
Heavy oil passive seismic monitoring techniques 

 CREWES Research Report — Volume 18 (2006) 1 

Passive seismic reservoir monitoring techniques applied to 
heavy oil production 

Jeffrey F. Tan, Henry C. Bland and Robert R. Stewart 

ABSTRACT 
The CREWES project at the University of Calgary is conducting research with 

Imperial Oil Limited concerning passive seismic monitoring of heavy oil production 
wells at Cold Lake, Alberta. Research is involved with developing algorithms and 
techniques to improve the current classification application being used. Passive seismic 
event classification algorithms that involve frequency filtering, statistical analysis, and 
event length detection, are developed here and combined into a Graphical User Interface 
application intended for use in reservoir monitoring. Initial testing on the developed 
application, which was in progress at the time this paper was written, has produced 
encouraging results. More testing remains to be done. 

INTRODUCTION 
Imperial Oil Ltd. is currently performing passive seismic monitoring at Cold Lake, 

Alberta to detect microseismic earthquakes that could be induced by a Cyclic Steam 
Stimulation (CSS) process (Campbell, 2005). The CSS process is required to extract the 
viscous bitumen, which has an American Petroleum Institute (API) index of 
approximately 8° to 9º. Passive seismic monitoring of these microseisms can proactively 
detect anomalies during production. This can minimize potential economic and 
environmental costs that may result from undesirable production events such as casing 
failures or cement cracks. These events can be caused by the high temperatures and 
pressures involved in the CSS process which are approximately 320 °C and 11 MPa, 
respectively (Campbell, 2005). If undetected, these production issues could potentially 
cause environmental damage such as aquifer contamination. The CREWES Project at the 
University of Calgary is involved in this passive seismic research with Imperial Oil Ltd. 
A map depicting the location of the Cold Lake operations is shown in Figure 1 (Imperial 
Oil Ltd., 2006).  
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FIG. 1. Location of Imperial Oil’s Cold Lake operations. 

Imperial Oil Ltd. has implemented passive seismic monitoring on approximately 75 
production pads, each of which contain about 18 to 24 producing wells. Each pad has one 
centrally located monitoring well that records ground vibrations (including microseisms). 
The monitoring well is instrumented by a down-hole array of 3-component geophone 
sondes connected to seismic recorders at the surface. Recording equipment is comprised 
of a mixture of systems from Terrascience Systems Ltd. and ESG Inc. The recording 
equipment, connected to a down-hole geophone array, listens for discrete seismic events 
and stores them to disk for later review. These digital event files typically contain a 
1.5 second time sample of microseismic activity recorded by the entire down-hole array.  

Vendor-supplied event-classification software analyzes each one of these files and 
assigns them a classification. If a file is classified as "good", this is intended to indicate 
that the event detected warrants further investigation; conversely, if the file is classified 
as "noise", it is supposedly an event that is not of interest (approximately 99% of all 
detected events are noise). Examples of "good" events worth further investigation include 
cement cracks around the casing in the wells, and casing failures. Examples of noise 
events include noise created by pump rods and vehicles passing (Campbell, 2005). 
Generally, noise events are not important and are usually discarded. 
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     The current event-file classification software has been known to misclassify a large 
portion of the received files. This has resulted in “good” events and noise events being 
incorrectly identified. These numerous misclassifications can become very costly, as 
significant time is required to manually investigate the files one by one. 

The purpose of this research is to develop and combine microseismic event 
classification algorithms that classify the detected events with a high accuracy. We 
explore algorithms that include frequency filtering, event-length detection, and statistical 
analysis. An interactive Graphical User Interface (GUI) application containing these 
algorithms is developed and tested. This GUI application is undergoing testing and 
optimization, but initial tests performed have yielded reasonably strong results.  

METHODOLOGY 
Algorithms developed in this research are combined to classify microseismic event 

files into two categories: useful events worth further investigation (“good” events), and 
noise events. This classification is based on the aggregate results of these algorithms, 
which include the following:  

 
• Filtering techniques (low-pass filtering, high-pass filtering, and band-pass filtering). 
• Statistical analysis of the signal.  
• Event length detection using frequency and time domain analysis.  
 

