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ABSTRACT 
A new theory of efficient 3D wavefield extrapolation, patterned after the established 

Hale-McClellan theory, is presented.  The new method uses annular-sum filters, operators 
that compute the sum over a specific annulus of all wavefield samples at each point, 
weighted by the radial samples of the 3D wavefield extrapolation operator.  In contrast, 
the Hale-McClellan algorithm uses samples of the 2D wavefield extrapolation operator to 
weight the wavefield as filtered by McClellan filters.  The latter are shown to be a type of 
annular-sum filter that incorporates an additional approximate 45 degree phase rotation 
and an amplitude decay.  The annular-sum filters can be computed exactly in the 2D 
Fourier domain by multiplication by a Bessel function.  They can also be computed 
approximately, but accurately, by spatial convolution with a small spatial operator.  The 
annular-sum filters are used to formulate the Wiener least-squares design problem for 2D 
circularly symmetric filters as a standard matrix-vector problem that can be solved by 
standard solvers.  The elements of the radial convolution matrix are shown to be the 
result of annular-sum filters applied to the 2D impulse response of one of the circularly 
symmetric filters. 

INTRODUCTION 
In the space-frequency domain, wavefield extrapolation in the z direction formulates 

as a spatial convolution, at constant frequency, over the spatial coordinates transverse to 
z.  In a 2D theory, this is a 1D spatial convolution of the wavefield extrapolation operator, 
w , with a monochromatic wavefield.  In a 3D theory, a 2D convolution with a different 
operator, W , must be performed.  The 2D and 3D extrapolation operators are known 
exactly for a homogeneous medium and, for the variable velocity setting, it is common to 
assume that these operators can be applied at any spatial location with the local 
wavespeed, a method called hereafter the locally homogeneous assumption.  The 2D and 
3D extrapolation operators are most easily expressed in the transverse-wavenumber and 
temporal frequency domain as 

 ( ) ( )2 2ˆ , , expW k z i z k ξΔ = Δ −ξ  (1) 

where for 2D 2 2
1ξ ξ=  and for 3D 2 2 2

1 2ξ ξ ξ= +  in which 1ξ  and 2ξ  are the wavenumbers 
associated with the transverse spatial coordinates.  Also in equation (1), /k vω=  where 
ω  is temporal frequency and v  is velocity or wavespeed.  (More careful theory requires 
that equation (1) be specified for the possible square-root branches but for now this 
simple expression suffices.)  Thus w  is the 1D inverse Fourier transform of equation (1) 
over 1ξ ξ= , and W  is the 2D inverse Fourier transform of equation (1) over 

( )1 2,ξ ξ=ξ . The realization that the 2D and 3D operators are related by the assignment 
2 2 2

1 1 2ξ ξ ξ→ +  is at the heart of the popular Hale-McClellan algorithm for 3D wavefield 
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extrapolation (Hale, 1991b).  This, together with the observation that the filter depends 
only on the square of the wavenumber, led Hale to deduce the 3D wavefield extrapolation 
formula 

 ( ) ( ) ( )( ) ( )( )0 1 1, , , , , , , ,N Nz z w z w m z w m zψ ω ψ ω ψ ω ψ ω+Δ ≈ + • + + •x x x x"  (2) 

where ( ), ,zψ ωx  is the 3D seismic wavefield, ( )1 2,x x=x  denotes the transverse spatial 

coordinates, [ ], 0,jw j N∈  are the coefficients of the 2D wavefield extrapolator, and the 
subscript j indicates the lag of the coefficient from the center of the operator.  Also, the 

jm  are coefficients of filters called McClellan filters, and •  denotes 2D spatial 

convolution over ( )1 2,x x=x .  At first glance, the advantage of equation (2) might not be 
apparent since the entire extrapolation operation must be a single 2D spatial convolution 
of the 3D wavefield extrapolator, W , with the wavefield, and equation (2) has N 2D 
convolutions.  However, the velocity dependence of the operator means that in general 
the wavefield extrapolation convolution is nonstationary while the convolutions in 
equation (2) are explicitly stationary.  This is a big advantage.  A second point is that 
equation (2) requires only the spatial samples of a 2D operator, not a 3D operator, and 
these are more easily found.  As Hale (1991a) showed, the design of stable wavefield 
extrapolators in the space-frequency domain is a challenging task and it is an advantage 
to not have to repeat this process in 3D when it has already been done in 2D. 

While equation (2) was not given explicitly in Hale’s paper, it is clearly implied by the 
text, and its validity is not in doubt.  The purpose of this paper is to shed light on the 
physical meaning of Hale’s formula, and to present an alternative, although similar, 
formula which has a clear, direct, physical interpretation.  Through this understanding it 
is possible that new insights and algorithms might emerge.  In the next section our 
alternative formula is derived by exploiting the circular symmetry of the 3D extrapolation 
operator.  Our formula uses the radial samples of the 3D wavefield extrapolator as 
weighting terms for a series of stationary filters.  However, these filters are not the 
McClellan filters but are a related operator which we call an annular-sum filter.  Then the 
design of a stable 3D wavefield extrapolator is formulated as a simple least-squares 
problem using annular-sum filters.  In this approach a radial convolution matrix, 
analogous to but different from the familiar Toeplitz matrix, is developed.  In the 
subsequent section, a series of numerical examples are presented, and the annular-sum 
filters are contrasted with the McClellan filters.  The implementation of approximate 
annular-sum filters by spatial convolution is examined.  Finally the utility of the radial 
convolution matrix is demonstrated with an example from wavefield extrapolator theory. 

