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Equivalent offset migration in anisotropic media 

Pavan Elapavuluri and John C. Bancroft 

ABSTRACT 
Equivalent offset time migration has been shown to be a very effective migration 

technique.  In its simplest form, this method assumes that the source/receiver traveltimes, 
or prestack diffraction shape of a scatterpoint, is defined by the double square-root (DSR) 
equation.  The DSR equation usually assumes a hyperbolic definition of the source and 
receiver ray times based on the root-mean-squared (RMS) velocities.  The equivalent 
offset is then defined by equating the DSR equation to a hyperbolic equation in which the 
offset is defined to be the equivalent offset.  This method is fast and yields accurate 
velocities. 

Applications of the equivalent offset (EO) method to anisotropic media have involved 
depth migration techniques to define the source/receiver traveltimes that are equated to a 
hyperbolic equation that (again) contains the equivalent offset.  Using the equivalent 
offset to sort data in a migration gather aids in the velocity analysis process.  This method 
does not have a speed advantage as it requires traveltime computations of a typical depth 
migration. 

Our objective is to combine anisotropic traveltime estimates into the DSR equation 
with EO time migration for more accurate imaging at fast computational speed. 

This technique was first tested on a simple anisotropic numerical model and then on a 
data set acquired over physical anisotropic model.  An advantage of this method is that 
we can migrate data without the explicit information of anisotropy parameters. 

INTRODUCTION 
The velocity structure of the earth is fundamentally anisotropic, i.e. the velocity varies 

with the direction of propagating of energy. Imaging algorithms which are used to image 
seismic data need to take into account the velocity anisotropy.  

It has been shown by various workers that the presence of anisotropy introduces errors 
into the final migrated image (Tsvankin, 2001; Nicola-Carena, 1997; Leslie et al., 1997; 
Vestrum and Lawton, 1999) etc. Larner and Tsvankin (1995) was one of the first papers 
to explore the imaging problems in anisotropic media. The most common imaging 
distortion induced by anisotropy is the inaccurate depth and lateral positioning, and in the 
case of prestack imaging, poor focusing of dipping and horizontal reflections (Vestrum et 
al., 1999b).  

Isaac and Lawton (1999a) constructed a scaled physical model to investigate the 
magnitude of imaging errors incurred by the use of isotropic processing methods. They 
showed that isotropic prestack depth migration velocity analysis based upon obtaining 
consistent depth images in the common-offset domain results in the base of the 
anisotropic section being imaged 50 m (about 3%) too deep.  
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It has been commonly observed that in various geological settings there is the presence 
of dipping clastic sequences, which in many cases lie above the reservoir or targets, and 
most of these dipping clastic sequences have been observed to be anisotropic. (Isaac and 
Lawton, 1999b). According to Vestrum et al. (1999b) a dipping anisotropic strata 
overlying a target of interest can be characterized as a lens for propagating seismic 
energy. Below this lens, dipping as well as horizontal reflectors at boundaries between 
isotropic strata will be incorrectly positioned if isotropic models are assumed during data 
processing, particularly depth migration. 

Isotropic depth migration corrects imaging problems and positioning errors associated 
with lateral, isotropic and velocity heterogeneities, but anisotropic depth migration is 
required to correctly locate images when transversely isotropic (TI) strata with a dipping 
axis of symmetry are present. In TI media P-wave seismic velocity is constant in all 
directions parallel to the bedding and typically slower in all the other directions. When 
dipping anisotropic strata are present in the overburden, the axis of symmetry are no 
longer horizontal and vertical.  If the imaging algorithm doesn’t account for this 
phenomenon, the resultant image may contain mis-positioning errors below. 

Workers like Larner and Cohen (1993) and Alkhalifah et al. (2000) document 
migration errors in TI media. Uzcategui (1995) and Alkhalifah and Larner (1994) address 
the problem of depth imaging in the presence of VTI. Kitchenside (1991), Ball (2000), 
and Vestrum et al. (1999a) address seismic imaging in the presence of tilted transversely 
isotropic (TTI) media. Isaac and Lawton (2002) show dramatic positioning errors of 
horizontal reflectors below TI media with a tilted symmetry axis. Uren et al. (1990) 
discussed the lateral shift on zero-offset physical modeling data and the offset-dependent 
lateral shift on multichannel numerical data for a model similar to ours. 