Each analysis algorithm is applied to each of the traces of an event file. These traces 
correspond to all three triaxial geophone outputs for all of the levels within a single 
monitoring well. Results from the algorithms are coded as “1” if the algorithm deems the 
trace to contain a “good” event, and “0” otherwise. The algorithm results are summed on 
a per-trace basis providing a per-trace score. Those traces which have a score exceeding a 
threshold are flagged as “good” while the remaining traces are flagged as “noise”. The 
overall file classification is determined by identifying the total number of “good” traces. 
Deciding upon the exact threshold classification values pertaining to the various 
algorithms is empirically determined and is adjustable to various datasets.     

EXAMPLE EVENTS 
     Before discussing the details of the algorithms used, two sample traces are shown in 
Figures 2 and 3. A trace obtained from a “good” event, with the P- and S-wave arrivals 
indicated, is shown in Figure 2. A trace obtained from a noise event is shown in Figure 3. 
These two example traces will be used when demonstrating and discussing most of the 
algorithms. These two traces do not characterize all of the possible detected events, but 
are a fairly reasonable representation of the characteristics pertaining to a fair number of 
“good” and noise events. The traces shown have their amplitudes normalized with any 
DC offset removed. 
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FIG. 2. Example trace obtained from a “good” event. 

 

FIG. 3. Example trace obtained from a noise event. 

ALGORITHMS 

Frequency filtering 

     When examining the passive seismic event files, we found that many noise event 
channels generally contained a greater quantity of high frequency content than most 
"good" channels. The first set of algorithms concerns filtering the received signals with 
low-pass, high-pass, and band-pass filters, followed by an analysis of the filtered signal. 
Based on the peak value of the output signal, the channel examined is classified as either 
a noise channel, or a "good" channel.  

Filter frequency responses 

     To begin, some background on filter design and terminology is provided. One of the 
most important filter design parameters is the passband. The passband is the frequency 
range where, ideally, the frequency components of the signal experience zero attenuation. 
The stopband is the frequency range where, ideally, the signal is completely attenuated 
and the frequency components of the signal are eliminated. The order of the filter is the 
order of the characteristic differential equation that describes its impulse response in the 
time domain. When performing frequency analysis, it is usually desired to analyze these 
characteristics in the frequency domain. A filter’s impulse response in the time domain 
corresponds to its transfer function in the frequency domain. In the frequency domain, the 
order of a filter is the highest power of the Laplace operator "s" that can be seen in the 
denominator of its transfer function. In real applications, as the desired accuracy of a 
filter increases, its required order increases as well. As the order of a filter increases, its 
realization increases in complexity. More components are required to construct high 
order filters. Thus, there is a tradeoff between filter accuracy and complexity.     

     In practical applications, there are four main types of filter responses that rely on 
approximations (Maundy, 2005). The Butterworth response contains a maximally flat 
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attenuation characteristic in the passband (as frequency increases) and a monotonically 
increasing attenuation characteristic in the stopband. This type of response is known as a 
maximally flat approximation. The Chebyshev response contains an equiripple 
attenuation characteristic in the passband and a monotonically increasing attenuation 
characteristic in the stopband. This equiripple characteristic that is present in the 
Chebyshev (but not the Butterworth) approximation, results in a small oscillation of the 
frequency response. The Inverse-Chebyshev response contains a maximally flat 
attenuation characteristic in the passband and an equiripple attenuation characteristic in 
the stopband. Finally, the Elliptic (also known as the Cauer) response provides an 
equiripple attenuation characteristic in the passband and the stopband. These filter 
response characteristics and approximations are needed should it be decided to 
implement and realize these filters in a hardware capacity at the front end of the passive 
seismic monitoring system in the future. Currently, models of these filter responses are 
implemented in MATLAB.  

     Table 1 summarizes the various responses of the filters. Figure 4 (Maundy, 2005) 
depicts the attenuation characteristics of these four filter types. In Figure 4, ωp and ωs 
represent the passband and stopband limits, respectively. The quantity α(ω) signifies the 
attenuation of the filter (in dB) as a function of the radial frequency. The symbols αmin 
and αmax are the desired minimum and maximum allowable attenuations in the stopband 
and passband, respectively.  

 
Table 1. Approximation characteristics of 4 main filter responses. 

Filter Type Passband Response Stopband Response 

Butterworth Maximally Flat Monotonically Increasing 
Chebyshev Equiripple Monotonically Increasing 
Inverse Chebyshev Maximally Flat Equiripple 
Elliptic (Cauer) Equiripple Equiripple 
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FIG. 4. Attenuation characteristics of 4 main filter responses:  Butterworth (top-left), Chebyshev 
(top-right), Inverse Chebyshev (bottom-left), and Elliptic (bottom-right). 