 

THEORY 

Wavefield extrapolation using the locally homogeneous model is most easily expressed 
using the GPSPI (generalized phase-shift plus interpolation) formula in the space-
frequency domain (e.g. Margrave et al. 2006).  In 3D the formula is 
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 ( ) ( ) ( )( )
2

, , , , , ,z z z W k z dψ ω ψ ω+Δ = − Δ∫x u x u x u
\

, (3) 

where ( ), ,zψ ωx  is the space-frequency domain wavefield, ω  is the temporal frequency, 

( )1 2,x x=x  denotes the transverse spatial direction, ( )1 2,u u=u  are the transverse spatial 
directions of integration, 1 2d du du=u , zΔ  is the depth step, and the wavefield 
extrapolation operator is 

 ( )( ) ( )( )
2

,
2

1 ˆ, , , ,
4

iW k z W k z e dξ
π

−− Δ = Δ∫ ξ x-ux u x ξ x
\

, (4) 

where ( )1 2,ξ ξ=ξ  is the wavenumber vector dual to x , and 

 ( )( ) ( )( ),ˆ , , zik k zW k z e ΔΔ = x ξξ x , (5) 

 ( )( )
( ) ( )

( ) ( )

2 22 2

2 22 2

,
,

,
z

k k
k k

i k k

ξ ξ

ξ ξ

⎧⎪ − >⎪⎪⎪=⎨⎪⎪ − ≥⎪⎪⎩

x x
x ξ

x x , (6) 

 ( )
( )

k
v
ω

=x
x

. (7) 

The wavefield extrapolator of equation (4) is known exactly and is given by 

 ( )
( )

2 2

2 2 2 2
, , 1

2
ik zik z iW k z e

z k z
ρρ

π ρ ρ
+Δ

⎛ ⎞⎟Δ ⎜ ⎟⎜Δ =− + ⎟⎜ ⎟⎜ ⎟+Δ ⎟⎜ +Δ⎝ ⎠
, (8) 

where ( ) ( )( ), , , ,W k z W k zρ Δ = − Δx u x , and 

 ( ) ( )2 2
1 1 2 2x u x uρ= − = − + −x u  is the radial coordinate at constant z. 

In two spatial dimensions, the corresponding formula to equation (8) is 

 ( ) ( ) ( )1 2 2
1 112 2

1

, , zw k z ik H k z
z

Δρ Δ ρ Δ
ρ Δ

= − +
+

, (9) 

where ( ) ( )1
1H u  is the first-order Hankel function of the first kind and 

( )2
1 1 1 1 1x u x uρ = − = − .  For large values of its argument, the Hankel function admits 

a simple approximation (e.g. Gradshteyn and Ryzhik, 1980) which gives the far-field 
approximation 
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 ( )
( )

2 2
1 / 4

1 3/ 4 2 22 2
11

3, , 1
2 8

i k zk z iw k z e
k zz

ρ Δ πΔρ Δ
π ρ Δρ Δ

⎡ ⎤+ −⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥≈ +
⎢ ⎥++ ⎣ ⎦

. (10) 

Comparing equations (8) and (10) shows that the essential difference between the 2D and 
3D extrapolators is a / 4π  phase shift and a different dependence on inverse distance.  
The 3D operator decays as inverse distance squared while in 2D the decay is less strong, 
being inverse distance to the 3/2 power.  (More detail on these operators can be found in 
many places, e.g. Margrave and Daley (2001).) 

Next, Theorem 1 is presented, demonstrating a formula with resemblance to equation 
(2) but different in detail and, in principle, exact. 

Theorem 1: Let the radial coordinate be broken into a countable infinity of finite 
intervals, 0 1 2 1: 0, , , , ,n nρ ρ ρ ρ ρ ρ +

⎡ ⎤= ∞⎣ ⎦" " .  Then the 3D wavefield extrapolator of 
equation (3) can be re-expressed as 

 ( ) ( )( ) ( )
0

, , , , , ,n n
n

z z W k z zψ ω ρ ψ ω
∞

=

′+Δ = Δ∑x x x  (11) 

where 1,n n nρ ρ ρ +
⎡ ⎤′ ∈ ⎣ ⎦ ,  

 ( ) ( ) ( )
1

, , , ,
n nn z I I zρ ρψ ω ψ ω
+

= − •x x , (12) 

•  denotes 2D convolution over the transverse coordinates and  

 ( )
0

1,
, 0; 0

0, otherwisen

nI n Iρ ρ

ρ⎧⎪ ≤⎪= > =⎨⎪⎪⎩

x
x  (13) 

is the indicator function of the disk of radius ρ .  The quantities ( ), ,n zψ ωx  are called 

annular sums and give the sum (integral) of ( ), ,zψ ωx  over the annular region 

1,n nρ ρ ρ +
⎡ ⎤∈ ⎣ ⎦  for each point x . 

Proof: 

Consider the computation of equation (3) at a single output point which can be taken to 
be the origin ( )0,0=x .  For this single point, ( )1 0,0k vω −=  is a constant and then, by 
equation (4), the wavefield extrapolation operator depends only upon the radial distance 
ρ . Expressing the integration in polar coordinates gives 

 ( )( ) ( )( ) ( )
2

0,0 , , , , , , ,z z z W k z d dψ ω ψ ρ θ ω ρ ρ ρ θ+Δ = Δ∫\  (14) 

which becomes 
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 ( )( ) ( ) ( )( )
2

0 0
0,0 , , , , , , ,z z W k z z d d

π
ψ ω ρ ψ ρ θ ω θ ρ ρ

∞ ⎡ ⎤
+Δ = Δ ⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫  (15) 

or 

 ( )( ) ( ) ( )
0

0,0 , , , , , ,z z W k z z dψ ω ρ ψ ρ ω ρ ρ
∞

+Δ = Δ∫  (16) 

where 

 ( ) ( )( )
2

0
, , , , ,z z d

π
ψ ρ ω ψ ρ θ ω θ= ∫ . (17) 

Equation (16) is a simple 1-D integration which admits a numerical evaluation by a 
straight-forward Riemann sum, provided that ( ), ,zψ ρ ω  can be easily obtained. 