Various algorithms have been suggested for migrating in VTI media. The major ones 
are phase shift and Gaussian-Beam migrations by Alkhalifah (1995). Meadows and 
Abriel, (1994), have worked in developing VTI migrations based on Gazdag migration 
technique (Gazdag and Sguazzero, 1984). 

Kirchhoff based depth migrations for VTI media were developed by the Ball (1995). 
Kirchhoff depth migrations need the traveltimes to be calculated for the model, these 
traveltimes can be calculated by solving the Eikonal equation, among many other 
techniques. 

In this study we will be using Equivalent Offset Migration (EOM) to time migrate data 
with anisotropy present. 

MIGRATION 

The purpose of migration is to construct an image of the subsurface by transforming 
the information in the seismograms from the data space to an ‘image space’ (Geiger and 
Bancroft, 1996). 

The final migrated images can be displayed either in ‘time’ or ‘depth’. Depth 
migrations need an accurate velocity model, which is difficult to build, therefore time 
migrations are more common and widely used. 
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TIME MIGRATION 
In the above section we defined the migration as the transformation from data space to 

image space. Time migration can be defined as the technique which transfers the data 
space to image space with a vertical dimension of time. Yilmaz (2000) supports this by 
stating “the migration process that produces a migrated time section is called a time 
migration”.  Time migration assumes the diffraction shape to be hyperbolic and collapses 
the energy to the apex of hyperbola. 

There are many advantages of time migration; they are (Bancroft, 1997): 

• The method is very robust, i.e. the errors in the velocity model have very little 
effect on the migrated image as they effect focusing of the data not the position, 

• Time migration is also widely used to refine the velocity model; when the 
velocity model is considered accurate enough, this velocity model can be used to 
for depth migration, 

• The unmigrated section and prestack time migrated section appear quite similar to 
the position of the data, making it easier to compare the quality of migrations, 

• The accuracy of velocities can be around 3 to 10%, 

• Complex structures in the shallower part of the section, don’t effect the migration 
of the data below, and 

• It’s computationally faster. 

The disadvantages of time migrations are (Bancroft, 1997): 

• The output is in time, not depth, 

• Structured data may not be positioned correctly, 

• Time migration may not position dipping data, as accurately as depth migration, 
and 

• Might not focus structurally complex data. 

Time migration can be applied both before and after stacking the seismic data. In this 
paper we will be dealing exclusively with prestack time migration. There are various 
methods of time migration, the following are widely used: 

• Kirchhoff time migration, 

• Phase shift methods, and 

• Equivalent Offset Method. 
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We will be extending the equivalent offset technique proposed by Bancroft (1997) to 
include anisotropic media. 

KIRCHHOFFMIGRATION 
Kirchhoff migration can be applied by assuming a scatter point location, defining the 

diffraction shape and position, then summing the energy along the diffraction path, and 
relocating the energy at the scatter point. 

The traveltime t of a diffraction shape from a scatter point in (x, h, t) space is defined 
by the equation (1), commonly known as the double-square-root (DSR) equation: 

 ( ) ( )2 22 2
0 0

2 24 4rms rms

x h x ht tt
v v
+ +

= + + + , (1) 

where t0 is the two-way time from the scatter point, x is the horizontal distance from the 
scatter point to the CMP, h is the half offset, and vrms is the root-mean-squared (rms) 
velocity. Pictorially equation (1) represents a surface is known as Cheops Pyramid 
(Ottolini and Claerbout, 1984). Hyperbolic intersections are formed when number of 
planar surfaces intersect Cheops pyramid. The Kirchhoff time migration of source 
records involves summing along this hyperbolic diffraction surface. Kirchhoff time 
migration is usually used when the velocities are varying smoothly and also as a starting 
point to build a detailed structural velocity model for depth migration. Time migration is 
also used to image the media where the structure is too complex for depth migration 
(Bancroft, 1997). It is to be noted that equation (1) shows that the diffraction in time 
domain is defined by the rms velocity. 

Time migration does not position the migrated data correctly when there are lateral 
velocity variations. The velocity model as described earlier should be sufficiently smooth 
for Kirchhoff time migration to work properly. 

EQUIVALENT OFFSET MIGRATION 
Equivalent offset migration (EOM) is a modified form of Kirchhoff migration and it 

can be both a time and depth migration. The EOM method moves the input sample 
directly to the equivalent offset (EO) gather.  

The method computes the location of a colocated source and receiver that maintains 
the same travel time t to a scatter point as the original source and receiver as shown in the 
Figure 1. 

