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ABSTRACT

Most AVO studies use two-parameter inversion methods. These each yield a pair of es-
timated paramters, such as P-wave and S-wave velocity re�ectivities, or intercept and gra-
dient quantities. These methods are all approximations to a more general three-parameter
method based on the Aki-Richards approximation. In addition to the pairs of parameters
generated above, three-parameter inversion also yields a quantity related to density, but this
inversion is often plagued by numerical instability.

For both theoretical and practical reasons, it is of value to understand the relationships
between the various two-parameter methods. To this end, formal expressions are derived
for the inversion errors of each method. Using these expressions, interconversion formulae
are obtained, which allow one to convert the results of any two-parameter method to those
of any other two-parameter method. The analysis demonstrates that the only requirement
is that the maximum angle of incidence be at least a few degrees below any critical angle.
The error expressions obtained also suggest the formulation of additional AVO tools that
may be of use to industry.

INTRODUCTION

The goal in AVO inversion is to determine earth-property contrasts across an interface
from the angle-dependence of seismic amplitudes. The starting point is RPP(θ1), where RPP
is the P-wave re�ection coef�cient determined from seismic amplitudes and θ1 is the angle
of incidence at the interface. The objective is a set of relative contrasts of the form ∆x/x,
where ∆x = x2−x1 is the difference of property x across the interface, and x = (x1+x2)/2
is its average. These can also be expressed as re�ectivities, Rx, as shown in Table 1.
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Table 1. Symbol de�nitions.

αi P-wave velocity of ith layer
βi S-wave velocity of ith layer
ρi density of ith layer
Ii P-wave impedance (= ρα) of ith layer
Ji S-wave impedance (= ρβ) of ith layer
µi shear modulus (= ρβ2) of ith layer
subscript 1 layer above interface
subscript 2 layer below interface
∆x, x = α, β, ρ, I, J x2 − x1

x, x = α, β, ρ, I, J x1+x2

2

Rx, x = α, β, ρ, I, J 1
2

∆x
x

γ (β1 + β2)/(α1 + α2)
σ (1

2
− γ2)/(1− γ2)

NI RI

PR = ∆σ/(1− σ)2 8γ2(Rα −Rβ)
θ1 angle of incidence and P-wave re�ection
θ2 angle P-wave transmission
θ (θ1 + θ2)/2

= θ1 + sin−1(α2

α1
sin θ1)

The Aki-Richards approximation (Aki and Richards, 1980),

RA-R
PP (θ1) =

Rα

cos2 θ
− 8γ2 sin2 θRβ − (4γ2 sin2 θ − 1)Rρ, (1)

is a linearization of the Zoeppritz equations in the three parameters Rα, Rβ , and Rρ. Here
θ is the average of incidence and P-wave transmission angles across the interface. Table 1
shows this to be a function of the incidence angle, θ1, so we can still write RA-R

PP as function
of θ1, even the right hand side of equation 2 is expressed in terms of θ. Note that equation 1
implies a modeling perspective, in which earth-property re�ectivities are known, and the
angle-dependent re�ection coef�cient is approximated. For inversion the reverse is true,
and one ought to write

RPP(θ1) =
RA-R

α

cos2 θ
− 8γ2 sin2 θRA-R

β − (4γ2 sin2 θ − 1)RA-R
ρ . (2)

The Aki-Richards approximation has been the starting point for most AVO inversion work.
While the Zoeppritz equations give exact coef�cients for idealized transmission, re�ection,
and conversion events, their complicated structure necessitates the use of non-linear inver-
sion techniques to extract Rα, Rβ , and Rρ (MacDonald et al., 1987; Russell, 1988). By
contrast, inversion with the Aki-Richards approximation is a one-step process, involving
the least-squares solution of a set of linear equations.

In reality of course one requires some background parameters as input, even for a linear
inversion. For instance, one requires an estimate of Rα, for use in raytracing to obtain θ1,
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and an estimate of γ. These are required to set up the coef�cients in the Aki-Richards
equation.

