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Seismic statics application plus trace interpolation
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ABSTRACT

Simultaneous correction of near-surface statics and iraegpolation is constructed
from a Fourier integral representation of wavefield exttappon and implemented in a
least-squares sense. Synthetic examples based on extetoo@gyvvariation and extreme
elevation change are used to demonstrate individually@gether the aspects of interpola-
tion and of the full statics-application-plus-interpatex (STAPPI). The Husky 2D dataset
is used to to demonstrate that this approach interpolatssimgi traces and applies near-
surface statics in a real setting with extreme near surfagation in velocity and elevation.

The method is found to be computationally intensive, andppraimation based on
expansion of the Hessian matrix is derived and implememddur term implementation
of the expansion of the Hessian is developed and testedstigh&exact operator. The
approximate method is found to return comparable data towftthe exact method for all
but the most extreme cases. Though computational efficisrioyproved by only a scalar
relative to the exact algorithm, this work provides an atiaignd numerical platform upon
which to build an accurate operator that reduces the ordsrcagted with computational
cost.

INTRODUCTION

Ferguson (2006) presents a method by which severe staticaoe irregularity are
corrected. The analytic basis for this method results inlgorghm that is extremely
expensive to apply in 2D and impossible to implement in 3Dtduwmst. An approximation
is then developed in Ferguson (2006) by which computatieffalt is reduced through
efficient, limited computation of the Hessian of the coraggting inverse problem. Here,
I revisit this approach, and | provide a more solid analyésib for approximation through
series approximation and truncation. Though the resuliiggrithm is not significantly
more efficient than the algorithm of Ferguson (2006), it espnts an analytic form that is
useful as a basis for further, and perhaps more fruitfulr@amation; and | provide some
insight into this in this paper. | develop a more rigorouseskpental procedure here as
well, with great care taken to illustrate the utility and a@xy of this approach. Further, |
introduce a new acronym - STAPPI (statics application phisrpolation) - to the lexicon
of geophysics in this paper.

The problem addressed specifically in this paper is that ishse data recorded in
extreme terrains, or in regions of patchy surface accessehalt in irregular source and
receiver spacing. This suffering is the result, partiatli/the huge dependence on the
fast Fourier-transform in seismic data processing, andebeltant requirement of regular
spacing. Then, because irregular spacing makes ambigbeustputation of a spatial
Nyquist, maximum phase angle is suspect, and spurious \epeopagates through all
stages of processing and imaging. Further, irregular tspegeing introduces a 'footprint’
of migration artifacts when data are imaged (Nemeth et 8P91 provide numerous ex-
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amples). Data, therefore, shouldtegularized prior to processing and imaging.

Currently, as a remedy for irregular trace-spacing, filteesused to construct missing
traces from the spectra of surrounding traces (Spitz, 1981and Sacchi, 2004). As well,
the interpolation properties of wave propagation can be tsdill empty trace-locations
(Ronen, 1987; Zhu and Lines, 1997). In Fourier reconstracgparse Fourier inversion is
used to estimate missing traces (Duijndam et al., 1999; fagand Duijndam, 2000).

Besides the problem of irregular trace spacing, conditibas tesult in irregular data
are often associated with strong heterogeneity and/ootiosy close to the surface. Re-
flections of interest in the deeper section appear distamtedch areas, and when analyzed
for moveout, for example, erroneous velocity-interptietatan result, and imaging is com-
promised further — beyond problems associated with misseges. Offshore, rugosity
of the seafloor can have a similar effect — in particular wheewis shallow (Ferguson
and Mosher, 2003).

Numerous approaches exist to correct for complex neaaseurBerryhill (1985) mit-
igates the effect of heterogeneous surface-layers withefiedd-extrapolation operators
based on the wave equation. Berryhill (1979) uses a wavetieguapproach to improve
the coherence of reflections on synthetic zero-offset @dga,on real, prestack-data. Wig-
gins (1984) provides similar examples using data from a isAysnodel. Yilmaz and
Lucas (1986) improve velocity analysis by using a wave-ggoabased correction for
near-surface variation. Bevc (1997), and Shtivelman and i@gr{t987) demonstrate the
superiority of wave-equation based correction over theensommon elevation-statics (re-
striction of rays to normal incidence). At their core, alltbbse methods are ray-based
implementations (see for example Schneider (1978)), anst o&e only smoothly vary-
ing velocities (presumably due to limitations in raytraginReshef (1991) uses a scheme
analogous to the Phase-shift-plus-interpolation meti@@akz{iag and Sguazzero, 1985) to
datum wavefields recorded on irregular surfaces.

In Ferguson (2006), the problems of irregular spacing aisand statics are addressed
simultaneously using damped least-squares. Missingdi@eereplaced with null traces so
that the actual and nominal trace spacings are equal, amdrthiluces an even-determined
inverse problem. Then, following the example of Kuhl and ®&a¢2004), a weighting
matrix is introduced so that dead, edited, or padded traeegigen zero weight during
inversion. A minimum-roughness criterion (Nemeth et 899, reverse VSP example) is
then imposed to help ensure uniqueness, and a user pararoetgrols how rough/smooth
the result appears. A regularized/datumed wavefield is toemputed that minimizes a
combination of weighted prediction-error and solutiongbness (Ferguson, 2006). To
accommodate statics correction, inversion is done in a fieodversion of the the layer-
by-layer approach of Reshef (1991).