Let the range of integration in (16) be broken into the intervals, 
[ ]0 1 2: 0, , , ,nρ ρ ρ ρ ρ= ∞" "  so that 

 ( )( ) ( ) ( )
1

0

0,0 , , , , , ,
n

nn

z z W k z z d
ρ

ρ
ψ ω ρ ψ ρ ω ρ ρ

+
∞

=

+Δ = Δ∑∫ . (18) 

By the mean-value theorem, there exists some 1,n n nρ ρ ρ +
⎡ ⎤′ ∈ ⎣ ⎦  in each interval such that  

 ( ) ( ) ( ) ( )
1 1

, , , , , , , ,
n n

n n
nW k z z d W k z z d

ρ ρ

ρ ρ
ρ ψ ρ ω ρ ρ ρ ψ ρ ω ρ ρ

+ +′Δ = Δ∫ ∫  (19) 

so that 

 ( )( ) ( ) ( )
1

0

0,0 , , , , , ,
n

n
n

n

z z W k z z d
ρ

ρ
ψ ω ρ ψ ρ ω ρ ρ

+
∞

=

′+Δ = Δ∑ ∫ . (20) 

The data integral in equation (20), which is called ( ),n zψ ω , is 

 ( ) ( ) ( )( )1 1 2

0
, , , , , ,

n n

n n
n z z d z d d

ρ ρ π

ρ ρ
ψ ω ψ ρ ω ρ ρ ψ ρ θ ω ρ ρ θ

+ +

= =∫ ∫ ∫ , (21) 

which is just the integral of the data over the annulus defined by 1,n nρ ρ ρ +
⎡ ⎤∈ ⎣ ⎦ .  To see 

this more clearly, note that if Cψ=  (a constant) over this annulus, then it immediately 
results that ( )2 2

1n n n Cψ π ρ ρ+= −  where the term preceding C is just the area of the 
annulus.  Furthermore, 0ψ=  everywhere in the annulus except for a small region of area 
A  where 1ψ= , then n Aψ = .  So equation (20) becomes 

 ( )( ) ( ) ( )
0

0,0 , , , , ,n n
n

z z W k z zψ ω ρ ψ ω
∞

=

′+Δ = Δ∑  (22) 

where the annular sums, ( ),n zψ ω , are given by equation (21). 
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Equation (22) was computed explicitly for the point at the origin but it generalizes 
immediately to any other point since the ( ),n zψ ω  are geometrically defined as annular 

sums about the point in question.  So, let ( ), ,n zψ ωx  be the annular sums at any point x  

and let ( )( ), ,W k zρ′ Δx  be the nonstationary Wavefield extrapolator coefficients.  (In the 
special case of stationarity, the extrapolator is independent of x .)  Thus equation (11) is 
the immediate generalization of equation (22). 

Finally, the ( ), ,n zψ ωx  can be computed with a 2D convolution. Just as convolution 
in 1D with a boxcar function produces a new function whose values are the sum of the 
input values over the length of the boxcar, then so can the annular sums be computed by 
2D convolution of the input wavefield with the indicator function of each annulus.  Since 
the indicator function of the annulus is just the indicator function for the outer disk minus 
that for the inner, equation (12) results. ■ 

While equation (11) bears formal resemblance to the Hale-McClellan formula 
(equation (2)), the former is potentially exact, although not computable, due to the 
infinite sum and the indefiniteness of the points nρ′ .  Theorem 2 gives a computable 
approximation to equation (11) and increases the correspondence with Hale-McClellan. 

Theorem 2: Let ( )( ), , 0,1, 2,nW k z n NΔ =x …  be the radial samples of an 

approximate wavefield extrapolation operator corresponding to radii nr n x= Δ , where 
xΔ  is the spatial grid size of the sampled wavefield.  It is assumed that N  has been 

chosen sufficiently large and the sampled operator has been adequately stabilized.  Then 
equation (11) admits the approximation 

 ( ) ( )( ) ( )
0

, , , , ,
N

n n
n

z z W k z zψ ω ψ ω
=

+Δ ≈ Δ∑x x x  (23) 

where the annular boundaries are given by [ ] 0
2 1 , 1, , 0

2n
n x n Nρ ρ
−

= Δ ∈ = . 

Proof: 

Using the annular boundaries stated in the theorem, then each inner annulus [ ]0 1,ρ ρ  is 
actually a small disk containing only one data point.  However, it is incorrect to assume 
the data is constant across this disk.  The remaining annular boundaries fall midway 
between each radial operator sample.  If the radial intervals are small, then a reasonable 
approximation is  

 ( ) ( )( ) ( )1, , / 2, , , , 0n n n nW k z W k z W k z nρ ρ ρ +
′ Δ ≈ + Δ = Δ > .   

The result follows directly. ■ 
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Having established equation (23) as an alternative to equation (2), it is now 
appropriate to give a more explicit formula for computing the annular-sum filters.  
Theorem 3 gives an exact result for the computation of the annular-sum filters in the 
Fourier domain. 

