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ABSTRACT

Adaptive partitioning algorithms in 1D have been developed and applied to improve
the 2D Gabor imaging efficiency. These algorithms reduce the computation redundancy in
Gabor imaging without sacrificing accuracy. A new adaptive partitioning algorithm in 1D
using lateral position error as the criterion is described in another paper in this volume. In
this paper, we extend the adaptive partitioning technique to 2D as required for 3D Gabor
depth imaging. Some tests of the 2D adaptive partitioning are presented to show that the
algorithm works properly 2D horizontal slices of 3D velocity models. We also present
some results of 3D impulse response tests using the Gabor extrapolator.

INTRODUCTION

Gabor wavefield extrapolation can be used to approximate the generalized phase shift
plus interpolation (GPSPI) (Margrave and Ferguson, 1999; Margrave et al., 2004, 2006)
and the non-stationary phase shift (NSPS) methods (Ferguson and Margrave, 2002). Gabor
imaging is easily formulated using a conventional Gabor transform which employs narrow
localizing windows at all locations. This is unnecessary when the lateral velocity variation
is very small. In these cases, we may use fewer wider localizing windows (or partitions)
instead of many narrow ones, resulting in lower computational effort without sacrificing
accuracy. The challenge is to find the optimal window width as dictated by the lateral
velocity variation. With such adaptive partitioning algorithms, we are able to control the
trade-off between computation speed and imaging accuracy.

We have investigated three criteria for adaptive partitioning. The first one was described
by Grossman et al. (2002); this method used the lateral velocity gradient to control the
number of windows (partitions). The threshold was set proportional to the relative velocity
variation along the lateral coordinate. This works very well in the Gabor depth imaging on
the Marmousi dataset (e.g. Ma and Margrave, 2005b). However, some tests showed that
this method is direction-dependent; i.e., when doing adaptive partitioning in an opposite
direction, one can get a different set of partitions. Also, the threshold is somewhat arbitrary,
having no direct link with imaging accuracy, and must be set by intuition.

In the second adaptive partition algorithm, Partitions are generated according to the
phase error between the GPSPI extrapolator and the Gabor extrapolator (an approximation
to the former one) (Ma and Margrave, 2005a). The algorithm has been applied in Gabor
depth imaging, and good imaging results were also presented (Ma and Margrave, 2006b).
Also, it is not obvious how to extend either of these first two methods to the 2D partitioning
required for 3D imaging.

The third criterion is called adaptive partitioning using an estimation of lateral position
error. Lateral position error is implicitly related to the phase error; however, it is easier to
implement in 2D (or higher dimensions).

CREWES Research Report — Volume 18 (2006) 1



Ma and Margrave

In the following sections, we will demonstrate how to extendthe adaptive partitioning
with lateral position error criterion from 1D to 2D.

METHOD

Approximation of GPSPI in 3D

The Gabor extrapolator has been developed as an approximation of the GPSPI extrap-
olator. GPSPI extrapolation is an “locally homogeneous” wavefield extrapolation method;
3D extrapolation with GPSPI can be explicitly written as (after Margrave and Ferguson,
1999; Margrave et al., 2004)

ψ (x, y,∆z, ω) =
1

4π2

∫

R2

ψ̂ (kx, ky, 0, ω) Ŵ (k(x, y), kx, ky,∆z)

· exp (−i(kxx+ kyy))dkxdky, (1)

where

k(x, y) =
ω

v(x, y)
, (2)

x andy denote the transverse coordinates,kx andky are the transverse wavenumbers,kx, ky

andkz (to be defined in the following) compose the total wavenumbervector whose mag-
nitude isk, ∆z is the extrapolation step size,ω is temporal angular frequency, andv(x, y)
is the velocity, which is allowed to vary only laterally within a single depth step. Equation
(1) extrapolates wavefields from depth0 down to depth∆z in the frequency-wavenumber
domain and transforms them into the frequency-space domainusing a generalized inverse
Fourier transform. ψ̂ (kx, ky, 0, ω) is the Fourier spectrum ofψ (x, y, 0, t) (seismic data
recorded on the surface) defined as