This research examines filters with the Butterworth, Chebyshev, and Inverse- 
Chebyshev responses. Each filter response contains various strengths and weaknesses 
(Maundy, 2005). The key strength of the Butterworth approximation is that its attenuation 
characteristic is almost truly maximally flat at the origin. However, its approximation to a 
flat response becomes progressively poorer as the angular frequency (ω) becomes close 
to the passband edge angular frequency (ωp). The stopband attenuation of the Butterworth 
response is generally less than that obtainable from the Chebyshev response. For a given 
minimum stopband attenuation, an Inverse-Chebyshev filter will require a lower order 
than a Butterworth filter. The disadvantage of the Inverse-Chebyshev response concerns 
increased circuit realization complexity when designing band-elimination topologies.   

 To provide a diverse set of frequency responses and optimize the aggregate 
performance of these frequency filtering algorithms, each of the Butterworth, Chebyshev, 
and Inverse-Chebyshev responses are implemented. In MATLAB, filters of any order and 
type are created by determining the coefficients of the filter's transfer function. These 
coefficients are determined by MATLAB when input parameters such as the passband 
edge frequency, stopband edge frequency, and filter order are provided.  
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For an n-order filter of any type, MATLAB calculates the coefficients a1, a2, a3...an+1, 
and b1, b2, b3....bn+1, used in  

 
-1 -2

1 2 3 1
-1 -2

1 2 3 1

 ...( )( )  , 
( ) ...

                           

n n n
n

n n n
n

b s b s b s bB sT s
A s a s a s a s a

+

+

+ + += =
+ + +  (1) 

which represents a filter’s transfer function. In equation 1, s is the Laplace operator and   
s = iω for sinusoids (ω is the angular frequency in rad/s).  

Low-pass filter 

     As one of the classifying techniques, a fourth-order Inverse-Chebyshev low-pass filter 
with a stopband edge angular frequency of 628 rad/s (corresponding to a frequency of 
100 Hz) is implemented in MATLAB. Each channel in a microseismic event file is 
passed through this low-pass filter. The filtered output is analyzed for its peak amplitude. 
If this peak normalized amplitude is higher than an empirically determined value, the 
channel is assigned as passing this algorithm and having a "good" characteristic. Figure 5 
depicts the frequency response of this filter. Figures 6 and 7 depict “good” and noise 
events, respectively, before and after this low-pass filter is applied. Notice the higher 
amplitude of the filtered “good” signal versus that of the noise signal.  

 
FIG. 5. Frequency response of the low pass Inverse Chebyshev filter used. 

 



Tan, Bland, and Stewart 

8 CREWES Research Report — Volume 18 (2006)  

 
FIG. 6. A “good” event before (top), and after (bottom) low-pass filtering. 

 
 

 
FIG. 7. A noise event before (top), and after (bottom) low-pass filtering. 

 

High-pass filter 

     Another filter used in these classification algorithms is a fourth-order, high-pass filter 
with a Butterworth frequency response containing a passband with a lower limit of 2500 
rad/s (398 Hz). Each channel in a microseismic event file is passed through this filter. 
The filtered output is analyzed for its peak amplitude. If this peak normalized amplitude 
is lower than an empirically determined setting, the channel is assigned as passing this 
algorithm and having a "good" characteristic. Figure 8 depicts the frequency response of 
this high pass filter.  Figures 9 and 10 depict “good” and noise events, respectively, 
before and after this high-pass filter is applied. Notice the lower amplitude of the filtered 
“good” signal versus that of the noise signal.   
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FIG. 8. Frequency response of the high pass Butterworth filter used. 

 

FIG. 9. A “good” event before (top), and after (bottom) high-pass filtering. 

 

 

 FIG. 10. A noise event before (top), and after (bottom) high-pass filtering. 
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Band-pass filter 

     The last filter used in the frequency filtering algorithms is a fourth-order, Chebyshev 
band-pass filter with a moderately high frequency passband ranging from 1000 rad/s to 
2000 rad/s (159 Hz to 318 Hz). As each channel is examined, the filtered output is 
analyzed for its peak amplitude. If this peak normalized amplitude is lower than an 
empirically determined value, the channel is assigned as passing this algorithm and 
having a "good" characteristic. Figure 11 depicts the frequency response of this filter. 
Figures 12 and 13 depict “good” and noise events, respectively, before and after this 
band-pass filter is applied. Notice the lower amplitude of the filtered “good” signal versus 
that of the noise signal. 