Theorem 3: The annular sums ( ), ,n zψ ωx  of equation (12) can be computed in the 
transverse spatial wavenumber domain by the formula 

 ( )
( ) ( )( )( )( )

( )( )( )( )

1
2 21/ 2 1/ 2

1
2 21/ 2

ˆ ˆ , , , 0
, ,

ˆ , , , 0

n x n x

n

x

F I I F z n
z

F I F z n

ψ ω
ψ ω

ψ ω

−
+ Δ − Δ

−
Δ

⎧⎪ − >⎪⎪⎪=⎨⎪⎪ =⎪⎪⎩

x
x

x
, (24) 

where 2 :F →T Tx k  is the 2D Fourier transform and 

 ( ) ( )1 2ˆ J
Iρ

ρ πρ
=

ξ
ξ

ξ
 (25) 

is the 2D Fourier transform of the indicator function of the disk, and 1J  is the first order 
Bessel function. If the annular thickness is sufficiently small, then the ( ), ,n zψ ωx  can be 
more directly calculated from 

 ( ) ( )( )( )1
2 2

ˆ, , , ,n n xz xF I F zδψ ω ψ ω−
Δ≈Δx x  (26) 

where 

 ( ) ( )0
ˆ 2 2I Jδρ πρ πρ=ξ ξ  (27) 

in which 0J  is the zero-order Bessel function and 

 ( )Iδρ δ ρ= −x . (28) 

Proof: 

Bracewell (2000, p338) gives the 2D Fourier transform of the indicator function of a disk 
of radius ρ  as 

 ( ) ( )1 2ˆ J
Iρ

ρ πρ
=

ξ
ξ

ξ
 (29) 

so the first result follows immediately from the convolution theorem.  For the second 
case, consider 
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( ) ( )( ) ( )1 12 2ˆ ˆ

ρ ρ ρ

ρ ρ π ρ ρ ξ ρ πρ ξ

ξ ξ+Δ

+Δ +Δ
− = −

J J
I I . (30) 

which manipulates as 

 
( ) ( )( ) ( )1 12 2 2 2ˆ ˆ

2 2ρ ρ ρ

π ξ ρ ρ π ρ ρ ξ π ξ ρ πρ ξρ
ξ π ξ ρ π ξ ρ+Δ

⎡ ⎤+Δ +ΔΔ ⎢ ⎥− = −⎢ ⎥Δ Δ⎢ ⎥⎣ ⎦

J J
I I  (31) 

 ( ) ( ) ( )
2

2
1 0 0

ˆ ˆ 2 2
π ξ ρ

π ξ ρ

ρ ρ ρ
ρ ρ

πρ π ξ ρ ρ
ξ ξ

=
=

+Δ

⎡ ⎤Δ ∂ Δ ⎡ ⎤⎢ ⎥− ≈ = = Δ⎣ ⎦⎢ ⎥∂⎣ ⎦

u
u

I I uJ u uJ u J
u

.(32) 

This also follows from physical reasoning by modeling the annulus as ( )ρδ ρΔ −x  and, 

according to Bracewell, the Fourier transform of ( )δρ δ ρ= −I x  is given by 

 ( ) ( )0
ˆ 2 2δρ πρ πρ ξ=I Jξ . (33) 

■ 

Thus the annular-sum filters, which are given by xIδρΔ  in the space domain, can be 
computed precisely in the Fourier domain by multiplication by 

( ) ( )0
ˆ 2 2xI x Jδρ π ρ πρ ξΔ = Δξ .  In Theorem 4, the annular-sum filters are employed, 

together with equation (23), to formulate the FOCI 3D operator design equation as a 
standard least-squares problem.  In particular, it is shown that the radial samples of the 
result of the 2D convolution of two circularly symmetric 2D functions are related to the 
radial samples of the input functions by a particular matrix equation.  The matrix 
involved, the radial convolution matrix, is the generalization of a Toeplitz matrix familiar 
from the 1D case. 

Theorem 4: Consider the FOCI operator design problem for 3D wavefield 
extrapolation.  This poses as 

 ( ) ( )( )1
2

ˆ/ 2 / 2
η

−• Δ = Δ�WI W z F W z  (34) 

where ( )/ 2W zΔ�  is an approximate, windowed (e.g. compactly supported of radial 

length J+1 ) operator for a half-step, ( )ˆ / 2W zΔ  is the exact half-step operator in the 

Fourier domain, •  denotes 2D spatial convolution, [ ]0, 2η ∈ , and WI  is to be determined 
such that equation (34) holds in the least squares sense.  Then, in the discrete setting 
using a square spatial grid of size xΔ , WI  is a solution to the following matrix equation 
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00 01 0 0
0

110 11 1
1

220 21 2

0 1

M

M

M

M
N

N N NM

W W W A
WI

AW W W
WI

AW W W

WI
AW W W

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

� � �"
� � �"
� � �" #

## # " #
� � �"

 (35) 

where [ ], 0,mWI m M∈  are the radial samples of WI , nA  are the radial samples of 

( )( )1
2

ˆ / 2F W z
η

− Δ  , N J M= + , and n mW�  are annular sums computed from the 2D 

impulse response of ( )/ 2W zΔ�  such that m xΔ  is the annular radius and n xΔ  is the 
radial distance from the center of the impulse response.  The matrix whose elements are 

n mW�  will be called a radial convolution matrix. 

