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Finite-difference elastic modelling below a structured free 
surface 

Peter M. Manning 

ABSTRACT 
This paper shows experiments using a unique method of implementing a structured 

free surface boundary for a finite-difference model. The method employs the same 
concepts as the implicit solutions used for finite-difference formulations posed in a 
recursive manner. The displacements required across the free surface boundary are then 
found by a deterministic method where structure is locally flat, and by an implicit method 
where the structure is sloped, proceeding from low to higher elevations. 

INTRODUCTION 
When a finite-difference model is begun, one of the first choices that must be made is 

where the boundaries of the model space will be. With the exception of well to well 
models, most choices will have the surface of the earth as a top boundary. This is in 
contrast to the other three boundaries, which we wish would go away, and would put at 
infinity if we could. 

The top boundary of the model must then represent a ‘real’ boundary, which is almost 
perfectly represented as a free surface because the air above the surface can transmit only 
tiny amounts of energy in the range characterizing seismic waves. This condition can be 
simulated by assuming displacements across the boundary which are not zero, but which 
when used in equations spanning the boundary result in zero stresses. This means zero 
shear stress and zero compressional stress. These conditions ensure that body waves are 
reflected from the surface accurately, but more noticeably, that the surface can propagate 
surface ‘Rayleigh’ waves. 

An improvement in the realism of a finite-difference model would allow a structured 
free surface, simulating particular acquisition conditions. Here, the actual top of the 
model could still be flat, but the boundary conditions on the top would be irrelevant 
because the structured free surface would prevent any energy from entering and leaving 
the real model area. 

THE FLAT FREE SURFACE BOUNDARY CONDITIONS 
The method for doing finite-difference modelling near a free surface boundary is 

given in the author’s PhD thesis (Manning, 2008). The relevant stress equations may be 
found in Levander (1988). They are 
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where the first equation sets the shear stress to zero, and the second equation sets the 
compressional stress to zero. These equations are used to project from the main body of 
displacements across the boundary, where particular displacements are required to ensure 
zero stress conditions. 

 

FIG. 1. The staggered grid displacement positions required for second order finite-difference 
calculations near an external boundary (the green line). The black arrows mark displacements 
which will be calculated by the standard equations. The blue arrows mark the cross boundary 
displacements required as input for the standard equations. The red letters show how the two 
rows of blue displacements may be projected from the internal displacements by assuming free 
surface conditions. 

The practical use of equation 1 is illustrated with the abcd block in Figure 1. It 
requires that d must be made equal to a+c-b. This means that the abcd block may be 
twisted, but not distorted. 

Similarly, equation 2 applies to the cdef block. The displacement at c is already 
available, and the displacements at d and e may be calculated from equation 1. Equation 
2 then requires that f be made equal to )2/()( μλλ +−+ dec . If the medium was a fluid 
( 0=μ ) it would mean maintenance of a constant area. In an elastic medium the 
displacement at f compared to c is not changed quite as much. 
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STRUCTURED FREE SURFACE BOUNDARY CONDITIONS 
An example of a structured free surface boundary is given by the blue line in Figure 2. 

The staggered grid of the main body of the model is shown with black arrows, and the 
cross boundary displacements required to update at the edge black arrows are shown with 
red arrows. 

FIG. 2. An example of a structured free surface. The main body of the model is shown with black 
arrows for displacements. The red arrows show the cross boundary displacements required for 
the standard equations. Displacements at the green arrows are irrelevant to the main part of the 
model. 

Displacements at the red arrows cannot in general be projected from the main body 
displacements by the use of equations 1 and 2. However, equation 1 may be used to 
calculate the vertical displacements at particular points, for example at offsets 5 and 75 
metres. Similarly, equation 2 may be used to project the horizontal displacements at 
offsets of 42.5 and 112.5 metres. 

Further examination of Figure 2 will show that the displacements determined by these 
first projections may be used, along with other main body displacements, to determine 
further displacements. For example, the projected vertical displacement at 75 metres 
provides part of the scaffold to project the horizontal displacements at 72.5 and 77.5 
metres. Continuing with this process will allow all the required (red) displacements to be 
projected. 
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This process may appear to be time dependent, but in reality the displacements are 
simultaneous, where the solutions must be determined by a succession of operations. This 
type of solution may be found in the branch of finite-difference modelling that uses 
implicit equations. The recursive equations used there can only be solved by using 
boundary conditions, and projecting from these boundaries throughout the model. This 
type of solution is described in Strikwerda (2004), section 3.5. 