 
FIG. 11. Frequency response of the Chebyshev band pass filter used. 

 
FIG. 12. A “good” event before (top), and after (bottom) band pass filtering. 



Heavy oil passive seismic monitoring techniques 

 CREWES Research Report — Volume 18 (2006) 11 

 
FIG. 13. A noise event before (top), and after (bottom) band pass filtering. 

Event length detection 
     Throughout this research, it is empirically determined that the event length of a 
detected microseismic earthquake is also a key determining characteristic of whether this 
event is worth further investigation (a “good” event) or not (a noise event). In general, the 
P-wave event length of a “good” event is significantly shorter than the event length of a 
noise event. Two algorithms are explored to determine the event lengths. The first 
algorithm is performed in the time-domain, and the second corresponds to a technique 
performed in a continuous-time frequency-domain. 
 

Time-domain  

     The time-domain algorithm explored is based on the STA/LTA algorithm (Ambuter 
and Solomon, 1974) demonstrated by Munro (2005). This algorithm looks at the energy 
contained in the signal at each point and performs short term averages and long term 
averages of these energies. This technique is known as the STA/LTA technique (short 
term averages divided by long term averages of the energy). In microseismic analysis, the 
STA/LTA ratio will significantly increase at the onset of a seismic event. Conversely, 
this ratio will significantly decrease at the termination of the seismic event. Thus, 
calculating the time differences between the onset and termination of the microseismic 
events yields the event length.  

The STA can be defined as a quantity α(τ), and the LTA can be defined as a quantity 
β(τ). A quantity n1 corresponds to the number of samples taken in the STA window, and 
a quantity n2 corresponds to the number of samples taken in the LTA window (n2 > n1). 
The value Ee(tk) corresponds to the signal energy at each time point tk. The quantities 
α(τ) and β(τ) can then be defined as  

1 2

( ) ( )
( )            ,         ( )  .  

e k e k
n n

E t E t

n n
α τ β τ− −= =

∑ ∑
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Using an algorithm similar to this STA/LTA technique, event lengths can be found. If 
the calculated event length of the channel being analyzed is less than an empirically 
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determined value, then the channel is assigned as passing this algorithm and having a 
“good” characteristic.            

Frequency-domain  
Through general observation, the high-frequency content of a microseismic signal 
significantly increases at the onset of the event and significantly decreases at the 
termination of the event. Thus, another method to pick the onset and termination of 
microseismic events is to continually analyze the frequency characteristics of a select 
number of points in the channel. If a time window is defined from t1 to t2 in the channel, a 
continuous-time frequency analysis can be performed by supplying a moving time 
window that exists between t1 and t2, with the limits t1 and t2

 continuously increased up 
until the end of the channel data. Frequency characteristics are determined using the 
Fourier transform, defined as (Haykin, 2001): 

 
-

( )    ( )exp(- 2 ) .G f g t j ft dtπ
∞

∞

= ∫  (3) 

The function g(t) represents the sample points in the microseismic channel between 
the intervals t1 and t2, explained above. Thus, as t1 and t2 are continuously increased, a 
continuous time Fourier transform is performed. A normalized power spectral density, 
|G(f)|2 is obtained using this algorithm and it is examined to determine the onset and 
termination times of the microseismic events.  

Figure 14 depicts a “good” microseismic event in the time domain, and Figure 15 
displays this event when the continuous time Fourier transform algorithm described 
above is applied to it. The onset and termination points of the P-wave arrival are shown 
in the figures. In Figure 15, the highest magnitudes are indicated with bright red and the 
lowest magnitudes are indicated with dark blue. Notice the sharp increase in high 
frequency content at the onset of the event, and the sharp decrease in high frequency 
content at the termination of the event. Figures 16 and 17 depict a rod noise microseismic 
event in the time, and continuous time-frequency domains, respectively.    

     When using this method, if the calculated event length of the channel is less than an 
empirically determined value, then the channel would be assigned as passing this 
algorithm and having a “good” characteristic. 
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FIG. 14. Time domain plot of an example microseismic “good” event. 

