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ABSTRACT

Since the seminal work of O’Doherty and Anstey, which describes a relationship be-
tween the spectra of the reflectivity of a one-dimensional random medium and of a trans-
mitted pulse, a number of researchers have investigated the qualitative nature and the extent
of the validity of this approximate relationship from different angles. A description of the
design of an experiment to qualitatively illustrate the relationship is documented. The re-
sults of that experiment and some potential applications of the use of the effect then follow.

INTRODUCTION

O’Doherty and Anstey (1971) maintain that the power spectral densityR of the reflec-
tion coefficients of a finely layered random medium is related to the magnitude spectrum
of a transmitted spike through that medium in the following way:

T (ω) ∝ e−R∆. (1)

where∆ is the two-way travel time when the system is viewed according to Goupillaud
layering (Goupillaud, 1961; Hsu and Burridge, 1991).

Original Derivation

The original authors explain the result by partitioning the amplitude of the one way
transmitted response, that which a receiver at the base of the layers would receive, accord-
ing to the delayl introduced into the response due to multiple reflections, and the number
2k of internal reflections. They insist that when−m is the causal part of the autocorrelation
of the reflectivity series, the contributionsk(l) of that part which has undergone2k internal
reflections and has been delayed byk∆ seconds satisfies the following relations:

s1(l) = m(l)

sk+1 =
1

k
sk ∗m. (2)

Note thats0 is the direct arrival and that the crucial convolution above is discussed further
in Appendix A. So the one way transmitted response is proportional to the expression

1 + s1 + s2 + · · ·+ sk + · · · = 1 + s1 +
1

2
s1 ∗m +

1

3!
s1 ∗m ∗m + · · ·

and that the magnitude spectrum of this response is proportional toeM , whereM = m̂.
The magnitude spectrum of the two-way response is now proportional to

e2M = e−R∆.
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Related work

The relationship between the O’Doherty-Anstey effect and apparent attenuation has
been a topic of study (Richards and Menke, 1983; Schoenberger and Levin, 1978; Wenner-
berg and Frankel, 1989). Richards and Menke (1983), in particular, follows a numerical
approach which is shared by Martínez, V. L., and Sacchi, M. D; Mateeva, A., Hart, D., and
Mackay, S.; Schoenberger and Levin (1974, 1978).

Shapiro and Treitel (1997) treat the effect as the result of a first order approximation
of exact fundamental polynomials developed by Robinson and Treitel (1977).∗ The idea
of the formula being a truncated expansion is reiterated by Berlyand and Burridge (1995),
who derive their results in great detail in the continuous and discrete cases, show a con-
nection between the Ricatti equation and what they call the linear fractional recursion, and
display bounds on the error of the approximation.

The fundamental polynomials of Robinson and Treitel (1977), which form the basis of
a z-domain technique for computing multiples, are also the foundations of the perspective
in which the amplitudes of multiples are viewed as an autoregressive time-series. This
approach is taken by Kerner and Harris (1994); Shapiro and Hubral (1999); Walden and
Hosken (1985); Hubral et al. (1980). Walden and Hosken (1985) go further by deriving
an approximate relationship between the power spectrum of the logarithms of the acoustic
impedance and the power spectrum of reflection coefficients.

More exotic approaches include mean field solutions of the stochastic wave equation
versus the Born approximation (Banik et al., 1985), generalization of the Born approxi-
mation (Resnick et al., 1986), diffusion approximations in limiting solutions (Burridge and
Chang, 1989; Burridge et al., 1988), invariant embedding with perturbation expansions and
localization (Shapiro et al., 1996), Gabor wavelets (Morlet et al., 1982a,b), and radiative
transfer Haney et al. (2005); van Wijk et al. (2003).

Other authors consider the distinction between regimes in which Backus averaging
(Backus, 1962) and Eq. (1) are appropriate (Stovas and Arntsen, 2006) and angle depen-
dency extensions to the typical normal incident case (Burridge and Chang, 1989; Shapiro
et al., 1994; Kerner and Harris, 1994).

