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ABSTRACT

The analytic separation of upgoing and downgoing wavefigidacoustic media is
summarized, and explicit relations are given for use intaksdepth migration of seismic
data under the acoustic assumption. The linearized wavatiegs for acoustic media are
assumed to be valid, and planewave decomposition of peeasidrdisplacement is used to
generate a set of coupled differential equations for presand vertical displacement. A
wavefield-separation operator is then postulated whosetaff to separate upgoing waves
from downgoing waves, and time averaged (normalized) gniug density is used to
determine coefficients for this operator.

INTRODUCTION

Though improvements in computational throughput havenadtbfor increased sophis-
tication in seismic imaging, 3D prestack depth migratiobased, often, on an acoustic
model of the earth (rather than the true elastic model). Bagédtie acoustic wave equa-
tions, then, many imaging operators are designed for defgtation in elastic media. As
pointed out by Zhang and Zhang (2005), conventional acoapgrators lose amplitude fi-
delity in even the simplest media. As a remedy, Zhang and gk2005) provide a source
function for use in forward modelling and migration in acbeisnedia. Their approach
improves amplitude fidelity of acoustic operators, anddf@e seismic images, for high
wavenumbers.

An alternative remedy for amplitude fidelity is proposed l®dersen et al. (2007) in
notes based on time averaged (normalized) energy flux ge@iough not explored in
this paper, there is expectation of improved amplitudegrarnce when the separation
operators of (Pedersen et al., 2007) are employed in seisraging.

This paper begins with the definition of total energy for auwoé within an elastic
medium. Kinetic energy is given in terms of displacement@erusity, and potential energy
is given in terms of elasticity and 21 independent coeffiseihe elastic medium is then
assumed to be acoustic so that 1 coefficient plus density levetypdescribes the medium.
To derive a conservation relation for total energy in terrhbyalrophone and geophone
measurements, the wave equations of linear acousticssyseeand particle velocity are
introduced. then, through analysis of individual planeggvenergy flux density time-
averaged (normalized) over the duration of a passing waslds/a conservative relatign
that is given in terms of pressure and particle velocity.

An operator for wavefield separation is then postulated dasethe system of lin-
earized wave equations for acoustics, anslused to solve for the coefficients. The result
is a set of explicit definitions of the upgoing components do@ngoing components of
acoustic media.
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THEORY

Total energyF in volumeV within an elastic medium is the sum of kinetic eneigy
and potential energy

= /v (W + @] 4V, (2)

where kinetic energW is associated with densipy particle displacemeny, and velocity
V=V-V= ZZ , U; U; according to Easley and Brown (1990)

1 1 . .
W=gpv-v=-pUU, (2)
2 2
and repeated indices indicate summation. For elastic casftitensolC < C;jy,;, poten-

tial energy® is
1
d = 3 Cijri Ui j U, 3)
where indices to the right of the comma indicate differdrdia For an acoustic medium,

C simplifies to a single parametar
Cijit = X 04 Opa, (4)

whereJ is the Kronecker delta-function. Substitute equation 4Gan equation 3 and it
reduces to

1
® =5 AUs; Uk (5)
To simplify manipulation of equations 2 and 5, we may writerthin vector notation as
1 . .
W=3pU-U, (6)
and .
ézivam? (7)

whereV'- is the divergence operator. According to equations 1, 6,7atiaen, total energy
E for an acoustic medium is

E:%ApFYU+§ﬂWdeM (8)

wherec = \/\/p is the speed of sound.

In seismology, we record hydrostatic-pressireand displacement velocity vecteor
so we wantt in terms ofv and P. For Ilnear acoustics, then, we have the following wave
equations in terms aP, v = U, andv =

P+AV-U=0, (9)
from conservation of mass and, from conservation of force,

pU+ VP =0, (10)
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whereV is the gradient operator. The rate of changdzah the volume is the temporal
derivative of equation 8 (Ursin, 1984; Easley and Brown, 3@&@ording to

%_f:/p[ﬁ.ﬁ+c2 (VI"J)Q]dV, (11)
\%4

and, according to equation 10, replddewith _713 V P so that equation 11 becomes

aE— 1 . 9 LN 2
E_/Vp {—;VP-U—i—c (vu) }dv. (12)

From the first theorem of Green,

—/VP-UdV:/PV-UdV—/PU-ﬁdS, (13)
\%4 \4 S

whereS is the surface enclosirlg, andn is a unit vector normal t6'. Replace the volume
integral of VP - U in equation 12 with equation 13 to get

E .
a—z/V-U[P+)\V-U]dV—/PU-ﬁdS. (14)
ot v s
From equation 9, and from the basic definition of integrative have
P+)\V-U:/P+)\V~Udt:e, (15)
wheree is a constant, and equation 14 is reduced to

o e—P "
W_/v( \ )edV—/SPU-ndS. (16)