 
FIG. 15. Continuous time Fourier transform magnitude plot of Figure 14. 

 
FIG. 16. Time domain plot of an example microseismic rod noise event. 

 
FIG. 17. Continuous time Fourier transform magnitude plot of Figure 16. 

Statistical analysis 

     Various statistical analysis techniques are explored. From observation, noise events 
generally oscillate more frequently about the time axis than "good" events. “Good” 
events are generally “flatter” and contain many data points that are close to the time axis. 

     One statistical algorithm examines the fraction of data points in the trace that are of 
reverse polarity compared to its preceding (or following) data point. In other words, as n, 
representing a single data point in the channel, is increased from 1 to the number of 
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sample points in the channel, this algorithm counts the total number of times  that that the 
condition [tntn+1 < 0] is satisfied. Let N represent the total number of data points in the 
channel of interest. Essentially, this algorithm looks at the number of zero crossings in 
the channel and divides that value by the number of points in the channel. This quantity 
(M) is calculated using  
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The quantity [tntn+1 < 0] is equal to 1 if this condition is satisfied and 0 if it is not. 

     If M is less than an empirically determined value, then the channel is assigned as 
having a “good” characteristic. As an example of an application of this algorithm, the 
“good” event shown in Figure 2 has M = 0.00024414, and the noise event shown in 
Figure 3, has M = 0.0728.  

     Another statistical algorithm separates all of the data points of the trace into 99 
separate bins that are evenly spaced between normalized data values of -1 and 1. It then 
examines the 50th bin and looks at the percentage of data points that are contained in that 
bin. If that percentage is greater than an empirically determined percentage, then the 
channel is assigned as passing this algorithm and having a "good" characteristic. Figure 
18 shows this histogram for the “good” channel shown in Figure 2, while Figure 19 
shows this histogram for the noise channel shown in Figure 3. Notice the much higher 
concentration of points in the middle bin for the “good” channel. 
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FIG. 18. Histogram plot of an example “good” channel. 

 

FIG. 19. Histogram plot of an example noise channel. 

Other algorithms  
     Other classification algorithms were researched throughout this project including 
coherence, semblance, and cross-correlation techniques, as depicted in Sheriff and 
Geldart (1995). However, after testing these algorithms on microseismic data, it was 
found that the classification accuracy of these techniques was not as high as desired. 
Thus, these techniques are not implemented in the MATLAB program.  
 

IMPLEMENTATION 
     Many of the discussed algorithms are combined and optimized. An interactive and 
fully automated MATLAB Graphical User Interface (GUI) application is created that 
allows the user complete control of the discriminating thresholds in the algorithms. In 
addition, statistical plots and histograms are dynamically available so that the user can 
adjust the settings of the program to accommodate a wide variety of data sets and track 
the algorithmic characteristics of every channel in every file examined. This application, 
entitled "Event_Analyzer", classifies and separates microseismic event files into noise 
events and “good” events. It is also capable of plotting spectrograms (frequency content 
plots that vary with time) for further analysis. Figure 20 depicts the appearance of this 
GUI upon program start-up.  
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FIG. 20. Event_Analyzer program upon start-up. 

RESULTS 
     This program is currently undergoing testing. Preliminary tests have yielded 
reasonably strong results. The end goal of this research is to have this program eventually 
implemented on the Imperial Oil passive seismic monitoring system at Cold Lake, 
Alberta. The magnitude of the economic impact of this GUI application, should it be 
implemented, would be the result of a much higher microseismic file classification 
accuracy for the thousands of microseismic files (at least) that are generated every day at 
the large heavy oil production area of Cold Lake, Alberta. Thus, microseismic files from 
potentially undesirable seismic events caused by various production issues would be 
much easier to find and prompt action would be possible; furthermore, a potential shift in 
focus from manual microseismic file examining to other pertinent production issues 
could occur.  
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CONCLUSIONS 
Microseismic classification algorithms that include frequency filtering, event length 

detection, and statistical analysis are explored and a MATLAB Graphical User Interface 
(GUI) application is created and tested on files generated from the passive seismic 
monitoring system at Cold Lake, Alberta. Preliminary tests have yielded reasonably 
strong results. Much testing remains to be done, however. The end goal of this research is 
to have this program (entitled “Event_Analyzer”) implemented on this Cold Lake passive 
seismic monitoring system.   
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