Proof:  Clearly, since both ( )/ 2W zΔ�  and ( )( )1
2

ˆ / 2F W z
η

− Δ  are functions only of 

radius, then so must WI  be.  Equation (11) is actually a prescription for the 2D 
convolution of any radial function with an arbitrary wavefield.  By 

( ) ( )/ 2 , , / 2W z W k zρΔ = Δ� �  we mean the 2D, circularly symmetric impulse response of 

the approximate half-step operator. Let ( )/ 2W zΔ�  play the role of the wavefield and 
applying equation (11) in this case leads to 

 ( ) ( ) ( )
0

m m
m

WI W Aρ
∞

=

=∑ x x�  (36) 

where we have used 

 ( ) ( )1
2

ˆA F W
η

−=x . (37) 

Equation (36) gives the convolution at all positions in the plane; however, since the result 
is a function of radius only, this is redundant.  Let ( ):nA A n x= = Δx x  be the radial 

samples of ( )A x  for [ ]0,n N∈  and also truncate the sum in equation (36) at m M=  to 
get 

 
0

M

m n m n
m

WI W A
=

=∑ �  (38) 

where ( )m mWI WI ρ=  and ( )n m mW W n x= = Δx� � .  Equation (38) is equivalent to 
equation (35). ■ 
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EXAMPLES OF ANNULAR-SUM FILTERS 
The purpose of these examples is to illustrate the basic behavior of the annular-sum 

algorithm, as represented by equation (23), and to compare it with the Hale-McClellan 
method as represented by equation (2).  Hale (1991b) implemented equation (2) using 
approximate filters whose impulse response was prescribed in the space domain.  
However, here the McClellan filters were implemented with an exact Fourier domain 
expression (also given by Hale) as 

 ( )( ) ( )( )( )1
2 2, , cos 2 , ,jm z F j x F zψ ω π ξ ψ ω−• = Δx x . (39) 

Thus 

 ( )ˆ cos 2jm j xπ ξ= Δ  (40) 

while for the kth annular-sum filter, ka , using equation (26), 

 ( )2
0ˆ 2 2ja j x J j xπ π= Δ Δ ξ . (41) 

At this time, the mathematical relation between these results will not be investigated, 
only numerical comparisons are shown.  Nevertheless, some insight is gained by noting 

that ( )0
2~ cos

4
J π

θ θ
πθ

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠
 for large θ .  Thus, scale factors aside, the ˆ ja  decay as 

1/ 2ξ −  and are phase shifted by / 4π  while the ˆ jm  do not decay at all.  While the terms 

( )ja r j xδ= − Δ  are known precisely in the space domain, the inverse Fourier transform 
of equation (40) has no known analytic expression. 

Implementation and cost of annular-sum filters 

Figure 1 shows the response of an input field, containing four unit impulses, to a disk-
sum filter and three different methods of implementing an annular-sum filter.  The disk 
sum filter (Figure 1a) is simply the application of equation (25) as a Fourier multiplier 
(however, see Figure 3 and below).  The four initial impulses were at the precise centers 
of the four disks.  As with all examples in this paper, the spatial grid was square with 

20 mxΔ = .  In Figure 1b is the result of an annular-sum filter applied to the same input 
field where the filter was implemented as in equation (24) by the difference of two disk 
filters whose radii differed by one sample.  Figure 1c shows the result when the annular-
sum filter is implemented with equation (26), that is as a single Fourier multiplier 
corresponding to a annular Dirac delta.  In Figure 1d is the result of a 2D spatial 
convolution with an approximate impulse response of the annular-sum filter.  The design 
of this spatial filter is discussed more below.  Figure 2 shows a series of transects across 
the images in the corresponding panels of Figure 1.  The three different annular-sum 
filters give very similar results with very little obvious preference for one or the other.  
However, as will be seen, the direct convolution method is often far faster. 

Direct implementation of the disk-sum filter by using equation (25) as a Fourier 
multiplier has bothersome Gibbs effect oscillations at the disk boundaries as shown in 
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Figure 3a.  An easy way to control these effects is to introduce a Gaussian taper in the 
Fourier domain, which corresponds to a Gaussian convolution in the space domain.  That 
is, equation (25) can be modified to give 

 ( ) ( ) ( )( )21 2ˆ exp 2
J

I a xρ

ρ πρ
= − Δ

ξ
ξ ξ

ξ
 (42) 

where a is an adjustable scalar controlling the Gaussian width.  When 1a = , the 
Gaussian half-width is equal to the Nyquist spatial wavenumber.  Figures 3b, 3c, and 3d 
show the result of disk-sum filters using equation (42) with values of 0.5,1.0, 2.0a =  
respectively.  The Gaussian taper clearly is able to control the Gibb’s effect and a value 
of 1a =  was chosen as optimal and used for all examples in this paper.  The various 
annular-sum filters and the McClellan filters were also similarly tapered. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 1.  The response of 4 impulses to the application of a disk-sum filter of radius 400m is 
shown in (a). The original impulses were located at the centers of each disk. The filter was 
accomplished as a Fourier multiplier. The result of 3 different annular-sum filters applied to the 
same impulses are shown in (b), (c), and (d).  In (b) the annular-sum filter was the difference of 
two disk-sum filters as in (a), differing in radius by 1 sample. In (c) the filter was a radial delta 
function implemented as a Fourier multiplier, and in (d) the filter was a direct convolution (in 
space) with the approximate impulse response of the exact annular-sum filter. 
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Figure 2.  Four transects along the middle row of the four images of Figure 1 are shown.   

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Figure 3.  Transects across four different disk-sum filters similar to that in (a) of the previous 
figure. In (a) the disk-sum filter is implemented as the Fourier multiplier of equation 25. In (b), (c), 
and (d), various degrees of exponential taper have been applied as in equation (42). For (b) the 
constant a was 0.5, for (c) it was 1.0, and for (d) it was 2.0. A value of 1.0 was judged appropriate 
and used for all other calculations in this paper. Panel (c) is identical to panel (a) of the previous 
figure. 

Figure 4 shows cost comparisons of the three different methods of annular-sum filter 
computation that were investigated in this study.  To reiterate, these methods are disk 
difference (equation (24)), delta multiply (equation (26)), and direct convolve.  In this 
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latter case, the approximate impulse response of the disk difference filter is captured and 
applied with a 2D spatial convolution.  The approximate impulse response was estimated 
by the steps  

(i) a test field, whose size is double that of the desired annulus, is generated as all 
zeros except for a single live sample in the precise center. 