To determine a value far, consider that, prior to the passage of an acoustic wave,0
and total energy’ = 0, so if we integrate equation 16 ovewe have

2
8—Edt:E:O://€—dth. (17)
, Ot o

For time invariant\, equation 17 is reduced to a volume integral

62 62
E:O:[t+e]/—dV:/—dV, (18)
v A v A
and from equation 18, then, for> 0 and\ << oo, € = 0, equation 15 becomes
P+AV-U=0. (29)

According to equation 19)E /0t (equation 16) is reduced to the following surface integral
(Ursin, 1984):
ok

—:/)\V-UU-ﬁdS. (20)
ot Jg
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Because seismic data is multidimensional, plane-wave deosition is used to sim-
plify data analysis. It is natural, therefore, that we cdesi&Z of individual plane-waves
according to

U= [Ul él + U2 ég + U3 é3] ei[wt—k-x]. (21)
wherew is temporal frequency = =1 €; + 12 €5 + r3é3 andk = ky e, + ky €y + k3 €3
are space and wavenumber vectors respectively, and

w
ks = —\/1—k? — k2. 22
s =\ 1- =13 (22)

Regardless of our model of displacement-vedtrhowever,0E/dt is real valued, and
energy flux densityv - UU from the integrand of equation 20, therefore, is also real
valued. Real-value® - U U is written (Ursin, 1984)

. 1 o T -
%{V-UU}:Z[V-[UJrU][UJrUH, (23)
wherex indicates complex conjugate. Factor equation 23 so thasitwo terms according
to:
%{V-UU} 1 [UV~U+U*V~U*] 41 [U*V-U+UV-U*} L (24)
4 4

Notice that complex exponentials in the second term cargal,dor examplelU* V - U
where, using equation21, it is reduced to

U*VU: —Ww []'ClUl‘FkQUg‘Fk’gUg} |:U1é1+U2é2+U3é3:| . (25)

Complex exponentials in the first term do not cancel as in, f¥ample, U V - U where,
using equation 21, ‘ ' '
UV.-U=-U"V.Ueilwt-kx] (26)

andU* V - U is given by equation 25 (Ursin, 1984).
If we compute the time average @f /0t for the period:; — t,, wheret; > 0, t; > 0,

and ift, — t, is large, the first term of equation 24 cancels. For exambtetitme integral
of UV - U according to

1 f2 .
/ Uuv.-U-=
to —1t1 Jy

to
UV . Ue 2ilkx] / e 2t gt =0, (27)

2 — U1 t1

is zero because of the complex exponential iNormalized energy flux density, therefore,

IS
1

"
wheree is a constant. Again, from steady-state consideratioas(), and

/AV.UUdt—}lA[U*V-U+UV-U*}+6, (28)

g=—;[UPrUP], (29)
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where, from equation 19V - U = —P/\ has been substituted, aitlis the plane-wave
decomposition of pressute according to
D 1 OO i [kx—wt]
P = 3 Pe dx. (30)
(27)° Jooo

FromU = v, wherev is the plane-wave decomposition of the particle-velocigtor
according to

1 <
v = e )3 / v lkx=wtl gy (31)
™ —00

normalized energy flux (equation 29) is (Ursin, 1984)

g:—% [v*ﬁ+vﬁ*]. (32)

Fourier domain linear acoustic equations

For conventional acquisition of seismic data, a recorditam@ is established where
xr3 = T3 is constant nominally. In this case, plane-wave decomiposif P andv become

. 1 ©
P = Tk / P etbrothaea=wll qu dg,y, (33)
™ —00
and . -
vV = —(2 )2 / Vei [ @1tk 22 —wt] dl’l dIQ. (34)
™ —00

In the Fourier domain, according to equations 33 and 34, itleail, acoustic wave equa-
tions of equations 9 and 10 become

—iw]5+)\ |:’L'k11~11+2'/€2?~}2—|—i113‘| :O, (35)
8;1:3
and 5
3

Equation 36 is a vector equation that provides the follovaystem of three equations:

pwf)l = ]ﬁP

pwﬁg = kQP (37)
. _ 8 =~

p (iw) vy = 8—@P,

So, from equation 37 we have the following differential etipra

iP:iu)pvg. (38)
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to relate P and v;, wherews is particle velocity in the normal to the recording plane.
Further, use equation 37 to eliminateandd, in equation 35 to give (Ursin, 1984)

0 vy = L3 p (39)

S NORE]
C w W

Separ ation of up-going and down-going waves

where

Equations 38 and 39 provide the following system of coupladerequations:

o [P . O p| [P
8_%{@31:“0[’)—%0 l } (41)

v
) 3

In reflection seismology, we are interested in up-going c&tlas from boundaries of in-
terest, and down-going waves are a component of seismie.ndis seek, therefore, filter
L such that (Amundsen, 2001)

P Ly Ly U
= 42
where
Lll L12
L& 43
{Lzl L22]’ (43)

andU andD are the up-going and down-going wavefields respectivell. dan be deter-
mined, and if it's inversd.~! exists, therlU/ and D can be separated.