Similar to other authors, Ferguson (2006) finds that contjoutaf the Hessian in regu-
larization/datuming is very costly for large numbers ot&a. Chavent and Plessix (1999),
for example, use efficient, partial mass-lumping to deteenthe Hessian associated with
least-squares Kirchhoff migration. Guitton (2004) appmmates the Hessian and corrects
Kirchhoff imaging using banks of nonstationary match-fgteKiihl and Sacchi (2004) use
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efficient, Fourier-domain operators (Gazdag and Sguazi&®4; Margrave and Fergu-
son, 1999, phase-shift-plus-interpolation, and norwtaty-phase shift respectively) to
compute the Hessian associated with least-squares, dsgbére-root imaging.

In this paper, | begin with the general expression for reggdéion and redatum by
the Newton method developed by Ferguson (2006). | depart fhas development at the
point of approximation of the Hessian. Where Ferguson (2@@&ys a sparse matrix-
operator that is fast to compute, | develop an asymptoticaqmation that | truncate. My
development here provides a prescription for fast calmriatf the Hessian plus an analytic
framework for further study. In contrast, Ferguson (200@®yvmles only a prescription for
fast calculation plus a qualitative justification. The \ala the current work, therefore,
lies with the analytic framework, and in the anticipatioatthn even faster perscription is
possible.

In addition to provision of an analytic framework for STAP#Bt has potential for
wider usage, | test STAPPI rigorously with real and synthéata. | recognize that, though
the interpolation and statics aspects of STAPPI are cordbthey may be separated, so |
test STAPPI first as an interpolator, and then as a combirtetpimlator and statics applier.
| demonstrate that, fahz = 0, STAPPI reduces to an interpolator that is potentially much
faster than full STAPPI.

Based on synthetic models and data, | find that, under extreztoeity variation,
STAPPI run as an interpolator recovers reliable trace datanbderate and even severe
trace decimation, and I find that the approximate operatarme results near identical to
the exact operator

| then add extreme variation in receiver depth to these nspdetompute the data,
decimate, and | find that full STAPPI is able again to recoediable trace data. Here,
however, differences between the approximate operatott@eéxact operator are more
apparent - especially in their spectra. Significant difiees, however, are restricted to
severe decimation. | find that as severity of decimationgases, maximum phase-angle
in the data decreases with increased frequency. | idetigyrélationship as the price paid
for irregular trace coverage.

Based on real data, | find that, as an interpolatot = 0), STAPPI is quite tolerant of
strong velocity contrast and elevation change. | find thateiesed phase-angle-with-with-
frequency is much less apparent on the real data comparéxa teyhthetic data owing,
probably, to the reduced relative aperture of the real anthsyic data. Full STAPPI and
its approximation, implemented within the procedure of RE€$h991), provide effective
interpolation and statics correction (based on a velocibgdeh derived by turning-wave
tomography).

To test potentially cheap alternatives to STAPPI, | comphese results to statics
correction by generalized phase-shift-plus-interpola{iGPSPI) (Gazdag and Sguazzero,

*| definemoderate decimation as the setting 50% of traces to NULL randomly, lastefinesevere as the
setting to NULL 80% of traces randomly.
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1984; Margrave and Ferguson, 1999) implemented within tbeqaure of Reshef (1991).
| interpolate the data with approximate STAPPI and thenyaggatics with GPSPI. | find

that considerable spurious-energy is present in the GP&puband that the resulting
spectrum is disordered. | repeat the experiment with canweal statics, and find, surpris-
ingly, that the GPSPI result is not much better than thecstagsult. | conclude that, as
a cheap alternative to STAPPI, interpolation by approxen®&fAPPI followed by conven-
tional statics is a good solution for these data when conaigarenterpolation and GPSPI.

To verify the expectation that GPSPI will interpolate as &ural outcome of statics
correction (Berryhill, 1985), | apply GPSPI to the unintdgied data. Though traces are
interpolated, spurious energy very strong, and the spedgincreased in disorder relative
to interpolation followed by GPSPI. | repeat this experiingith conventional statics, and
again, surprisingly, the spectrum is as disordered witinémion-evanescent region as is the
GPSPI spectrum.

THEORY

Given monochromatic wavefietd., the Newton-method solution (Tarantola, 1987, pg.
251) for extrapolated wavefield. , A . is (Ferguson, 2006)

Voyne = [UAN, WU p + €W, ] 7 U, Wete, (1)

wherelV, andV,, are a weighting operator and a smoothing operator respégtands2

is a scalar that controls the amount of smoothing (Menke9.198). 53 - 54). Operator
U_a. and its adjoint/4, , are known as one-way operators that move wavefields distance
—Az according to a user-defined model of seismic velocity (Margrand Ferguson, 1999;
Ferguson and Margrave, 2002).