ψ̂ (kx, ky, 0, ω) =

∫

R3

ψ (x, y, 0, t) exp (i(kxx+ kyy − ωt))dxdydt. (3)

Equations (1) and (3) indicate the convention for the forward and inverse Fourier trans-
forms in this paper.Ŵ in (1) is called the GPSPI wavefield extrapolator, defined as the
spatial phase shift operator

Ŵ (k(x, y), kx, ky,∆z) = exp (ikz (k(x, y), kx, ky) ∆z) (4)

and
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kz (k(x, y), kx, ky) =


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√

k2(x, y) − (k2

x + k2

y), k2(x, y) > k2

x + k2

y

i
√

(k2
x + k2

y) − k2(x, y), k2(x, y) < k2

x + k2

y.

(5)

The development of the Gabor approximation to the GPSPI extrapolator is very similar
to the one shown in another paper in this volume (refer to Ma and Margrave, 2006a); i.e.,

Ŵ (k(x, y), kx, ky,∆z) ≈
∑

j∈Z

Ωj(x, y)Sj(x, y)Ŵ (kj, kx, ky,∆z) , (6)

where
kj =

ω

vj

(7)

andΩj is a set of 2D windows forming a partition of unity (POU) in 2D,which means

∑

j∈Z

Ωj(x, y) = 1, (8)

whereZ is the integer set. The split-step Fourier operator (Stoffaet al., 1990), dealing with
phase residual due to small velocity fluctuations, is written as

Sj(x, y) = exp

(

iω∆z

(

1

v(x, y)
−

1

vj

))

, (9)

andŴ (kj, kx, ky,∆z) is a wavefield extrapolator related to reference velocitiesvj defined
as

vj =

∫

R2 Ωj(x, y)v(x, y)dxdy
∫

R2 Ωj(x, y)dxdy
. (10)

Using Gabor approximationψG, GPSPI formula (1) can be written as

ψ(x, y,∆z, ω) ≈ ψG(x, y,∆z, ω) (11)

and

ψG(x, y,∆z, ω) =
∑

j∈Z

Ωj(x, y)Sj(x, y)

∫

R2

ψ̂(kx, ky, 0, ω)Ŵ (kj, kx, ky,∆z)

· exp (−i(kxx+ kyy))dkxdky, (12)
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whereΩj(x, y) andSj(x, y) are(kx, ky) independent and taken out of the integrand.

Building Adaptive Partitions for 3D Gabor Imaging

The creation of partitionsΩj(x, y) is the key to efficient 3D Gabor depth imaging. The
steps to build the adaptive partitions in 2D using the lateral position error criterion are very
similar to the ones we described in 1D (refer to Ma and Margrave, 2006a).

Beginning with a local ray path at pointO (see Figure 1), we have the geometry rela-
tionship in the spatial domain as

ρ = ∆z tan θ, (13)

whereρ =
√

x2 + y2 is the lateral distance in the plane ofz = 0; θ is the scattering angle
(between the vertical direction and the ray path) of the ray.Similarly, in the wavenumber
domain, we have

k =
kρ

sin θ
=

ω

v(x, y)
(14)

and

kρ =
√

k2
x + k2

y . (15)

Differentiating on both sides of equations (14) and (15) gives

δρ = ∆z sec2 θ
∂θ

∂v
δv (16)

and

∂θ

∂v
=
kρ

ω
sec θ. (17)

Equations (16) and (17) gives

δv =
cos3 θ

sin θ

δρ

∆z
v. (18)

Equation (18) is the formula to calculate the velocity fluctuationδv given a velocityv,
the lateral position errorδρ, extrapolation step size∆z and the scattering angleθ. This
formula determines the reference velocities for Gabor wavefield extrapolation given those
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FIG. 1. Geometrical relationships of a local ray between the vertical and lateral components in the
spatial (a) and wavenumber (b) domains.

parameters. If we fix the scattering angleθ, such as the maximum scattering angle, and
∆z, lateral position errorδρ can be used as the criterion to define the reference velocities.
Lateral position error is related to the accuracy of approximation, the image quality.