Assume, then, thdt is independent af; in homogeneous media and substitute equa-
tion 42 for[UD]" in equation 41, and then left multiply Hy ! to get

O w—iw [L7"A] [LW], (44)
8333
where
we | U (45)
D Y
and
0 p
A& [ %o ] : (46)
P
Apply the associative law of matrices to equation 44 to get
D w—iu [L7"AL] W. (47)
axg
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Eigenvalue-value decomposition Afgives (Amundsen, 2001)

A=BDB}, (48)
where
B = [81|82] s (49)
has columns made up of the eigenvectarande, of A, and
A0

is a diagonal matrix made up of the eigenvaldesand), of A. Substitute equation 48 for
A in equation 47 to get

D w—iu [L'BDB'L] W. (51)
8:1:3
From the requirement that
det{D — A} =0, (52)
we have
A= —ps3 0
D= . 53
0 h=p (53)
Then, from equations 51 and 53, wave equation 41 becomesr{édsen, 2001)
iW =iwDW. (54)
61’3

Equation 54 implieSL.-' BB~! L] = I, and this is satisfied by the following definition
(Amundsen, 2001):

B =L = [e|ey]. (55)
Eigenvectore; ande, are computed according to (Amundsen, 2001)
[—psI— AJe; =0, (56)
and
(31— Aley =0, (57)

wherel andO are the identity matrix and the zero matrix respectivelyu&igpns 56 and
57 have no explicit solution, however, but they do resthetélements with ie; ande, as
follows:

€] <= €11 [ _1p_3 } ) (58)
and p
& > e { . ] (59)
wheree;; andey; are unknown (for now) scalarps, and
L =[ei|es] & [ % Z } , (60)
Z Z

CREWES Research Report — Volume 19 (2007) 7



Robert J. Ferguson

whereZ = pﬁ. For a hydrostatic medium, normalized energy flux densitjhéx; direc-
tion is given 3by Pedersen et al. (2007)
o []51)*+]5*v‘}. (61)
410 ’
From equation 42, equation 61 is computed

1 { (LU + Ly D) r { (L1 U + Lay D) ]

$="7 | (LnU+ LnD) (LU + LisD)’

From equation 60, SUbStitUiell = ey1, L1a = €91, Loy = —611/Z, andL22 = 621/2 in
equation 62, and then collect termstot/*, U D*, D U*, andD D* to get

(62)

§3 = 57 [611 e UU" —ege5, D D*] ) (63)

where we assumg = Z*. (Note,Z = Z* corresponds to real valugcand non-evanescent
propagation.) According to equation 60, we are free to ckegsande,;, SO

& =[UU"— DD, (64)
is satisfied for (Pedersen et al., 2007)
€11 — 6;1 — €921 = 6;1 =V 27. (65)

From equation 60, we may now writeexplicitly as

Leva| vz vz |\ (66)
VZ vz
and forL~! we have
2| = —VZ
L_l(i)il*? ? . (67)
4 7z Z
From equation 42 and 67, then, we have for up-going waves{Bed et al., 2007)
1 ro. -
U= P—-uvZ|, 68
Wordl 52 (68)
and for down-going waves (Pedersen et al., 2007)
1 ro. -
D = P+uvsZ|. 69
WA 57| (69)
DISCUSSION

Equations 68 and 69 provide a starting point from which prastiepth migration may
be developed. Operatd? (equation 69) is now available to derive the source wavetéld
depth migration, an@ (equation 68) is now available to condition the recordedefiaid.
Because botlD andU are developed strictly for the acoustic case, they shoultbpe
well in imaging for smooth media variations. Future appglmato prestack depth migra-
tion are planned. The expectation is that, for media that wath depth, amplitude fidelity
to 90 degrees will be preserved usifigand D in the provision of starting wavefields.
Unclear, for the present, is accuracy in media that varylioadrdinates.
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CONCLUSIONS

Operators for the separation of up and downgoing wavefigldslaveloped. These
operators are valid for acoustic media and so they are $eiitabuse in the provision of
starting wavefields for common methods of prestack imagifige operators are devel-
oped from the linearized wave equations of acoustic mediaplanewave decomposition
of pressure and displacement. The resulting set of couplisniehtial equations for pres-
sure and vertical displacement are then compared to a a@tiserrelation derived from
normalized energy flux density.
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