In practical inversions, the three-parameter Aki-Richards approximation is itself usu-
ally set aside in favor of two-parameter approximations, which are the subject of this study.
The best-known of these are the two-term Shuey expression (Shuey, 1985), which �ts re-
�ectivity curves to the expression

RPP(θ1) = A + B sin2 θ (3)

to generate intercept (A) and gradient (B) information; the Smith-Gidlow approxima-
tion (Smith and Gidlow, 1987),

RPP(θ1) =

(
1

cos2 θ
− γ2 sin2 θ +

1

4

)
RS-G

α − 8γ2 sin2 θRS-G
β , (4)

in which a differential form of Gardner's relation (Gardner et al., 1985) is used to replace
Rρ with Rα, and which generates estimates of Rα and Rβ; the two-term approximation of
Fatti et al. (1994),

RPP(θ1) =
RFatti

I

cos2 θ
− 8γ2 sin2 θRFatti

J , (5)

in which the contribution of Rρ is assumed to be negligible in comparison to that of the
estimated parameters, RI and RJ ; and the method of Verm and Hilterman (1995),

RPP(θ1) = NIVH cos2 θ + PRVH sin2 θ, (6)

which predicts the Normal Incidence (NI) and Poisson Re�ectivity (PR); and the method
described by Goodway (2001) [see his equation (c) and discussion following] in which the
Aki-Richards approximation is expressed in terms of ρ, α, and µ and the constant term
(∆ρ/2ρ) is dropped, yielding an approximation exact in the angular dependence:

RPP(θ1) = (1 + tan2 θ)R(ρ,α,µ)
α − 4γ2 sin2 θR(ρ,α,µ)

µ . (7)

These �ve methods predict estimates for different quantities, yet we hypothesize that
the results should in some manner be consistent with each other, being based on the same
information. The purpose of this research is to develop the theory in a way that exposes
the commonalities of all two-parameter methods, with the expectation that this will have
practical implications for AVO.

The �rst step is to obtain analytic expressions for the inversion error of the common
two-parameter methods; in other words, to show what quantities are truly being estimated
by these methods. Once this goal has been achieved, it can then be shown that the results
of all two-parameter methods contain equivalent information, in the sense that the results
of one can be converted into the results of another. The perspective of this work also sheds
light on a less known AVO approximation which combines the strengths of the methods
of both Smith and Gidlow (1987) and of Fatti et al. (1994). This newer method should be
of value in models featuring a large value of Rρ. This work also shows a simple way to
incorporate local calibration data into AVO results. A number of calculations are carried
out which substantiate the above theoretical claims.
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THEORY

What is actually calculated in two-parameter AVO?

To answer this question, let us assume that the exact re�ectivities are given by inversion
of the Aki-Richards approximation, equation 2, so that RA-R

α = Rα, RA-R
β = Rβ , and

RA-R
ρ = Rρ. Although this neglects nonlinear contributions, it will allow us to answer the

question to linear order. We will consider a simple inversion with only two data points,
at θ = 0 and θ = θmax, as this can be carried out analytically. For the method of Smith
and Gidlow (1987) this would mean equating the full three-term Aki-Richards expression
(equation 2) to the Smith-Gidlow approximation (equation 4) for the two given values of θ,
which then yields two equations:

Rα + Rρ = (5/4)RS-G
α ,

Rα

cos2 θmax

− 8γ2 sin2 θmaxRβ +
(
1− 4γ2 sin2 θmax

)
Rρ =

[
1

cos2 θmax

+
1− 4γ2 sin2 θmax

4

]
RS-G

α − 8γ2 sin2 θmaxR
S-G
β .

Solving these for RS-G
α and RS-G

β yields

RS-G
α = (4/5)(Rα + Rρ) = Rα − (Rα − 4Rρ)/5, (8)

RS-G
β = Rβ − 1

40

(
4 +

1

γ2 cos2 θmax

)
(Rα − 4Rρ). (9)

Note that if the differential Gardner relation (Rα = 4Rρ) is satis�ed then the Smith-Gidlow
results are exact (to linear order).