METHOD

To illustrate the presence of the effect described by Eq. (1), we decided to follow
O’Doherty and Anstey (1971) and, in particular to reproduce figure 15 of O’Doherty and
Anstey (1971) . This amounts to showing graphically thatlog T ∝ −R. To achieve this
goal, a reflectivity series was chosen and a spike wavelet was applied to this series to
produce a response with all multiples. The amplitude spectrum of the multiple train was
then plotted as was the power spectral density of the reflectivity to effect a comparison as

∗This latter paper is important for another reason. In it, the authors show that the recursive algorithm for
carrying out the determination of the reflection coefficients is the same as the Levinson recursive method for
the solution of normal equations.
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in figure 15 of O’Doherty and Anstey (1971) .

The multiple generating code wastheo_simple, which can be found in the CREWES
toolbox. It was written by Margrave and was derived from an algorithm by Waters (1981).

RESULTS

Preliminary results did show broadening of the spike impulse, which is an indication
of dispersion (FIG.2) Also, attenuation of higher frequencies is clear in FIG.4. However,
as shown in FIG.7, where a positive correlation is seen, the effect was not demonstrated.

FIG. 1. A reflectivity series which has been padded with zeros to extend multiple train.

FIG. 2. The Green’s function of the layers represented by FIG.1.
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FIG. 3. The full power spectral density of the series in FIG.1.

FIG. 4. The logarithm of the full amplitude spectrum of the multiple train in FIG.2.
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FIG. 5. The power spectral density of the series in FIG.1 restricted to below 500 Hz.

FIG. 6. The logarithm of the amplitude spectrum of the multiple train in FIG.2 restricted to below
500 Hz.
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FIG. 7. A scatter plot of log(reflectivity psd) versus log(filter response spectrum) for frequencies
below 500 Hz.

CONCLUSIONS

Of all the documents referred to as related work, only Serakiotou (1988, p. 389) and
Resnick et al. (1986, p 361) produce a figure describing the effect with the clarity of figure
15 of O’Doherty and Anstey (1971) . This suggests that as a tool for applied work, the
O’Doherty-Anstey relation is still evolving.

However, the appeal of a technique which would enable processors to see structure
beyond wavelength limitations and to reconstruct reflectivities beneath VSP logs remains.
Were we able to construct the power spectral density of the series from multiple trans-
mission response data, the full reflectivity would be calculable as stratigraphic filters are
minimum phase (Appendix B; Noted by O’Doherty and Anstey (1971)).

APPENDIX A

THE INTUITION BEHIND EQ. (2)

The essential part of the formula ignores the effect of transmission coefficients and
focuses on reflections. This is one feature of the approximation, which may affect its
accuracy.

As illustrated in FIG.A-1, the contribution tosk(l) due tok upward directed subpaths
of lengthl1, l2, · · · , lk, wherel =

∑k
j=1 lj, is given by (A-1) below.
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FIG. A-1. A raypath contributing to sk(l).

(
−

N−l1∑
j1=1

rj1rj1+l1

)−min(N−l2,j1+l1−1)∑
j2=1

rj2rj2+l2

−min(N−l3,j2+l2−1)∑
j3=1

rj3rj3+l3

 · · ·

︸ ︷︷ ︸
k-fold sum

(A-1)

The upper limits on the summations reflect the facts that rays are not transmitted across
the surface, and that each upward subpath starts below a downward one. If we set all these
upper limits toN , then thek-fold sum can be written as ak-fold product of terms like

−
N∑

ji=1

rji
rji+li ,

which is minus the autocorrelation ofr at delayli. But theli’s sum tol, so

sk(l) =

k-fold convolution︷ ︸︸ ︷
m ∗m ∗ · · · ∗m

k!
,

where thek! in the denominator captures the ordering imposed by the starting condition
above.

APPENDIX B

THE FILTER IS MINIMUM PHASE

Since−m is causal, the real and imaginary parts of its spectrumM form a Hilbert
transform pair:

=M = H<M.

Thus the phaseφ of e−R∆ is

φ = =(−R∆) = =(2M) = H(<(2M)) = H log |e2M |,

which means thate−R∆ is minimum phase.
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