Computationally,U_». andU“,, are matrices that can be very large. For 2D data,
these matrices may have hundreds or thousands of columresamilar number of rows.
For 3D datal/_». andU%,_ are still matrices (Berkhout, 1985), but dimensions scale by
hundreds or thousands depending on acquisition desigrmoWiapproximation, compu-
tation of [U2,, W, U_a. . («/)] (z) within equation 1 is prohibitively expensive in 2D,
and impossible (practically speaking) in 3D currently.

Ferguson (2006) and Kihl and Sacchi (2004) explore difteeehhoc approximations
to
SAZ = UfAz We U7A27 (2)

for use within Hessian of equation 1. Kiihl and Sacchi (208é)phaseshift-plus-interpolation
(PSPI) (Gazdag and Sguazzero, 1984) within a conjugateemtafdlamework, and Fergu-
son (2006) computes and applies directly only a limited nemab diagonals fo5 ., and
then computes the inverse using an efficient LU operators @pproach results in a dip-
limited operator related to the — = migration of Berkhout (1985). Moreover, though
LU inversion is implemented, a conjugate gradient soluisocontemplated by the author
currently, and it is expected to speed inversion considgrab

Though the development of Ferguson (2006) results in ingr@nts in computational
efficiency, diagonal limiting provides little analytic ight, for example for error analy-
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sis, or for development of further improvements, so an ditapproximation taS_x. is
desirable. From Ferguson (2006), given arbitrary wavefield

SAz¢z ( )
/1/12 —ilkew—alomilkea =yl (y K1Y G (y, ke)_ s dke dy dE. d2’, (3)

where extrapolatw is
A, = eZAZkza (4)

and, for temporal frequendy| = w, wavenumberg, are

ek = | SIAD RO LZ g I g < ®
isgn(Az) k(y) (/1 - L it fel> )
where w
bloe) = S0 )

andv is seismic velocity that varies laterally within the thimaisl

As itis, operatoiS,, is extremely costly to apply. In 2D, for example, Fergusd@0@
finds that cost isx N3 whereNN is the number of traces. This cost is the cost of the inner
loop of the inversion, and outside it is a loop over temporagfiency, and then a loop
over depth. For hundreds of traces, frequencies, and deptlession of a single trace
gather can run for hours on a single processor. In 3D, coshefirtner loop remains
x N3, however, loops associated with the x-line coordinaterareduced, and cost of the
basic-operator increases d° assuming equal numbers of inline and x-line traces. For
N = 1000, for example, cost isc 10'® flops per frequency per depth.

APPROXIMATE HESSIAN

Because the Newton method implemented using equation 3 tly tosmplement in
3D, some kind of approximation must be considered. Begin egtiiation 3, and introduce
coordinatef =kl — k., k. =&+ k., anddé = dk., to get

[SAZ )
e eiv'ke gmizlethal oy (€ 4+ ky) G (y, k) dky dy dE dx.

(7)

Expanda (¢ + k,) o, as a Taylor series ik, according to

o (€+ka)a Z [0, 0 (k)] €, (8)

0

and then computg — £ to eliminate an integral in favour of an infinite sum (that waym
expect to truncate later) so that

[Sa- 1 ()] (x) = e el lem G H (€ ky ) a, dhy dE da’ (9)
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where
H(ek);a = [ €[00 (ks 6 (ko) . dy (10)

Because, for generic functiofi and its spectrunt’, differentiation and integration are
related through

i f (1) = — /gﬂ F(€) e ™" de, (11)
we may computé — x to eliminate another integral

Z

ZOJ

[Saz 1 ()] (z) = e Rl O by (3, k) ) dbeda!,  (12)

where 4
hj (‘/E? kl“)Az = [aim@ (.T, kﬂﬂ)Az] o (l‘, kz)fAz : (13)

Our arrival at equation 12 involves elimination of two intaig (four integrals in 3D), for
the cost associated with differential operators and anitefsum. Compared to an integra-
tion operator, a differentiation operator is real-valusal] when the series jnis truncated
atn << N, the number of non-zero diagonalsstsn. Unfortunately, only a scalar reduc-
tion in computational cost is obtained here relative to éiqua3. To reduce the order of
proportionality, the remaining integral oviy in equation 12 must be approximated. This
last point is explored with moderate success in FergusonFanael (2006), and a later,
more comprehensive analysis of how best to approximatetiequa is planned for the
future. For now, it is important, and sufficient, to analyp@ation 12 in its current form.

EXAMPLES

A number of synthetic examples and a real examples are pegskare to demonstrate
STAPPI. The synthetic models are used to demonstrate sppoifperties of STAPPI in
a controlled way. First, 'do nothing’ examples are shown @éondnstrate that the exact
and approximate STAPPI operators are equivalent when tiosstand no interpolation is
required. Traces are then removed from the input datasatkiglly to demonstrate the
interpolation aspects of exact vs. approximate STAPPticStare then introduced to the
models, and the process of trace decimation is repeated.