A similar exercise can be carried out for the rest of equations 3 through 7. From equa-
tions 2 and 5 we obtain the result

RFatti
I = RI , (10)

RFatti
J = RJ − 1

8

(
4− 1

γ2 cos2 θmax

)
Rρ. (11)

This shows that the two-term Fatti approximation is exact if Rρ = 0.

From equations 2 and 6 we �nd

NIVH = NI, (12)

PRVH = PR + (1− 4γ2)RI +

(
1

cos2 θmax

− 4γ2

)
Rα. (13)

These results are exact, for instance, if γ = 1/2 and θmax = 0, or if RI = Rα = 0.

From equations 2 and 7 we �nd

R(ρ,α,µ)
α = Rα + Rρ, (14)
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R(ρ,α,µ)
µ = Rµ +

Rρ

4γ2 cos2 θ
. (15)

These results are exact for Rρ = 0. What is more interesting, with a little manipulation it
can be shown that these results are actually identical to those of the two-term Fatti approx-
imation in equations 10 and 11 (aside from a factor of 2 in the Rµ result). Thus, although
they have been derived in different ways, the fact that both methods employ the Rρ = 0
approximation compels the �nal results to coincide.

Finally, from equations 2 and 3 we obtain the results

A = RI , (16)

B =
RI

cos2 θmax

− 8γ2RJ +

(
4γ2 − 1

cos2 θmax

)
Rρ. (17)

Comparing this to the �exact� expression for B (to linear order) as given, for instance, in
equation 1b of Ramos and Castagna (2001),

Bexact = Rα − 4γ2(2Rβ + Rρ), (18)

then equation 17 can also be written as

B = Bexact + tan2 θmaxRα. (19)

This shows how B in the two-term approximation becomes increasingly contaminated by
the higher-order coef�cient, Cexact = Rα (Shuey, 1985), as θmax increases.

Equations 8 through 17 show precisely what is being calculated by the Smith-Gidlow,
Shuey, (ρ,α,µ), Verm-Hilterman, and Fatti approximations, at least for our simple two-point
inversion. Calculations below will shed further light on their range of validity.

Interconversion formulae

With equations 8�17 we can also readily show that

RI = A = NI = RFatti
I =

5

4
RS-G

α = R(ρ,α,µ)
α , (20)

RFatti
J −RS-G

β =
1

10

(
1 +

1

4γ2 cos2 θmax

)
RI , (21)

RFatti
J + B/(8γ2) =

RI

8γ2 cos2 θmax

, (22)

RS-G
β + B/(8γ2) =

1− γ2 cos2 θmax

10γ2 cos2 θmax

RI , (23)

R(ρ,α,µ)
µ − 2RFatti

J = 0, (24)
PRVH −B = RI . (25)

Thus if the values of γ and θmax used for the AVO inversion are known or can be estimated,
these simple results predict that one can freely interconvert Shuey, Smith-Gidlow, (ρ, α, µ),
Verm-Hilterman and Fatti inversion results.
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Additional AVO tools

From equation 9 we see that the error term in RS-G
β is diminished by cancellation in

the factor 4Rρ − Rα to the extent that the Gardner relation is satis�ed. Similarly, from
equation 11 we see that the error term in RFatti

J is diminished by partial cancellation in the
factor 4− 1

γ2 cos2 θmax
. Could we create a two-parameter method that has cancellation in both

the angle and re�ectivity factors? The method of Fatti et al. (1994) could be modi�ed by
replacing Rρ with RI/5 rather than setting Rρ equal to zero (Larsen, 1999; Ursenbach and
Stewart, 2001). We call this a �large Rρ� approximation, as its usefulness should be most
apparent when Rρ is large. Analogous to equation 5 it is expressed as