TEST CASES 
The algorithm described above has been tested for some of the more simple cases. An 

example is shown in Figure 3, where the slope of the free surface is 1 in 6. The surface 
wave here is quite compact and perpendicular to the surface, properties to be expected in 
a surface wave above a half space. 

 

FIG. 3. This Figure shows a satisfactory model for a free surface sloped by 1 part in 6. The 
irrelevant displacements above the free surface have been zeroed out, but the projected 
displacements have been included. The surface wave at top-centre is perpendicular to the 
surface, as expected. 

A second test of a steeper slope is shown in Figure 4. The slope in this Figure is 1 in 5, 
and the results are not encouraging. It appears that the evenly spaced steps of the free 
surface here cause instabilities that tend to reinforce. 
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FIG. 4. A model with a free surface slope of 1 part in 5. This shows that the algorithm introduced 
here has some limitations. The periodic nature of the constant slope seems to reinforce the 
instabilities generated from the surface. 

The next case is a test of the method on a feature sometimes encountered with seismic 
acquisition, an abrupt rise in elevation along the line. The rise here is 5 metres, sloped 
over ten metres from 50 to 60 metres in X on Figure 5. The small elevation change has 
made a significant change in the surface wave compared to the flat free surface case 
shown in Figure 6. 

Another way to compare these cases is with the use of the simulated seismic data 
acquired at the surface. The horizontal data (in line) is displayed for the flat free surface 
case in Figure 7, and for the 5 metre step case in Figure 8. Here too, the differences are 
very noticeable. 

DISCUSSION OF THE STEP CASE 
The major differences seen in the free surface 5 metre step case compared to the flat 

case is worth special comment. The step height of 5 metres was chosen because in a half 
space, with the frequencies and velocities used, it is a depth that divides the energy of a 
surface wave into two almost equal parts. Still, it is difficult to explain the results of this 
test. 

It appears that the step causes a second surface wave/shear body wave combination to 
be created which is advanced from the combination which occurs in the flat surface case, 
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and still occurs with this case also. Thus, in Figure 8, the major events of the first breaks 
(the pressure wave/shear wave combination) and the surface wave from Figure 7 occur, 
and a second lagging first break appears, along with a second surface wave event which 
leads the established one. Perhaps when the pressure wave/shear body wave combination 
at the surface is broken up at the step, it can not be reinitiated without also initiating 
another surface wave. 

 

FIG. 5. The 5 metre step model wave field after propagation for 750 ms. The step here is 5 
metres vertical over 10 metres horizontal, extending from 50 to 60 metres. Instability here has not 
been a significant problem. The step has affected the relationship between the converted shear 
wave and the surface wave as seen with the flat free surface in Figure 6. 

The difficulty for the purposes of this report is that the software here has as yet not 
been extensively tested for consistency of results, and has not been compared at all with 
field data. 
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FIG. 6. The flat free surface model at 750 ms., to compare with Figure 5. The smooth relationship 
between the shear wave and the surface wave may be seen. The shear wave, the surface wave, 
and the pressure wave were all coincident at the surface earlier in time near X = 0. 

CONCLUSIONS 
The software presented with this report has shown some interesting results, with the 

following cautions: 

• Extended steeper slopes tend to create instabilities as a boundary. 

• Results must be further tested for consistency, and realistic models compared 
with real data 

• As with the CREWES finite-difference modelling package, the general 
boundaries need improvement. 
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FIG. 7. The horizontal seismic data collected at the free surface of the flat model. The consistent 
nature of the first break pressure/shear event, and the steeply dipping surface wave event, are 
clear. The deeper events propagating from right to left are reflections from the right boundary. 

 

FIG. 8. The seismic source gather from the surface of the 5 metre step model. The step seems to 
have caused a lagged shear wave event parallel to the first breaks, and an advanced surface 
wave event connected to it. 