For the real-data experiment, a common-source gatherasnaut that is regularly sam-
pled but has significant statics effects. Then, a commomnesaather that is poorly sample
is obtained, and locations of live traces in this gather aszluo flag locations of live traces
in the common-source gather as ’live’. The remainder ofesain the common-source
gather are then set to zero. The undecimated version of thenon-source gather is then
used as a 'control’, and the decimated version is used as ioE8TAPPI.
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Synthetic example

Finite-difference algorithnafd_shotrec’ from the CREWES library is used to gener-
ate synthetic data, and four models are considered hereofline models (Figures 1a and
b) have constant-depth receivers, and as such, they agndddo test only the interpola-
tion part of STAPPI. Analytically, because there is no defathation in receiver locations,
Az (x) = 0inequation 1, and’“,_ = I andU_x, = I, wherel is identity, and, for these
first two models, equation 1 becomes

Voo = Wl + W, Wb, (14)
- a prescription for interpolation only, and , , is just the interpolated version gf .

The remaining models (Figures 2a and b) are identical to teetio (Figures 1a and
b), but they have significant variation in receiver deptli$0m over 10km). These models
are used to demonstrate simultaneous interpolation atidsstarrection.

Interpolation

Velocity variation in Figure la represents the velocityssrgection of dipping sedi-
ments, and it varies linearly between 2000 m/s on the le& aind 3725 m/s on the right
side. The model in Figure 1b is the cross-section velocit®08f0 m/s sediment (left side)
intruded by 3725 m/s salt (right side). Source/receivenggtoy for these models is simple,
with 512 receivers spaced 20 m apart and buried at a depthO8f 28 The source array
is buried 200 m below the receiver array at 3000 m, and it stssif a line charge plus 5,
evenly-spaced point charges. The line charge generatesnaicéeature of low temporal
relief that is simple to interpolate, and the expectatiatha, even when decimation is ex-
treme, interpolation resolves this feature. The point@basyin contrast, generate crossed
diffraction-limbs plus high temporal relief, and they repent the greatest challenge to
interpolate. The expectation here is that interpolatiothefe features fails gradually as
decimation increases.

Synthetic data for Figure 1a, and their corresponding 2@tspeare shown in Figure
3. Temporal frequency has range < w < 36 Hz, and the evanescent boundary defined
by
amax ke gV = WEv, (15)
is annotated in red on the spectrum wheggx = 3725 m/s.

Figure 3a is the undecimated input. The linear event ragiste the left side of this
figure att ~ 0.1 s on the left, and &t~ 0.05 s on the right, and the point sources register as
diffractions with minimum times that align with the linearemt. Coherent arrivals below
~ 0.7 s correspond to numerical artifacts from imperfect condfddboundary reflections.
It's spectrum (Figure 3d) shows coherent energy within tlamescent region. Figure 3bis
the interpolated version of Figure 3a by the exact methazh(keghere is no decimation or

fThis algorithm is based on a five or nine point approximatiotihe Laplacian operator. Here, the 5-point
operator is used for efficiency at the expense of high-fraque
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static shift in this example, so this is a 'do nothing’ apation of STAPPI), and Figure 3c
is the approximate version. The valig,,;s = 1.9282¢~ ! is RMS error between the exact
and interpolated output - the larger the number, the leggbtelis the approximation. Both
the exact and approximate versions satisfydh@o harm criteria for numerical processes
in that diffractions and the linear event are preserved theid spectra are coherent within
the evanescent region; they are identical algQ,(s is very small), and this verifies, at
least, the numerical implementation of the approximation.

A filter is applied to the interpolated output to reduce egaeat energy, so the inter-
polated output differs from the input in the evanescentaregi

Data are then decimated randomly from 512 traces to 261dréeigure 4a). The
linear event is now discontinuous, and diffractions arefesed in appearance. The spec-
trum (Figure 4d) of the decimated input shows incoherendsobim sides of the evanescent
boundary. Exact interpolation (Figures 4b and e) returnsterent linear event as ex-
pected, and diffractions atealed. The spectrum has reliable energy upit®.6 mm~!
when compared the the spectra in Figure 3. This limitiicorresponds to a limit on phase
angle according to Figure 6a where maximum phase-angle dirom 90 degrees at 22 Hz
to 38 degrees at 36 Hz. Further, coherence of events in tlogrspe(Figure 4e), however,
decreases withv as an indication that, though much of the data has been nesmh\iater-
polation robustness is bounded/ipn andw by irregular trace spacing through an, as yet,
unknown process.

Interpolated data returned by approximate STAPPI areyanhtical (F'rys is small)
to the data of exact STAPPI. The same phase-angle limit iarapp and event coherence
decreases similarly with.

Decimation of the input data is then increased to severetr@ndriginal 512 traces are
decimated to 60 traces (Figure 5a). The linear event is sgvdisrupted, and diffractions
are no longer identifiable as such. Further, the spectrutmeodécimated data is now quite
incoherent (Figure 5d) through the entiie— w range.