The offset from the scatter point to the collocated source and receiver is defined as he. 
It is found by equating the DSR equation to a hyperbolic equation that contained he as the 
offset parameter, i.e., 
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where t0 is the zero offset vertical travel time, vrms is the rms velocity, x is the distance 
between the scatter point and the CMP, and h is half offset. These parameters are 
illustrated in the Figure 1.  The EO term he can be derived and written as: 

 
2 2

2 2
2 2

4
e

x hh x h
t v

= + − . (3) 

This formulation reduces the complex shape of the DSR equation into a simple 
hyperbola. 

 
FIG. 1. The ray paths to scatter point. 

EQUIVALENT OFFSET MIGRATION IN ANISOTROPIC MEDIA 
Equation (1) gives the diffraction surface due to a scatter point in an isotropic media. 

In the case of generalized anisotropic media it has been shown by Tsvankin (2001) that 
the moveout is no longer hyperbolic but essentially non-hyperbolic. This non-hyperbolic 
nature increases as the offset increases. Therefore the hyperbolic treatment of prestack 
migration is limited to smaller offsets. 

We restrict the term “hyperbolic moveout” to the case of linear rays on a time section 
that travel between the surface (x = 0 and t = 0) and a scatterpoint.  The traveltimes of 
these rays are computed as individual raypaths and summed to form equation (1), as 
illustrated in Figure 1.  In this context, a hyperbola that is bulk shifted in time relative to t 
and t0 will be considered to have non-hyperbolic moveout. 

DSR equation for anisotropic media 
The DSR equation (2) is valid in isotropic homogeneous media and has been shown 

by Bancroft (1997) to be valid in heterogeneous media for shorter offsets. 

In anisotropic media, even for shorter offsets, the diffraction shape is no longer 
hyperbolic (Tsvankin, 2001). In order to extend this method of Kirchhoff summation 
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technique to anisotropic media, the diffraction summation hyperbola is made non-
hyperbolic.  We propose that the diffraction shape be made non-hyperbolic by using the 
shifted hyperbola technique proposed by Castle (1994).  The two-way travel time tsh of 
energy from a scatter point in anisotropic media can be written with a shifted hyperbola: 

 ( ) ( )
2

2 2
0 2

4
sh s s

rms

ht t
V

τ τ− = − + , (4) 

where sτ  is the time shift of the hyperbola and h is either the source offset sh x h= +  or 
receiver offset rh x h= −  as implied in Figure 1.  Castle introduces a shift parameter s 
defined as: 

 0

0 s

ts
t τ

=
−

, (5) 

to formulate the shifted hyperbola equation as: 
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The DSR equation may now be written using one-way times for the source and receiver 
raypaths as: 
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 (7) 

Equivalent offset in anisotropic media 
The focusing of EOM may be improved if the non-hyperbolic moveout is used in the 

DSR equation, which is then is equated to a equivalent offset hyperbolic equation in, 
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We don’t solve for he in terms of the DSR parameters, but instead we use the two-way 
traveltime t, i.e., 

 ( )2 2
02

rms
e

vh t t= − . (9) 

Algorithm 
The application of EOM using the shifted hyperbola approach is very similar to the 

conventional approach.  The only additional step is to calculate the “shift" parameter.  
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Equivalent offset gathers in anisotropic media can be formed using the following 
technique: 

• Estimate velocity and shift parameter, 

• calculate shifted hyperbola travel time, 

• calculate equivalent offset, 

• sort the data into equivalent offset gathers using equation (9), and 

• apply scaling and NMO to these gathers. 

The advantage of using this technique is that the non-hyperbolic diffractions will be 
forced into a hyperbolic shape with the rms velocities.  A conventional moveout 
correction algorithm can be used to correct for the moveout and then the gathers are 
weighted and stacked to accomplish prestack time imaging. 

EXTENDED ANISOTROPIC EQUIVALENT OFFSET METHOD 

The shifted hyperbola approach works well for moderately non-hyperbolic diffractions 
and for data with shorter offsets.  We further modify the method to include longer offsets 
with increase non-hyperbolic characteristics.  This is achieved by making the “shift" 
parameter dependent of the offset. 