To specify the reference velocities,v1 is chosen as the most frequently occurring ve-
locity (easily chosen from a histogram of the discretely sampled v(x, y)) and thenδv1 is
obtained from equation (18) asδv1 = av1, wherea =

(

cos3 θ sin−1 θδρ/∆z
)

. Letting v2

denote the next higher reference velocity andv3 the next lower, the conditions

v1 −
1

2
δv1 = v3 +

1

2
δv3 = v3(1 +

1

2
a) (19)

and

v1 +
1

2
δv1 = v2 −

1

2
δv2 = v2(1 −

1

2
a) (20)

allow calculation ofv2 andv3 as

v2 =
2v1 + δv1

2 − a
(21)

and

v3 =
2v1 − δv1

2 + a
. (22)
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Proceeding in a similar fashion until reference velocitiesexceeding the range ofv(x, y)
are found defines a complete set of reference velocities. Theuse of equation (18) in se-
lecting distance between reference velocities suggests that the lateral position error will be
bounded byδρ. This bound may not be strictly held because equation (18) was derived
constant velocity theory; however, it should still be a useful constraint.
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FIG. 2. Determine the reference velocities and build indication functions. (a) v1 is chosen as
the most frequently occurring velocity and the other reference velocities are chosen at spacings
determined by the position error criterion. (b) The jth indicator function is unity at those locations
where vj is the closest reference velocity to v(x, y) and are zeros elsewhere.

Once all the reference velocities are known, they can be usedas measures (see Figure 2
(b)) to create the indicator functionIj(x, y),

Ij (x, y) =







1, |v(x, y) − vj |= min

0, otherwise,
(23)

wherev(x, y) is the exact velocity at lateral position(x, y), vj (j = 1, 2, ..., n) are reference
velocities calculated using equation (18). Each of these reference velocities is used as a
plane of certain ‘altitude’ to calibrate velocity values across the layer (plane). The positions
with the closest velocity values to this reference velocitywill be assigned “1’s”, otherwise,
“0’s” in the corresponding indicator function.

By construction, the indicator functions form a POU howeverthey vary discontinuously
with position. A normalized convolution of each indicator function Ij(x, y) with a 2D
atomic window (see Figure 3) creates smoothly continuous partitions (forming a POU).
These partitions correspond to reference velocities in theGabor wavefield extrapolation.
This is done by

Ωj(x, y) = (Ij ∗ Θ) (x, y), (24)

whereΘ is the atomic window. The atomic window can be any type of bumpfunction, such
as the Gaussian window, whose width is roughly equal to the grid spacing;∗ is a symbol
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of the normalized convolution. The normalization is chosensuch that theΩj also form a
POU and amounts to division by the sum of the samples of the bump function.
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FIG. 3. Atomic Windows. (a) 1D atomic window. (b) 2D atomic window.

In the next section, some examples of the adaptive partitioning using the lateral position
error criterion are shown.

ADAPTIVE PARTITIONING EXAMPLES

The first partitioning example is a pseudo-2D velocity model, which means that in they
direction there are no velocity variations; in thex direction there is a velocity bump (higher
velocity) in the middle part (see Figure 4 (a) in red colour).A 2.5 meter lateral position
error is used in this and the following partitioning examples.

Similar to the bump example in 1D, we have two partitions for the bump velocity model
in 2D. The first partition is related to the lower velocity zones (in blue) on both sides in
the bump velocity model (see Figure 4 (a) and (b)); the secondpartition corresponds to the
‘bump’ (high velocity zone, in red). Figure 4 (d) shows the summation of the two partitions
to obtain unity.