Exact and approximate interpolation (Figures 5b and c)nsiract the linear event,
and both interpolations have constructed identifiableatitions, though significant dis-
continuity is present on diffraction limbs. Analysis of thgectra verifies that, though not a
perfect reconstruction, fairly coherent-data is produced, + 0.3mm~! to about 15 Hz,
and maximum phase-angle drops from 90 degrees as 12 Hz arghdes to 10 degrees at
36 Hz (Figure 6b).

Loss of steep dip, and loss of coherence with increasimgapparent also on the salt
/ sediment example (Figures 7 through 9). The 'do nothingsiem of the salt / sediment
data (Figure 7) verifies the slight damping of the evanesaggion used in interpolation,
and it verifies the equivalence of the exact and approximgt@ithms (E'zy, s is small).

Moderate decimation of the input data (Figure 8) is accomatextiby both interpola-
tors, and interpolated results are coherent - even at thésaliment boundary where one
might expect difficulty due taycle skipping for example. Spectra are phase-angle limited
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as for the previous model, and coherence decreases witasiogw.

Severe decimation (Figure 9) is also accommodated by ba¢hpolators, and de-
creased phase-angle and decreased coherence with incheggesncy are again apparent.

Satics and interpolation

Statics are now introduced to the interpolation problenmepleat the previous experi-
ments on data that correspond to the models in Figures 2a.ahfblow the procedure
established for interpolation above, that is, | examing thie 'do nothing’ case first for
each model, though now 'do nothing’ involves correcting $tatics, and then | proceed
through moderate and severe decimation.

Undecimated data, then, that correspond to the model of&®@mare shown in Figure
10a and b (spectrum). The linear event is now a rugose aduelto irregular receiver-
depth, and the spectrum is now disorganized even in the wamescent region. In the
absence of trace decimation, of course, exact and apprx®TAPPI simply apply statics
according to

wz—o—Az - [UfAZ U—Az + 52Wm] - UéAz 77bz7 (16)

whereWW, = I. Though no interpolation is done, static shifts are coagcand the linear
event is recoveréd Diffraction limbs appear cut-off, and this is verified thigh inspection
of the corresponding spectra (Figures 10e and f). Data eobkeris preserved, however,
within the non-evanescent region, and the action of staticgection has simply cut the
spectrum to be closer to the evanescent boundary than iseaypjr@ Figures 3e and f.

For moderate decimation (Figure 11), the input spectrumuféi 11d) is disorganized
further relative to Figure 10d, though exact and approxen&EXAPPI return reconstructed
linear events and diffractions (Figures 11b and c). Theesponding spectra (Figure 11le
and f) exhibit coherence, maximum phase-angles, and dsmeaoherence-with-that
compares favourably to simple interpolation (Figures It fa

For severe decimation (Figure 12), the input spectrum (Eeidi2d) is, as expected,
disorganized further relative to Figure 11d. Exact and exiprate STAPPI return recon-
structed linear events with some apparent jitter, andatiffons are reliable within further
restricted wavenumbers (Figures 12b, c, e and f). For thifing, significant differences
between the exact and approximate STAPPI are apparentththpproximate method
showing a hint of numerical instability on the right handesaf Figure 12c. Instability is
manifest in the spectrum of approximate STAPPI (Figure i#Hugh increased disorga-
nization of the approximate STAPPI relative to the exacvatgm (Figure 12e).

For the salt/ sediment model of Figure 2b, the complexityhefielocity model relative
to the linear variation causes significant challenge to SAlA#hen statics are significant.
Exact STAPPI applied to the undecimated data shown in FitjBaeregisters a significant

tFor Figures 10 through 15, reference veloeity = 2863 m/s and daturgg,; =2960 m are used to
shift STAPPled data away from= 0.
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amplitude anomaly as shown in Figure 13b at 2 km distancefarall times. This spu-
rious amplitude corresponds to a point charge that is ldcpist on the salt / sediment
boundary (Figure 2b), and it underscores the non-unitatyreaf extrapolators based on
Fourier integrals like equation 1 - the operator is unstabtbe presence of extreme varia-
tion (Dellinger and Etgen, 1996; Margrave and Ferguson91B8 Rousseau and de Hoop,
2001).

The linear event and diffractions shown in Figures 13b anceaecovered otherwise,
and their spectra (Figures 13e and f) are more organized siéiics correction. Note,
careful experimentation, beyond the present expositidth, @amping factoe in equation
1 will result in a compromise between lateral smoothnesgedhaction of spurious energy.
Unlike the simple interpolationEz,,s between exact and approximate STAPPI is quite
large, so effects of approximation, as expected, are langbée presence of statics.

Under moderate decimation (Figure 14a and d), as shown urésgl4b and c, exact
and approximate STAPPI return a coherent linear-everitadifons are reconstructed, and
spectra are organized within the non-evanescent regigui@s 14e and f). The severity
of the spurious amplitude is reduced somewhat. Similargégipus examples, reduction in
maximum phase-angle is apparent in the spectra, and caeedecreases with increased
frequency.