Castle (1994) has shown that for larger offsets and higher moveout, the shift parameter 
can be written as a function of offset.  This function can be written as: 

 ( )
2

2

a shs h
b sh

+=
+

. (10) 

We found that this equation is cumbersome to calculate, so it is approximated as a 
polynomial of offset: 

 ( ) 2s h s ah bh= + + , (11) 

where a and b are constants.  The parameters s, a and b can be determined by performing 
a simulated annealing inversion on the traveltimes verses offset data (Elapavuluri and 
Bancroft, 2002).  The extended EOM technique is applied using the same procedure as in 
the earlier shifted hyperbola based EOM approach.  The technique can applied using the 
following steps: 

• Estimate velocity s, a and b, 

• calculate shifted hyperbola travel time, 

• calculate equivalent offset, 
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• sort the data into equivalent offset gathers, and 

• apply scaling and NMO to these gathers. 

TESTING ON A SIMPLE MODEL 
The above discussed technique is applied to a very simple model with a single 

anisotropic layer as shown in Figure 2.  The model parameters of the anisotropy layer are 
0 3000v = m/s, 0.2ε =  and 0.2δ = − .  CMP gathers were formed on the model. Figure 3 

shows a two-sided CMP gather formed at the center of the model. Semblance analysis is 
performed on this CMP gather and displayed in Figure 4.  The CMP gathers are then 
normal moveout (NMO) corrected and displayed in Figure 5. 

Surface 

Reflector  

FIG. 2. The 2D model. 



Anisotropic EOM 

 CREWES Research Report — Volume 18 (2006) 9 

                 

FIG. 3. A CMP gather in the middle of the 
model. 

FIG. 4. Semblance over the CDP gathers. 

 

FIG. 5 NMO corrected CDP gather. 
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It can be observed that from the NMO corrected gather that instead of the time being 
constant for all offsets, the time decreases with offset, exhibiting a typical ‘hockey stick 
phenomenon’ when this data is stacked, the data will be both temporally and spatially 
miss-positioned. 

Equivalent offset gather (isotropic) 

An equivalent offset gather is formed at the middle of the model is shown in the 
Figure 6. Semblance is calculated on this EO gather and is displayed in Figure 7.  Using 
the velocity estimated from the semblance plot the EO gather is NMO corrected and 
shown in Figure 8. 

It can be observed in the semblance plot that the energy is not focused and there 
remains trailing energy.  Selecting an optimal stacking velocity will be a problem.  In 
isotropic EO moveout corrected gather we find that the anisotropic event still shows the 
hockey stick moveout effect. 
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FIG. 6. A normal EO Gather. FIG. 7. Semblance analysis of normal EO 
gathers. 

 

FIG. 8. NMO corrected normal EO gather. 
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Anisotropy EO gathers 
Anisotropic EO gather technique is applied on this data.  Before applying this data we 

have to estimate the values of s, a, and b as shown in Elapavuluri and Bancroft (2002). 
Using these estimated parameters the anisotropic EO gather is formed and is shown in 
Figure 9. Semblance analysis is performed on this gather and showed in Figure 10. It can 
be seen in the semblance analysis that the energy is more focused and is easies to pick the 
NMO velocity in contrast to using just the CMP gather or the conventional EO gather. 

Using the velocity estimated from the semblance analysis the EO gather is NMO 
corrected and shown in the Figure 11.  It can be observed that the NMO corrected gather 
is straighter and there is little residual moveout. 

The same process is applied to all the EO gathers formed through out the model, these 
are then NMO corrected and stacked, thus producing the prestack migrated image as 
shown in the Figure 12. 
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FIG. 9. Anisotropic EO gather formed with 
variable shift. 

FIG. 10. Semblance over the anisotropic EO 
gather. 

                    

FIG. 11. NMO corrected anisotropic EO 
gather. 

FIG. 12. Migrated section. 
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PHYSICAL MODELLING DATA 
Leslie and Lawton (2001) acquired seismic data over a physical model of an 

anisotropic thrust sheet.  The physical model is illustrated in Figure 13. This model 
consists of a flat reflector overlain by a TI thrust sheet embedded in an isotropic 
background.  The thrust sheet is composed of four blocks in the model; each with a 
unique axis of symmetry. They have parameters of 0 2925pv = m/s, 0.2ε = , and 0.1δ = .  
The isotropic background has 0 2740pv = m/s. 

The algorithm described above is now tested on this model.  The objective of this 
study is to see how anisotropy influences the imaging in anisotropic media and the 
pitfalls one should be careful when dealing with such data. 