(ii) the annular-sum filter of equation (24) (disk difference) is applied 

(iii) any negative samples in the resulting impulse response are zeroed. 

The last step was deduced from empirical testing and gives a significantly improved 
filter.   

The cost comparisons in Figure 4 are simply MATLAB computation times for the 
filter application times.  The horizontal axis labeled “number of points” refers to the 
number of points in the field to which the filters were applied, not to the filters 
themselves.  The actual size of the 2D field is the square of the value given on the x axis.  
The size of the annulus was 400m as before, and with a spatial sample interval of 20m, 
this means that 21 points are required to span the diameter of the annulus.  The direct 
convolution method is the fastest for all but the smallest n, and the difference becomes 
extremely significant for large n.  The slope of the curves for disk difference and delta 
multiply are both slightly greater than 2 in Figure 4b.  This is consistent with the 
expectation of ( )logO N N  where 2N n= , with n  being the value on the x axis.  That 
the cost of the direct convolve method seems essentially independent of n  is somewhat 
counterintuitive but may reflect the efficiencies of the MATLAB 2D convolution 
function.  That the cost is much lower than the other methods is expected since the fixed 
size of the direct-convolve filter is, in this case, 81 points, which is smaller than all but 
the first grid tested.  It is anticipated that direct convolution will be the method of choice 
in 3D migration applications since generally very short Wavefield extrapolation operators 
(<20 points) will be used. 

(a) (b)(a) (b)

 

Figure 4. Computation cost estimates are shown for the three different annular-sum filter 
implementations discussed in the text as a function of dataset size.  The radius of the annular-
sum filter was held constant (at 400 m) and the dataset size was increased through n=[64,128, 
256, 512, 1024].  Here n refers to the single dimension of an n-by-n 2D dataset. 
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Basic properties of annular-sum filters 
Figure 5 shows the results of applying three iterations of an 800 m radius annular-sum 

filter.  The input field, Figure 5a, was a radially symmetric sinc function designed with a 
period of 10 times the spatial sample size, or 200 m in this case.  Figures 5b, 5c, and 5d 
show one, two, and three applications of the 800 m radius annular-sum filter.  Each panel 
of this figure has been independently scaled because the annular-sum filter weights each 
input point with its associated area, which is this case is roughly 2 ~ 400xΔ .  Displayed 
in true relative scale, only the fourth panel would be visible on a plot of limited dynamic 
range.  This areal scaling effect of the annular-sum filters is discussed just following 
equation (21). 

To understand Figure 5, consider that the annular-sum filter is a kind of generalized 
Radon transform where the summation curves are circles.  Thus, the value at any point in 
Figure 5b is the summation around an annulus, one sample wide, centered at the 
corresponding point in Figure 5a.  Thus the dark ring in Figure 5b indicates all those 
points that are precisely 800 m from the largest sample in Figure 5a, which is the center 
point.  In Figure 5c, there are two sets of preferred points that are 800 m from the large 
ring in Figure 5b.  The point at the center shows very high amplitude for this reason while 
the ring of points 1600 m from the center of the original sinc function is also indicated.  
The point at the center is the strongest because of the areal scaling effect mentioned 
previously.  Similar considerations afford an interpretation of Figure 5d. 

Figure 6 shows the effect of applying annular-sum filters of different radius to the 
same input field.  In this case, the input (Figure 6a) is the superposition of two radial sinc 
functions like that of the previous figure but with one sinc displaced from the center so 
that the field is no longer circularly symmetric about its center.  Shown in Figures 5b, 5c, 
and 5d are the result of 100 m, 500 m, and 800 m.  The dark rings in each figure are the 
loci of points whose distance from the center of either sinc functions equals the radius of 
the filter. 

Figure 7 is similar to Figure 6 except that the second sinc function has been built with 
a period of 60 m so that it is sampled only 3 times per period by the 20 m grid.  The short 
wavelength sinc function maintains its form and sharpness in each panel, indicating that 
the annular-sum filters are performing well with near Nyquist sampling. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 5. A radial sinc function, of period 200 m, having ten discrete samples per period, is shown 
in (a) while (b) shows the result of convolution of (a) with an annular-sum filter of radius 800m. In 
(c) is the result of the same 800 m annular-sum filter applied to (b) and in (d) is the result of the 
same annular-sum filter applied to (c). All four plots are independently scaled. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 6.  Linear superposition of two radial sinc functions, both of period 200 m, is shown in (a) 
while (b) shows the result of convolution of (a) with an annular-sum filter of radius 100m. In (c) 
and (d) are the results of 500 m and 800 m annular-sum filters applied to (a). The four plots are 
scaled independently. 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

 

Figure 7.  Linear superposition of two radial sinc functions, one of period 200 m and the other of 
period 60 m, is shown in (a).  With a spatial grid size of 20 m the latter has only 3 samples per 
period.  Panels (b) , (c) and (d) are the results of 100 m, 500 m and 800 m annular-sum filters 
applied to (a). The four plots are scaled independently. 

Comparison of annular-sum and Hale-McClellan filters 
As previously noted, the Hale-McClellan filters correspond to multiplication by a 

cosine in the Fourier domain (equation (40)) while the annular-sum filters require 
multiplication by a zero-order Bessel function (equation (41).  As was also noted, the 
Bessel function has an asymptotic form of a phase-shifted cosine with radial wavenumber 
decay.  These mathematical observations help the interpretation of the numerical results 
presented here. 