Severe decimation (Figure 15a and d) exacerbates reductiroaximum phase-angle,
and coherence frequency, though the linear event is quitenstructed with reasonable
fidelity. As was seen in approximate STAPPI for the linear gi@8igure 12c), instability
is registered on the right side for all times.

Foothills dataset

STAPPI is applied here to common-source gather SIN 38 (Ei@6r and repeated in
18a) from the Foothills dataset (Stork, 1994). The gathersid as it is as both input
data for STAPPI, and as a control so that the performance AP8T s evaluated fairly.
As input, this gather is decimated such that live and deagk tiacations match those of
common receiver gather CRG 625 (Figure 17) from the same dafdsdecimated gather
is shown in Figure 18b.

To demonstrate STAPPI, an experimental procedure sinoldhadt of the synthetic
procedure is followed. That is, the interpolation aspe€tSTAPPI are investigated, and
the exact and approximate versions are compared. TherSTAPPI in exact mode an
approximate mode are studied. Beyond the procedure for titeetyc data, however, the
STAPPI results are compared to more to more conventionabappes like GPSPI and
conventional statics correction.

Data and spectrum for common-receiver gather 38 (Figureafiésshown in Figures
18a and e, and the evanescent boundary (equation 15) asslowith ayax = 4600 m/s
annotated in red on the spectrum. Data traces in this conrewgiver gather are then set to
zero according to locations of zero traces in the commonceagather of Figure 17. Thus,
a test dataset (Figure 18b and f) plus a control datasetr@sdiBa and e) for comparison
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are created.

The results of exact and approximate interpolation (nacsedf the test dataset (Figure
18b) are shown in Figures 18c and g and d and h. AnnotaAtggds values correspond
to the difference between the interpolated data and theaatdtaset shown in Figure
18a. As was seen in previous experiments with synthetic data s values for exact and
approximate interpolation are identical. Significant ceinee is restored to linear events
(Figures 18c and d), and the region beyond the evanescentiaouis cleaned up (Figures
18g and h). Data appear low-frequency compared to the daitaset, but this must
be regarded as the trade off between event coherence andseeepness. Similar to the
synthetic experiments presented previously, a phasesfadfiescent filter is applied after
interpolation, and a significant portion of Rayleigh wavegha control dataset are not
restored in the interpolated data.

Tests of full STAPPI are shown in Figure 19. Here, based onéelecity model shown
in Figure 20, full STAPPI applied to the undecimated dataigtiFe 18a is used as the con-
trol dataset, and’z,, 5 are referenced to the conttollhis control dataset for full STAPPI
is shown in Figure 19a. Compared with the Figure 18a, sigmfistatics-correction is
apparent, and significant Rayleigh-wave energy is removed. Exact $TAPplied to the
test dataset (Figure 18b) is shown in Figure 19b. Comparedet@dntrol (Figure 19a),
and consistent with results obtained previously with sgtithdata, maximum phase-angle
(Figure 18f) is reduced, and coherence decreases witheisede. Similar results are ob-
tained from approximate STAPPI (Figures 18c and g) andrastagly, Fr,, s is reduced
for approximate STAPPI relative to the exact implementatio

For comparison, approximate STAPPI is applied to the imtatpn-only result shown
in Figure 18d. That is, approximate STAPPI interpolatiodage first followed by approx-
imate STAPPI-statics (equation 16), and the result is shiowFigure 19d. ErrotEzys
is increased relative the (full) approximate STAPPI (Fegi®c), though maximum phase-
angle shows an apparent increase below 30 Hz. Above 30 Hzp#utrum loses coherence
at a greater apparent rate.

Further comparative data are shown in Figure 21. In Figuee BEIPSPI statics are
applied to data interpolated by exact STAPPI (Figure 18cpating to

wz-‘,-Az - UI_4AZ wz,la (17)

where, ; is the interpolated output from exact STAPPI, and wheregotiffely, when
compared to equation 1, no accommodation for missing trizcesde in equation 17 so
that(W, = I), UA,.U_a. = I is assumed, and = 0. In Figure 21a, thouglt s is
not significantly higher than for exact STAPPI, serious, fogguency noise is apparent,
particularly, between 2 km and 4 km, and between 0 s and 1.8dsredlections in this
region are obscured relative to the result of exact and appede STAPPI (Figures 19b
and c). Further, spurious diffractions are apparent abowdiitst arrivals. Clearly, the cost

§Direct comparison between STAPPI corrected data and thedimdted input is, of course, complicated
by events that no longer line upin
Twe have applied receiver statics only, so source stati¢semiove statics that remain.
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savings associated with exact interpolation of data falldwy GPSPI statics rather than
the use of approximate STAPPI (Figure 19c) are overcomedmcuracy.

