the integer set. The split-step Fourier operator (Stefffal., 1990), dealing with
phase residual due to small velocity fluctuations, is wnits

Sj(x,y) = exp (iwAz (ﬁ — vl))’ (9)

andW (k;, k., k,, Az) is a wavefield extrapolator related to reference velocitiegefined
as

) dzd
o Ju® (2, y)dady 10)
fR2 (z,y)dzdy
Using Gabor approximation,, GPSPI formula (1) can be written as
w(ﬂfay,AZ,W) ziﬂG(%%A%w) (11)

and

wG(fLU Y, Az, w) = Z Qj(x> y)Sj(.CL“, y) , Qz(kx’ ky’ 0, w)W (kj’ Kz, ky’ Az)
JET R

-exp (—i(kyx + kyy))dk,dk,, (12)
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whereQ;(x,y) andS;(z,y) are(k,, k,) independent and taken out of the integrand.

Building Adaptive Partitions for 3D Gabor I maging

The creation of partitiong,(z, y) is the key to efficient 3D Gabor depth imaging. The
steps to build the adaptive partitions in 2D using the ldfgoaition error criterion are very
similar to the ones we described in 1D (refer to Ma and Margyr2006a).

Beginning with a local ray path at point (see Figure 1), we have the geometry rela-
tionship in the spatial domain as

p=Aztanb, (13)

wherep = /22 + y? is the lateral distance in the planeof= 0; 6 is the scattering angle
(between the vertical direction and the ray path) of the &wilarly, in the wavenumber
domain, we have

(14)

and

ky = /K2 + k2. (15)

Differentiating on both sides of equations (14) and (15kgiv

§p = Azsec? 9%(51) (16)
Ov
and
? = Ky sec 6. (a7)
v w

Equations (16) and (17) gives

_ cos395_pv
~ sinf Az

(18)

Equation (18) is the formula to calculate the velocity flattan év given a velocityw,
the lateral position erroép, extrapolation step sizAz and the scattering angte This
formula determines the reference velocities for Gabor vialceextrapolation given those
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FIG. 1. Geometrical relationships of a local ray between the vertical and lateral components in the
spatial (a) and wavenumber (b) domains.

parameters. If we fix the scattering anglesuch as the maximum scattering angle, and
Az, lateral position errofp can be used as the criterion to define the reference velscitie
Lateral position error is related to the accuracy of appr@tion, the image quality.

To specify the reference velocities, is chosen as the most frequently occurring ve-
locity (easily chosen from a histogram of the discretely gt v(z, y)) and thenjv; is
obtained from equation (18) @ = av;, Wherea = (cos® #sin™' 06p/Az). Letting vy
denote the next higher reference velocity apdhe next lower, the conditions

1 1 1
V1 — 551)1 =v3 + 551)3 = Ug(]. + 5@) (19)
and
1 1 1
v + 551}1 = Uy — 551}2 = vy(1 — ia) (20)
allow calculation ofvy, andvs as
2
Vg = U1 + 5?}1 (21)
2—a
and
2U1 — (51]1
= 22
vs 2+a (22)
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Proceeding in a similar fashion until reference velociggseeding the range ofz, y)
are found defines a complete set of reference velocities. ukeof equation (18) in se-
lecting distance between reference velocities suggestshb lateral position error will be
bounded byp. This bound may not be strictly held because equation (18) deaived
constant velocity theory; however, it should still be a usebnstraint.

Velocity

Velocity Occurrence

Velocity X(Y)
(@) (b)

FIG. 2. Determine the reference velocities and build indication functions. (a) v; is chosen as
the most frequently occurring velocity and the other reference velocities are chosen at spacings
determined by the position error criterion. (b) The j* indicator function is unity at those locations
where v, is the closest reference velocity to v(z, y) and are zeros elsewhere.