The second velocity model contains a few velocity chunks confined by polygons. The
velocity model and the resulting partitions are shown in Figure 5 (a) and (b)-(g), respec-
tively. There are two chunks (two triangles in the upper leftand lower left corners in dark
blue) with the same velocity values and hence correspond to the same window. The rest
of the chunks have different velocity values from each other. As predicted, the two trian-
gular zones will share a single partition (see Figure 5 (b));the rest of the areas have their
own partitions (see Figure 5 (c)-(g)). Comparing velocity chunks in Figure 5 (a) and those
partitions generated by the 2D partitioning algorithm, we know that they match exactly.

Those ‘gaps’ in Figure 5 (h) are related to the boundaries of the velocity chunks (com-
pare Figure 5 (a) to (h)). It shows that we have good matches between the velocity chunks
and the partitions generated by the 2D adaptive partitioning algorithm. These 2D partitions
also form a POU (see Figure 5 (i)).
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FIG. 4. Adaptive partitioning on a bump velocity model. (a) Velocity model. (b) The first partition:
related to the low velocity zones in blue in (a). (c) The second partition: related to the high velocity
bump in the middle red part in (a). (d) POU (summation of the partitions in (b) and (c).
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FIG. 5. Adaptive partitioning on the mosaic velocity model. (a) Velocity model. (b) The first partition:
triangles in dark blue in (a). (c) The second partition: area in sky blue adjacent to the lower triangle
in (a). (d) The third partition: area in light blue at the bottom of (a). (e) The fourth partition: area in
light green in the upper right corner of (a). (f) The fifth partition: area in yellow in (a). (g) The sixth
partition: area in red in (a). (h) All the partitions. (i) Partition of Unity.
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Building adaptive partitions in the 2D velocity models is one of the key steps to im-
plement adaptive Gabor imaging in 3D. Through the partitioning examples shown above,
we conclude that the 2D adaptive partitioning algorithm works. In the next section, some
impulse responses of the 3D wavefield extrapolator are shown.

IMPULSE RESPONSE TESTS USING 3D GABOR EXTRAPOLATOR

The impulse response results in a homogeneous medium shows the in-progress research
on the 3D Gabor extrapolation. The 3D data volume is set as 640m by 640 m by 256
ms (x × y × t). The point source is located in the the center of the volume.One wave
propagation is modelled. Numerical modeling of a 3D impulseresponse in a data volume
(x×y× t) is done in this way: a point source (impulse) is convolved with a certain wavelet
(Ormsby in this application) to create a seismic trace; the trace is then inserted into the
3D data volume (vertical coordinate in time) at the central position (x0 = x/2, y0 = y/2)
(see Figure 6 (a)). The Gabor extrapolator is used to drive the impulse, resulting in a
hyperboloidal-shape arrival in the data volume with apex right below the source point. A
vertical section is plotted in thex direction through the source plane (Figure 6 (b)). A
hyperbola shows arrival times in this vertical plane as those seen in a usual 2D shot record.
If the vertical section moves away from the source plane, hyperbolic arrival times still show
up; however, the arrivals are later than those in the source plane (compare Figure 6 (b) and
(c)). Created are also time slices to show the patterns in theplanes perpendicular to the
vertical sections. As time moves away from the apex to later time, circular rings are seen
corresponding to arrival times in horizontal planes. The later the time is, the larger the
circles are (compare Figure 6 (d) to (e)).

A 3D view of the impulse response is shown in Figure 6 (f) as a cone-shaped surface of
arrivals.

CONCLUSION

The adaptive partitioning with lateral position error extends easily from 1D to 2D as
required for 3D Gabor imaging. The 2D adaptive partitioningalgorithm has been coded
into Matlab programs. The partitioning software can generate partitions on the velocity
structure whose complexity compares to that, which may be used in Gabor depth imaging.
The impulse response test shows initial functionality in 3D. 3D Gabor imaging test will be
conducted in the near future.
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FIG. 6. 3D impulse response test for the Gabor imaging. (a) Before extrapolation. (b) After extrap-
olation (in the center). (c) After extrapolation(away from the center). (d) Time slice at 160 ms. (e)
Time slice at 192 ms. (f) 3D view of the impulse response.
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