 

FIG. 13. Thrust sheet model (Courtesy Don Lawton). 

Figure 14 shows a shot at the middle of the survey. The data is then sorted into CMP 
gathers.  Figure 15 shows a CMP gather at the middle of the survey. Semblance analysis 
is performed on this gather and is shown in the Figure 16. 
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FIG. 14. A shot from the middle of the data. 

 

KIRCHHOFF TIME MIGRATION 
This data is first migrated using conventional Kirchhoff time migration technique 

using a velocity model built from conventional semblance analysis. 

The final migrated image is shown in Figure 17. It can be seen that the thrust sheet 
upper limbs of the thrust sheet are imaged fairly well. 

The basement at 1.4 s, which is supposed to be flat is in fact flat everywhere else, 
except directly under the thrust sheet. 
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            FIG. 15. CMP at middle of the data. FIG. 16. Semblance at the middle of the 
data. 

 

 

FIG. 17. Kirchhoff time migrated image. 
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EQUIVALENT OFFSET MIGRATION 
The same data is migrated using normal EOM. The technique is discussed above. EO 

gathers are formed on this data and then semblance analysis is performed on this data. 
The data is sorted into normal EO gathers, Figure 18 shows the CMP gather at the middle 
of the survey. Semblance analysis is performed on this gather and is shown in the Figure 
19. 

The data is NMO corrected and stacked. The final migrated image is shown in Figure 
20. 

It is apparent that the results of Prestack Kirchhoff imaging Figure 17 and EOM 
Figure 20 are very comparable to each other, both have the three limbs imaged well and 
they have the upwelling of the basement under the thrust sheet. 
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FIG. 18. A normal EO gather from the 
middle of the data. 

FIG. 19. Semblance plot of the normal EO 
gather. 

 

FIG. 20. Prestack migrated image using normal EOM. 
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ANISOTROPIC EQUIVALENT OFFSET MIGRATION 
Anisotropic EOM is now applied to this data; the first step is to estimate the shift 

parameters s, a, and b.  The estimation technique is discussed in detail in (Elapavuluri 
and Bancroft, 2004).  Using these estimated parameters anisotropic EO gathers are 
formed using the data collected over the data.  

The EO gathers are then NMO corrected and stacked to form a Prestack migrated 
section shown in Figure 21. The most interesting section is under the thrust sheet where 
there is upwelling is evident in other migrations. Now zooming into this interesting 
section we can see that there is no artifact due to anisotropy. 

The section as in the other two cases the limbs are imaged well but the improvement is 
in the imaging of the basement; it is flatter through out and there is little upwelling in the 
basement. It has to be emphasized that no where in the imaging processes we have used 
explicit information about the anisotropy parameters in the model. 
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FIG. 21. Prestack migrated image using anisotropic EOM. 
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FIG. 22. Prestack migrated image using PSPI migration, courtesy Xiang Du. 

 

FIG. 23. Prestack migrated image using reverse time migration courtesy Xiang Du. 

COMPARISON 
Many workers have worked on imaging this data in depth using various techniques. 

Notable are (Ferguson and Margrave, 1998), (Kumar and Ferguson, 2004) and (Du, 
2006). Du (2006) image this data using reverse time migration. He compares his results 
to the results obtained using PSPI technique (Gazdag, 1978). 

Figure 22 shows the depth migrated image for the thrust sheet model using PSPI 
technique and Figure 23 shows the depth migrated imaging produced using reverse time 
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migration. The reverse time migrated image Figure 23 images all the limbs without the 
artifact beneath the anisotropic thrust sheet.  

Comparing the migrated sections Figures 21 and 23 produced by anisotropic EOM and 
reverse time migration can be seen that both are comparable to each other. All the limbs 
are imaged properly and mainly the basement remains flat without any upwelling. 

CONCLUSIONS 
In this paper we have shown that non-hyperbolic diffraction can be approximated by a 

Shifted hyperbola equation. We have extend Equivalent offset migration to anisotropic 
media. We have also proposed a technique by which data with anisotropy present in it 
can be migrated in time domain without the knowledge of anisotropy parameters. 

We tested this technique on a simple 2D model and then applied this technique to 
thrust sheet data with TTI present in the thrust sheet. The time migrated image is shown 
to image the basement better than the traditional Kirchhoff time migration and normal 
EOM. This data is then showed that it’s comparable in quality to a reverse time depth 
migrated image. 
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