RPP(θ1) =

(
1 +

4γ2 cos2 θ − 1

5
sin2 θ

)
RL-ρ

I

cos2 θ
− 8γ2 sin2 θRL-ρ

J , (26)

which leads to the result

RL-ρ
J = RJ − 1

2

(
1− 1

4γ2 cos2 θmax

)(
Rρ − RI

5

)
. (27)

in analogy to equation 11. This result combines the strengths of both the Smith-Gidlow
and Fatti approximations to minimize the Rρ error term. The accurate estimation of RJ is
uniquely desirable as it is used, for instance, in lambda-mu-rho analysis (Goodway et al.,
1997)

A further improvement to the large-Rρ method, and to the Smith-Gidlow method, can
be made if the Gardner rule is locally calibrated, or specialized to a particular lithol-
ogy (Wang, 2000; Ursenbach, 2002). For instance, suppose that well-log data is �t to a
relation of the form ρ = Aα1/g (where g = 4 for the traditional Gardner relation). Employ-
ing this general Gardner relation would lead to the following generalizations of equations 8,
9 and 27:

RS-G,g
α =

g

g + 1
RI = Rα − Rα − gRρ

g + 1
, (28)

RS-G,g
β = Rβ +

1

2(g + 1)

(
1 +

1

4γ2 cos2 θmax

)
(gRρ −Rα), (29)

RL-ρ,g
J = RJ − 1

2

(
1− 1

4γ2 cos2 θmax

)(
Rρ − RI

g + 1

)
. (30)

Combining these results with equations 8, 9 and 27 yields formulae which allow one to
convert Smith-Gidlow or large-Rρ results into the results that would have been obtained
using a value other than g = 4 in Gardner's relation:

RS-G,g
α =

5

4

g

g + 1
RS-G

α , (31)

RS-G,g
β = RS-G

β − 1

8

(
1 +

1

4γ2 cos2 θmax

)
4− g

1 + g
RS-G

α , (32)

RL-ρ,g
J = RL-ρ

J +
1

10

(
1− 1

4γ2 cos2 θmax

)
4− g

1 + g
RL-ρ

I . (33)
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RESULTS

Test of interconvertibility

The interconvertibility decribed above can be effectively demonstrated using a well-
known dataset due to Castagna and Smith (1994) which has been used in a number of
studies (Castagna and Swan, 1997; Castagna et al., 1998; Smith and Sutherland, 1996;
Smith and Gidlow, 2000; Ramos and Castagna, 2001). It consists of elastic parameters for
25 sets of co-existing brine-sand, gas-sand, and shale. The parameters are derived from
well-log data and core measurements. Each set gives rise to �ve possible interfaces (shale-
over-gas, shale-over-brine, gas-over-brine, brine-over-shale, and gas-over-shale), and thus
the dataset describes 125 possible interfaces. Figure 1 displays Zoeppritz coef�cient curves
for 22 of the shale-over-brine interfaces and 22 of the shale-over-gas interfaces. [Three sets
of data (#3, #4 and #6) contain unphysical gas sand parameters (W. Goodway, personal
communication, October, 2004) and are excluded.] It is clear that this dataset contains
a sampling of all AVO classes. Using curves such as those in Figure 1, AVO inversions
have been carried out on synthetic datasets for all 110 possible interfaces. Each of the
110 synthetic datasets consists of re�ection coef�cients for 31 angles of incidence, θ1 =
0◦, 1◦, 2◦, . . . , 30◦. In some cases random noise has been added to the data.