Once all the reference velocities are known, they can be aseaeasures (see Figure 2
(b)) to create the indicator functiaf(z, y),

1, Jo(z,y) - v; |= min

0, otherwise,

wherev(z, y) is the exact velocity at lateral positidn, y), v; (j = 1,2, ..., n) are reference
velocities calculated using equation (18). Each of thefereace velocities is used as a
plane of certain ‘altitude’ to calibrate velocity values@ss the layer (plane). The positions
with the closest velocity values to this reference velowiily be assigned “1’s”, otherwise,
“0's” in the corresponding indicator function.

By construction, the indicator functions form a POU howetety vary discontinuously
with position. A normalized convolution of each indicatemttion /;(z,y) with a 2D
atomic window (see Figure 3) creates smoothly continuoustioas (forming a POU).
These partitions correspond to reference velocities inGhbor wavefield extrapolation.
This is done by

Qj(x> y) = (I] * @) ('Ta y)a (24)

where© is the atomic window. The atomic window can be any type of béumgtion, such
as the Gaussian window, whose width is roughly equal to titeggracing;x is a symbol
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of the normalized convolution. The normalization is chosanh that the; also form a
POU and amounts to division by the sum of the samples of thepldunction.

1D Atomic Window (Gaussian)

2D Atomic Window (Gaussian)
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Magnitude
o
o
=
Magnitude

0 100 200 300 400 500
X

() (b)

FIG. 3. Atomic Windows. (a) 1D atomic window. (b) 2D atomic window.

In the next section, some examples of the adaptive patritigunsing the lateral position
error criterion are shown.

ADAPTIVE PARTITIONING EXAMPLES

The first partitioning example is a pseudo-2D velocity modélich means that in the
direction there are no velocity variations; in thelirection there is a velocity bump (higher
velocity) in the middle part (see Figure 4 (a) in red colouk) 2.5 meter lateral position
error is used in this and the following partitioning exangple

Similar to the bump example in 1D, we have two patrtitions g bump velocity model
in 2D. The first partition is related to the lower velocity zm(in blue) on both sides in
the bump velocity model (see Figure 4 (a) and (b)); the sepamition corresponds to the
‘bump’ (high velocity zone, in red). Figure 4 (d) shows thesunation of the two partitions
to obtain unity.

The second velocity model contains a few velocity chunkdined by polygons. The
velocity model and the resulting partitions are shown inuFgg5 (a) and (b)-(g), respec-
tively. There are two chunks (two triangles in the upper &ftl lower left corners in dark
blue) with the same velocity values and hence correspondesame window. The rest
of the chunks have different velocity values from each otldex predicted, the two trian-
gular zones will share a single partition (see Figure 5 ({g;rest of the areas have their
own partitions (see Figure 5 (c)-(g)). Comparing velocityioks in Figure 5 (a) and those
partitions generated by the 2D partitioning algorithm, vim@W that they match exactly.

Those ‘gaps’ in Figure 5 (h) are related to the boundarieb®felocity chunks (com-
pare Figure 5 (a) to (h)). It shows that we have good matchegdes the velocity chunks
and the partitions generated by the 2D adaptive partitgpalgorithm. These 2D partitions
also form a POU (see Figure 5 (i)).
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Adaptive Partitioning for Gabor Imaging
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FIG. 4. Adaptive partitioning on a bump velocity model. (a) Velocity model. (b) The first partition:
related to the low velocity zones in blue in (a). (c) The second partition: related to the high velocity
bump in the middle red part in (a). (d) POU (summation of the partitions in (b) and (c).
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Mosaic Velocity Model Adaptive Partitioning for Gabor Imaging Adaptive Partitioning for Gabor Imaging

Distance Y (m)

1000

500
0 200 400 600 800 1000 1200
Distance X (m)

1000
500

0 .
Distance Y (m) Distance X (m) Distance Y (m) 00

(a) (b) (©)

Adaptive Partitioning for Gabor Imaging

Distance X (m)