Figure 8 shows a comparison between the impulse responses of the annular-sum filters 
and the Hale-McClellan filters for the problem of Figure 1.  On this , it is reasonable to 
suppose that the Hale-McClellan filters are also annular filters, although not strictly 
summation filters.  The annular-sum filters are essentially positive everywhere, while the 
Hale-McClellan filters have an obvious trough on the inside of each circle.  In Figure 9, a 
transect across each panel of Figure 8 reveals the detailed structure.  The overall much 
larger amplitude of the annular-sum filters is a simple consequence of the 2xΔ  factor in 
equation (41), which in this case has the value 400.  More interesting is the clear phase 
rotation present in the Hale-McClellan filter 
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(a) (b)(a) (b)

 

Figure 8.  The annular-sum filter of Figure 1b is repeated in (a) while (b) shows the corresponding 
Hale-McClellan filter as prescribed by equation (39) with the Gaussian taper analogous to 
equation (42). 

(a) (b)(a)(a) (b)(b)

 

Figure 9.  In (a) is a transect, at vertical coordinate 2500, across the annular-sum response of 
panel (a) of the previous figure. In (b) is a similar transect across the Hale-McClellan filter 
response. 

Figures 10 and 11 demonstrate the amplitude decay with radius of the Hale-McClellan 
filters relative to the annular-sum filters, and more clearly show the phase rotation.  In 
Figure 10a, four annular-sum filter impulse responses have been superimposed.  The 
filters were calculated independently for radii of 160 m, 320 m, 640 m, and 1280 m, and 
then superimposed.  The initial impulse was at the center of the figure.  Figure 10b shows 
the corresponding result for the Hale-McClellan filters.  In these figures and in the 
corresponding transects in Figures 11a and 11b, the essence of the Hale-McClellan filter 
is clearly apparent.  The annular-sum filters have no radial decay, as their purpose is to 
compute the summation of the input data along the annulus.  Then, when weighted with 
the true 3D wavefield extrapolator, as in equation (23), the 3D extrapolated wavefield 
results.  In contrast, the Hale-McClellan filters must do more than just compute the sum 
of the input data along the annulus, because they are combined with the 2D wavefield 
extrapolator with its slower decay and different phase rotation.  The extra decay and 
phase rotation required to turn the 2D extrapolator into the 3D analog are found in the 
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Hale-McClellan filters.  Remarkably, with suitably designed 2D and 3D extrapolators, 
equations (23) and (2) are equivalent. 

(a) (b)(a) (b)

 

Figure 10.  Panel (a) shows the superposition of 4 different annular-sum filter impulse responses 
for radii 160 , 320, 640, and 1280 m. Panel (b) is the corresponding Hale-McClellan filter 
response. 

(a)

(b)

(a)

(b)

 

Figure 11.  Panel (a) shows a transect, from the panel center to the right along the horizontal 
axis, across the annular-sum filter result in panel (a) of the previous figure. Panel (b) shows the 
analogous result for the Hale-McClellan filters in panel (b) of the previous figure. 

Testing 2D convolution via annular-sum filters 

In this section, simulations of 2D convolution are presented using annular-sum filters 
as directly expressed in equation (23).  That the direct convolution method will be much 
faster in practice is not in doubt given the evidence of Figure 4.  This provides incentive 
to develop a high fidelity, compactly supported, space domain approximation, called a� , 
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to the annular-sum filter, whose Fourier transform is given by equation (41).  The 2D 
convolution is calculated with equation (23), using specific test functions for W , to test 
several different strategies for constructing a� . 

A simple, direct construction method is to capture the impulse response of the Fourier 
algorithm with a window.  In Figure 12 a simple test of a the most direct method of 
constructing a� , that is to simply capture the impulse response, is shown.  For this case 
W  was taken to be a 21 point boxcar, which means that the resulting convolution should 
reconstruct the disks of Figure 1a when applied to the same input field containing four 
impulses.  To construct a� , the exact Fourier operator was applied to an impulse centered 
in a number field twice as large as the largest expected annulus. Let this be called the IFC 
(inverse Fourier capture) method, referred to as IFCa� .  The resulting operator was used 
directly in 2D convolutions.  In Figure 12a, the result of the convolution using equation 
(23) with the Fourier algorithm is shown while in Figure 12b the result from IFCa�  is 
shown.  The Fourier algorithm has reproduced the disks essentially exactly, with a slight 
Gibbs ripple.  This is actually a very difficult test, in some ways more difficult than 
wavefield extrapolation because W  is discontinuous, and the results in Figure 12a-b 
show a very high fidelity algorithm.  In contrast, IFCa�  has not done nearly as well, with 
numerous artifacts, including the large negative troughs preceding each disk. 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Figure 12.  Recreation of a disks via annular convolution (compare Figure 1a). In (a) the annular 
sums were generated with the full Fourier routine, and (b) shows a transect across (a) along the 
middle row. In (c) the annular sums were generated with the Inverse Fourier Capture method 
described in the text. A transect across (c) is shown in (d). 

The result in Figure 12 motivates possible adjustments of the IFC method.  In Figure 
13a-b is the result using the IFC method with the addition of zeroing any negative 
samples in IFCa� , which is called the IFCZ method.  The negative shadows around the 
disks are removed, but at the expense of an unacceptable artifact in the center.  Figure 
13c-d shows the result of applying a Gaussian taper to the samples of IFCa�  that are 
beyond each annulus, and is called the IFCG.  It is likely that IFCGa�  would prove more 
acceptable than either IFCa�  or IFCZa�  in practice, but we would like better still. 
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Figure 13.  Similar to Figure 12 except that (a) shows the result of the IFCZ algorithm to design 
the spatial operator while (c) shows the IFCG method. Transects across (a) and (c) are in (b) and 
(d). 