Conventional statics are applied to the data shown in Figlbeatcording to

wz—s—Az - Dlag (UfAz) ¢z,], (18)

where Diag extracts the diagonal of the GPSPI operator. &beltris a a space-domain
operator that is non-zero only on the diagonal and corredgptmnormal-incidence prop-
agation only. This statics result shown in Figures 21b andmmare favourable to the
GPSPI result (Figure 19a and e), and it is, perhaps, sup®simg to a reduced presence
of spurious diffraction above the first arrivals.

GPSPI is then applied to the raw input (Figure 18b, no inteipm) and the result
is shown in Figure 19c and g. Some rudimentary interpolaigoapparent in this Fig-
ure, and significant Rayleigh-wave energy is removed. Thetgpa, when compared to
the reference, is quite incoherent within the non-evamgsegjion. Significant, spurious
diffraction-energy is apparent everywhere associated egcontinuous data - the first ar-
rivals for example, and live traces that bound null tracesil&rly, conventional statics
is applied to the raw input, and the result is shown in Figge and h. The spectrum, of
course, when compared to the reference, has no Rayleighredwetion, as no evanescent
boundary is enforced. Note that within the non-evanesagion, the statics spectrum is
mostly similar to the GPSPI spectrum (Figure 21c).

That Er)s for the experiments shown in Figure 21 are quite similarsdstubt on
the usefulness ofz,;s as a measure of error and, perhaps, another measure must be
considered.

CONCLUSIONS

From the general expression for regularization and reddyithe Newton method of
Ferguson (2006), | have developed an asymptotic approxmttat | truncate. The result
is a prescription for fast calculation of the required Hasgplus an analytic framework.
Though the result is not significantly more efficient thandlgorithm of Ferguson (2006),
the analytic framework provided here is important for thetoaued search for efficiencies.

Based on rigorous testing of real and synthetic data, | fintiith statics correction
turned off, STAPPI is an effective and efficient interpotateurther, under extreme velocity
variation, STAPPI run as an interpolator recovers reliéitalee data for moderate and even
severe trace decimation, and the approximate operatoid@®as good a result as the exact
operator.

With extreme variation in receiver depth added in, STAPBbvers reliable trace data,
however, it is apparent that the interpolated/staticsemped STAPPI approximation and
exact STAPPI diverge when trace decimation is severe. mgef error, | find that, as
severity of decimation increases, maximum phase-angléandata decreases with in-
creased frequency.

Using real data, STAPPI as an interpolator is shown to ttdesong velocity contrast

12 CREWES Research Report — Volume 19 (2007)
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and elevation change, and decreased phase-angle-witkHratfuency is found to be much
less apparent compared to the synthetic data. Full STARPItampproximation, imple-

mented within the procedure of Reshef (1991), provide effechterpolation and statics
correction (based on a velocity model derived by turningeM@mography).

Potentially cheap alternatives to STAPPI are tested. ,Fagproximate STAPPI is
used to interpolate the real data, and this is followed byegdized-phase-shift-plus-
interpolation (GPSPI) implemented within the procedureRekhef (1991). Spurious-
energy is found in the GPSPI output and the resulting specisudisordered relative to
exact and approximate STAPPI. Conventional statics araeapfa the same data and the
result is found to be equivalent in quality to the GPSPI. Aikinresult is found when
GPSPI and conventional statics are compared on the unatdged data.
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FIG. 1. Velocity models with source/receiver geometry annotated. For visual clarity, every 20th

receiver is annotated - the actual trace spacing is 20m. a) Linear velocity variation. b) A step-
function velocity.
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FIG. 2. Velocity models with source/receiver geometry annotated. a) Linear velocity variation. b) A
step-function velocity.
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ERMS =2.9118e-14

Frequency (Hz

Wavenumber (1/mm)
FIG. 3. Control experiment (no decimation) for the source/receiver geometry of Figure 1la. a) Input

data with no trace decimation. b) Exact interpolation. ¢) Asymptotic interpolation. d) Spectrum of
a. e) Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.

ERMS =1.1598e-13

Wavenumber (1/mm)

FIG. 4. Interpolation experiment for the source/receiver geometry of Figure 1a and moderate trace-
decimation. (based on Figure 1a). a) Input data are decimated randomly from 512 traces to 261
traces. b) Exact interpolation. ¢) Asymptotic interpolation. d) Spectrum of a. e) Spectrum of b. f)
Spectrum of ¢. The evanescent boundary is indicated by the red line.