Adaptive Partitioning for Gabor Imaging

Adaptive Partitioning for Gabor Imaging

g g =
205 205 205
0 0 0
1000 1000 1000
1000 1000 1000
500 500 500 500
Distance Y (m) 0o Distance X (m) Distance Y (m) 0o Distance X (m) Distance Y (m) 0o

Distance X (m)

(d) (e

Adaptive Partitioning for Gabor Imaging

(®

Partition of Unity

Adaptive Partitioning for Gabor Imaging

Unit
Unit

Unit

o5
' gl
gl

gl
0 U \\\\wwummﬂmﬂ L

500 500

1000
500

0 N
Distance Y (m) Distance X (m) Distance Y (m) 00

(9) (h)

0 500
Distance Y (m) Distance X (m)

Distance X (m)

(i) Partition of Unity

FIG. 5. Adaptive partitioning on the mosaic velocity model. (a) Velocity model. (b) The first partition:
triangles in dark blue in (a). (c) The second partition: area in sky blue adjacent to the lower triangle
in (a). (d) The third partition: area in light blue at the bottom of (a). (e) The fourth partition: area in

light green in the upper right corner of (a). (f) The fifth partition: area in yellow in (a). (g) The sixth
partition: area in red in (a). (h) All the partitions. (i) Partition of Unity.
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Building adaptive partitions in the 2D velocity models iseoof the key steps to im-
plement adaptive Gabor imaging in 3D. Through the partitigrexamples shown above,
we conclude that the 2D adaptive partitioning algorithm kgorin the next section, some
impulse responses of the 3D wavefield extrapolator are shown

IMPULSE RESPONSE TESTSUSING 3D GABOR EXTRAPOLATOR

The impulse response results in a homogeneous medium shewsprogress research
on the 3D Gabor extrapolation. The 3D data volume is set asn64y 640 m by 256
ms (x X y x t). The point source is located in the the center of the volu@ee wave
propagation is modelled. Numerical modeling of a 3D impuésponse in a data volume
(r x y x t) is done in this way: a point source (impulse) is convolvethwicertain wavelet
(Ormsby in this application) to create a seismic trace; theet is then inserted into the
3D data volume (vertical coordinate in time) at the cent@difon (o = /2,40 = y/2)
(see Figure 6 (a)). The Gabor extrapolator is used to drieeirtipulse, resulting in a
hyperboloidal-shape arrival in the data volume with apgktibelow the source point. A
vertical section is plotted in the direction through the source plane (Figure 6 (b)). A
hyperbola shows arrival times in this vertical plane as éween in a usual 2D shot record.
If the vertical section moves away from the source planeehyplic arrival times still show
up; however, the arrivals are later than those in the souareegcompare Figure 6 (b) and
(c)). Created are also time slices to show the patterns impldr@es perpendicular to the
vertical sections. As time moves away from the apex to labee tcircular rings are seen
corresponding to arrival times in horizontal planes. Theradhe time is, the larger the
circles are (compare Figure 6 (d) to (e)).

A 3D view of the impulse response is shown in Figure 6 (f) asreeeshaped surface of
arrivals.

CONCLUSION

The adaptive partitioning with lateral position error exdis easily from 1D to 2D as
required for 3D Gabor imaging. The 2D adaptive partitionaigorithm has been coded
into Matlab programs. The partitioning software can geteepartitions on the velocity
structure whose complexity compares to that, which may led us Gabor depth imaging.
The impulse response test shows initial functionality in 3D Gabor imaging test will be
conducted in the near future.
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Input Point Source for Extrapolation 3D Impulse Response at Y=320 m
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FIG. 6. 3D impulse response test for the Gabor imaging. (a) Before extrapolation. (b) After extrap-
olation (in the center). (c) After extrapolation(away from the center). (d) Time slice at 160 ms. (e)
Time slice at 192 ms. (f) 3D view of the impulse response.
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