Figure 14 shows the improved results of an even simpler algorithm.  Dispensing with 
the IFC concept altogether, it is possible to use careful sinc function interpolation to 
create a unit-amplitude, unit-width ring at any desired radius.  Perfect quadrantal 
symmetry can be obtained by only interpolating one quadrant of the operator and creating 
the others by symmetry operations.  This method turns out to be even faster than the IFC 
or its variants because no Bessel function calculation is required.  This is called the SI 
(sinc interpolation) method.  Figure 14a-b shows that when SIa�  is used in the 2D 
convolution process the result is very good, with only a slight residual Gibbs 
phenomenon spike in several places.  This spike is unlikely to arise in a 3D wavefield 
extrapolation algorithm because the operators are continuous, unlike the W  used in this 
simulation.  As an indication of this, Figure 14c-d shows the SIa�  result when W  is given 
a slight (4 sample) cosine taper. 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

 

Figure 14.  Similar to Figure 12 except that (a) shows the result of the IFCZ algorithm to design 
the spatial operator while (c) shows the IFCG method. Transects across (a) and (c) are in (b) and 
(d). 

While the results of the SIa�  approximation seem quite good, there is still room for 
improvement.  Obviously the smaller the approximation the better.  Here another virtue 
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of the Hale-McClellan algorithm is worth mentioning.  It turns out that the McClellan 
filters obey the recursion 

 1 1 22j j jm m m m− −= • − , (43) 

which means that all of the McClellan filters can be generated from repeated 
convolutions with 1m  which is a very small operator.  At present, it is not known whether 
the ja  satisfy a similar recurrence relation or not. 

Designing the 3D operator 
If the annular-sum method is to be used, then a method to design a stable, compactly 

supported approximation to the 3D homogeneous wavefield extrapolator is required.  For 
the FOCI algorithm, there are at least two possibilities: (i) the McClellan transform, and 
(ii) inverting the radial convolution matrix, which means solving equation (35). 

In the first case, this is straight forward although the work is not yet completed and not 
reported here All that is required is a 2D wavefield extrapolation operator, w , that is 
sufficiently stable, and the McClellan transform turns this into a circularly symmetric 3D 
operator, W .  This is done with the three steps (i) forward Fourier transform 

( ) ( )ˆw x w ξ→ , (ii) interpolate onto a radial grid ( ) ( )2 2
1 2

ˆˆ ˆw w Wξ ξ ξ→ + = , (iii) inverse 

2D Fourier transform ( ) ( )2 2 2 2
1 2 1 2Ŵ W x xξ ξ+ → + .  In step (iii) the inverse 2D Fourier 

transform could be replaced by a Hankel transform.  This method will be reported on at a 
later date. 

In the second case, the radial samples of the 3D operator can potentially be designed 
directly by solving a least-squares problem.  This least-squares problem is posed by 
equation (35) and requires an estimate of an unstable forward operator for a half-step and 
a right-hand-side which is a suitably band-limited delta function.  Investigation into this 
possibility is not yet satisfactory, and full reporting is also postponed.  However, enough 
progress has been made to illustrate the use and potential of the radial convolution 
matrix. 

Consider a 3D wavefield extrapolator for a step / 2zΔ , ( ), , / 2)W k zρ Δ , as expressed 
by equation (8).  It is a straightforward exercise of Fourier transformation to show that 
when this operator is convolved with itself, the result is a 3D wavefield extrapolator for 
step zΔ , ( ), , )W k zρ Δ .  Since equation (35) was derived as the convolution of two 
radially symmetric operators, a version of it applies in this case, given by 
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As described in the proof of Theorem 4, the elements of the radial convolution matrix are 
computed by applying annular-sum filters to the 2D impulse response of ( ), , / 2)W k zρ Δ .  
Each row of the matrix contains annular-sums computed at a fixed radius from the 
operator center and of each possible radius.  Figure 15 shows the radial convolution 
matrix in this case, and it is definitely not Toeplitz (constant diagonal).  Figure 16 shows 
the result of the auto-convolution of ( ), , / 2)W k zρ Δ , and it is an extremely good match 

for ( ), , )W k zρ Δ .  The 31 point half-step operator becomes 61 points long after 
autoconvolution, and there are no discernable discrepancies until well into the second 31 
points.  

(a) (b)(a) (b)
 

Figure 15.  The real part of the radial convolution matrix for ( ), , / 2)W k zρ Δ is shown in (a) and 
the imaginary part in (b). 
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Figure 16.  The real and imaginary parts of the radial samples of the half-step and full-step 3D 
wavefield extrapolators are shown, as is the result of convolving the half-step operator with itself 
using the radial convolution matrix of the previous figure. 

CONCLUSIONS 
Wavefield extrapolation in 3D, under the locally homogenous assumption, uses a 

wavefield extrapolator that is circularly symmetric.  This symmetry was exploited to 
develop a new algorithm for 3D wavefield extrapolation that uses annular-sum filters 
applied to the data weighted by the radial samples of the 3D extrapolator.  This algorithm 
is similar in concept but fundamentally different from the well-established Hale-
McClellan algorithm.  Annular-sum filters can be accomplished exactly using 2D Fourier 
multipliers, or approximately using a spatial convolution.  The latter is much faster and 
appears sufficiently robust for practical use.  The Wiener filter, least-squares design 
problem for the 2D convolution of two circularly symmetric filters can be formulated as 
an ordinary matrix-vector equation and solved by conventional means.  The elements of 
the radial convolution matrix are computed by annular-sum filters applied to the impulse 
response of one of the circularly symmetric filters.  The McClellan filters used in the 
Hale-McClellan algorithms are also a form of annular-sum filters, but incorporate an 
approximate 45 degree phase rotation and an amplitude decay. 
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