Of course the transformation relationships in equations 20�25, 31�33 are strictly true
only when one is performing an exact inversion with only two offsets. Normally one uses
many offsets from noisy data and applies least-squares techniques. How do such rela-
tionships hold up then? Figure 2 displays results from Fatti inversions for 110 interfaces,
and compares these to results from Smith-Gidlow inversions that have been transformed
to Fatti results using equations 20 and 21. Although the interconversion formulae were
derived for only two points, each of these inversions is based on 31 synthetic data points
with approximately a 5:1 signal to noise ratio (SNR). The transformation relationships are
strongly veri�ed. The only visible deviation occurs for interfaces with the largest values
of |Rα| (note the horizontal scale). The explanation for this is that as |Rα| increases, the
shape of the re�ectivity curve below θi,max becomes less parabolic; the relevant portion of
the re�ection coef�cient curve is then less able to be modeled by two parameters. This is
particularly true for positive Rα, for which θi,max (which is chosen to be 30◦ in all cases)
is approaching a critical angle. Additional tests (not shown) demonstrate that adding noise
to the background values of Rα (used in calculating θmax) and to γ, and both random and
systematic error to the angles, {θ1}, does not degrade the correctness of the transforma-
tion, as long as the same noisy values are used in both the original inversion and in the
transformation. Similar results are also obtained when testing interconversions involving
the Shuey and Verm-Hilterman theories (equations 22�25). This does not mean that the in-
version results themselves are accurate, only that the different methods can represent each
other accurately. Therefore the principal condition for transforming results between differ-
ent two-parameter methods is that θi,max be a suf�cient distance below the critical angle,
apparently at least a few degrees.
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FIG. 1. 44 re�ection coef�cient curves. These contain examples from Class 1, 2, 3 and 4 systems,
as indicated by the four line styles. (The detailed assignment to various classes is arbitrary, but is
reasonable overall.) 66 other curves may also be generated for other interface lithologies, for a total
of 110 curves used for the inversions in this study.
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FIG. 2. Comparison of impedance re�ectivities predicted by the method of Fatti et al. with those
obtained by transformation of Smith-Gidlow inversion results. Note that the predictions are not
claimed to be close to the exact values. It is simply shown that differing two-parameter methods
yield interconnected results. The largest deviations occur with large values of |Rα|, particularly as
θi,max approaches a critical angle.
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Test of large-Rρ method

As a simple test of the ef�cacy of equation 26, we perform inversions of the same
synthetic data as was employed in the generation of Figure 2. In Figure 3 we compare
the results for RL-ρ

J with those predicted by the method of Fatti et al. In this case we
have plotted against the value of Rρ, and we see that the largest discrepancies are for the
extreme values of the horizontal coordinate. Next in Figure 4 we plot the error of the results
from Figure 3 by subtracting off the exact value of RJ . Now it is clear that, in the cases
featuring discrepancy between the two methods, the large-Rρ method shows improvement
over the method of Fatti et al. This is to be expected, as the Large-Rρ method aims for more
accurate treatment of the density term, which will only be signi�cant for large Rρ values.
Note that in the spirit of interconvertibility, it is of course not necessary to actually carry out
a large-Rρ inversion; such results can be obtained from legacy inversion results employing
formulae derived straightforwardly using the methods of this paper. For instance, it may be
readily veri�ed that

RL-ρ
J = RS-G

β + (1/4)RS-G
α . (34)

Thus Smith-Gidlow inversion results (Smith and Gidlow, 1987) can be used to give a better
estimate of RJ than is obtained from a Fatti inversion (Fatti et al., 1994).

CONCLUSIONS

The principal conclusion of this work is that all two-parameter AVO inversion methods
yield results with equivalent information content. This does not mean that they give the
same results, but rather that their results may be interconverted using derivable formulae.
This conclusion does begin to break down at large offsets, particularly if one approaches a
critical angle. For many practical cases though such conditions are not met, and intercon-
version promises to provide an ef�cient approach to multiple perspectives for interpretation,
both on new datasets, and on legacy AVO inversions.

This work further shows that the classic methods of Fatti et al. (1994) and Smith and
Gidlow (1987) can be combined to yield a more accurate estimate of shear-wave impedance
re�ectivity, particularly for cases where there is a relatively large density change across an
interface.

Finally, a simple method is given for modifying legacy inversion results to account for
local calibration of the Gardner relation (Gardner et al., 1985).
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