CREWES Research Report — Volume 19 (2007) 17



Robert J. Ferguson

ERMS =2.688e-11

P e PR

I L [

{1 AR s I‘i:\ I|”|I i I‘!I‘ ||“ 1 l |h|‘
sl

\",Il‘ ”Ir||I |||‘\| ||||IqI It'l‘ 1 I‘II v\|'||‘ 'I|I\+ |‘I

sl
"

Frequency (Hz

Wavenumber (1/mm)

FIG. 5. Interpolation experiment for the source/receiver geometry of Figure la and severe trace-
decimation. (based on Figure 1a). a) Input data decimated randomly from 512 traces to 60 traces.
b) Exact interpolation. c) Asymptotic interpolation. d) Spectrum of a. €) Spectrum of b. f) Spectrum
of c. The evanescent boundary is indicated by the red line.
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FIG. 6. Maximum phase-andige vs. frequency for fixed wavenumbers. a) Maximum phase-angle
when —6 < k, < 6mm~'. b) Maximum phase-angle when —3 < k, < 3mm™1,
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ERMS =2.7156e-14
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FIG. 7. Control experiment (no decimation) for the source/receiver geometry of Figure 1b. a) Input

data with no trace decimation. b) Exact interpolation. ¢) Asymptotic interpolation. d) Spectrum of
a. e) Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.
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FIG. 8. Interpolation experiment for the source/receiver geometry of Figure 1b and moderate trace-
decimation. (based on Figure 1b). a) Input data are decimated randomly from 512 traces to 261
traces. b) Exact interpolation. ¢) Asymptotic interpolation. d) Spectrum of a. e) Spectrum of b. f)
Spectrum of ¢. The evanescent boundary is indicated by the red line.
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FIG. 9. Interpolation experiment for the source/receiver geometry of Figure 1b and severe trace-
decimation. (based on Figure 1b). a) Input data decimated randomly from 512 traces to 60 traces.
b) Exact interpolation. c) Asymptotic interpolation. d) Spectrum of a. €) Spectrum of b. f) Spectrum
of c. The evanescent boundary is indicated by the red line.

E s = 096879

Wavenumber (1/mm)

FIG. 10. Control experiment (no decimation) for the source/receiver geometry of Figure 2a. a)
Input data with no trace decimation. b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e)
Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.
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FIG. 11. STAPPI experiment for the source/receiver geometry of Figure 2a and moderate trace-
decimation. (based on Figure 2a). a) Input data are decimated randomly from 512 traces to 261
traces. b) Exact STAPPI. ¢) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum
of c. The evanescent boundary is indicated by the red line.
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FIG. 12. STAPPI experiment for the source/receiver geometry of Figure 2a and severe trace-
decimation. (based on Figure 2a). a) Input data decimated randomly from 512 traces to 60 traces.
b) Exact STAPPI. ¢) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum of c. The
evanescent boundary is indicated by the red line.
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FIG. 13. Control experiment (no decimation) for the source/receiver geometry of Figure 2b. a)
Input data with no trace decimation. b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e)
Spectrum of b. f) Spectrum of c. The evanescent boundary is indicated by the red line.
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FIG. 14. STAPPI experiment for the source/receiver geometry of Figure 2b and moderate trace-
decimation. (based on Figure 2b). a) Input data are decimated randomly from 512 traces to 261
traces. b) Exact STAPPI. c) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum
of c. The evanescent boundary is indicated by the red line.
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FIG. 15. STAPPI experiment for the source/receiver geometry of Figure 2b and severe trace-
decimation. (based on Figure 2b). a) Input data decimated randomly from 512 traces to 60 traces.
b) Exact STAPPI. ¢) Asymptotic STAPPI. d) Spectrum of a. e) Spectrum of b. f) Spectrum of c. The
evanescent boundary is indicated by the red line.
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FIG. 16. Common-source gather SIN_38 from the foothills dataset (Stork, 1994) with elevation
profile and source location indicated. With the exception of the receiver gap around the source
location, trace spacing is 20 m.
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FIG. 17. Common-receiver gather CRG_625 from the foothills dataset (Stork, 1994). Nominal
source-spacing is 100 m. Due to extremes in surface conditions, the actual source-spacing varies
by + 60 m as indicated by black dots.
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FIG. 18. Interpolation experiments for the foothills dataset. a) Input. b) Decimated input. c) Exact
interpolation of b). d) Asymptotic interpolation of b). e) Spectrum of a). f) Spectrum of b). g)
Spectrum of c¢). h) Spectrum of d). The evanescent boundary is indicated by red lines.
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FIG. 19. STAPPI experiments for the data shown in Figure 18a. a) Exact STAPPI applied to the
data shown in Figure 18a. b) Exact STAPPI applied to the data shown in Figure 18b. ¢) Asymptotic
STAPPI applied to Figure 18b. d) Asymptotic STAPPI applied to Figure 18d. e) Spectrum of a. f)

Spectrum of b. g) Spectrum of c. h) Spectrum of d. The evanescent boundary is indicated by red
lines.
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FIG. 20. Part of a velocity model obtained from the foothills dataset (Stork, 1994) by turning wave
tomography. The distance range of this model corresponds to the distance range of SIN_38 (Figure
16).
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FIG. 21. Statics applied to the data shown in Figure 18c and b. a) Wave-equation statics by GPSPI
applied to the data shown in Figure 18c. b) Conventional statics applied to Figure 18c. c) Wave-
equation statics by GPSPI applied to Figure 18b. d) Conventional statics applied to Figure 18b. e)
Spectrum of a. f) Spectrum of b. g) Spectrum of c. h) Spectrum of d. The evanescent boundary is
indicated by red lines.
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