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ABSTRACT

Mode converted shear waves have been shown to allow overpressure prediction in me-
dia where primary wave acquisition is inhibited by gas and fluid effects. This method
proceeds through analysis of converted-wave moveout, and a long standing relationship
between differential stress and changes in primary-wave velocity is modified in this pre-
diction. Though empirical evidence from laboratory experiments and field experiments
supports the stress / shear wave velocity relationship, a theoretical justification has been
developed. In this paper, the original relationship is modified formally, and the overall
procedure is outlined.

INTRODUCTION

Overpressure is a problem of which drilling safety requires that anomalous pressure
cells and pressure gradients across faults, for example, can be mapped prior to drilling,
(Snijder et al., 2002). For fixed depth, Eaton (1969) relates formation pressure gradient
versus interval travel time The ratio of normally-pressured traveltime, ∆tn, and observed
traveltime, ∆t0, are used to estimate the overburden stress gradient P/D according to
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where S/D is the overburden stress gradient, and P/Dn is the normal pore pressure gradi-
ent. The exponent E is an empirical term determined from sonic transit-time logs obtained
from a formation where it is normally pressured and from where it is overpressured, (Eaton,
1972). Eaton (1975) also relates formation pressure gradient to P- interval velocity. With
the simple recognition that ∆t = ∆z/α, where α is P-wave interval velocity, Eaton (1975)
provides a revised pore-pressure prediction
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where α0 is the observed P-wave velocity, and αn is the normally-pressured velocity.
Ebrom et al. (2002) demonstrate that S-waves and C-waves are more sensitive to pres-
sure gradients than P-waves. From their numerical experiment, Figure 1 shows that the
percent change in P-wave stacking velocity is smaller than the change in S-wave and C-
wave stacking velocities. For example, in this figure, for a shale zone overpressured 4000
psi above hydrostatic pressure for 3000 m depth, percent change in P-wave velocity is -
2.5 where the changes are -3 and -3.5 for S-waves and C-wave respectively. Ebrom et al.
(2003) adapt Eaton (1975) for S-waves for use in pore-pressure prediction. They verify ex-
perimentally good agreement between the Eaton (1975) equation (2) modified for S-wave
interval velocity. They calculate a pressure curve for depth in an unknown basin and they
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compare this curve with the actual pressure curve encountered during drilling. Here, be-
cause surface mud weight is varied during drilling to prevent blowouts due to overpressure
(and to prevent formation invasion when underpressure is encountered), it is a good proxy
for the true pressure. As can be seen in the comparison of calculated and true curves, good
agreement is obtained for this basin.

Kumar (2008) shows that, where gas clouds exist in the subsurface, PS-waves provide
not only a better image, but the resulting stacking velocities are much more reliable. As Fig-
ure 3a demonstrates, pure P-wave recordings are impacted through bulk modulus on high
gas content. Reflection events are discontinuous, and interpreted velocities vary strongly
(3b) and are thought to be unreliable. Figure 3c shows a PS-wave section for the same
traverse. Reflection events are more continuous, and the interpreted PS stacking velocities
(Tessmer and Behle, 1988) vary more slowly and are thought to be more reliable for this
reason.

Though the procedure is in use in industry, no formal justification for pressure predic-
tion using PS-stacking velocity has been presented. In this paper, then, we present a theory
to justify this usage. We begin with the basic P-wave based methods for interval velocity
(Eaton, 1969, 1975), and we invoke the assumption of a laterally invariant ratio of S-wave
and P-wave velocity to justify a pressure / S-wave velocity relationship. We convert these
equations from interval velocity to stacking velocity using a simple argument, and we com-
pute the product of the two results. This product allows us to replace products of P- and
S-stacking velocities with PS-stacking velocity and provides the desired relationship. The
resulting PS equation is very useful.

THEORY

Although they provide no formal justification, Ebrom et al. (2003) adapt equation 2 for
use with S-wave interval velocity. Implicitly, they assume that the ratios αn = γn βn and
α0 = γ0 β0 are constant for the formation, where βn and β0 are normally pressured S-wave

velocity observed S-wave velocity respectively. Using this assumption, the ratio
(

α0

αn

)E

in
equation 2 becomes

(
α0

αn

)E

=

(
a
β0

βn

)E

=

(
β0

βn

)E+ε

=

(
β0

βn

)Eβ

, (3)

where a = γ0/γn, and Eβ is an empirical constant to be determined from S-wave sonic
logs. Based on S-wave interval velocity, then, equation 2 is given by
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For simplicity, Ebrom et al. (2003) write equations 2 and 4 in terms of effective pressures
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so that
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Ebrom et al. (2003), for an unknown region, determine a value of Eβ = 2 based on their
comparison using surface mud weights and S-wave sonic logs.

Though they do not provide an example, Ebrom et al. (2003) speculate that, in the
absence of S-wave sonic logs, an alternative pressure-velocity relationship may be had
based on PS-wave stacking velocity (Figure 2). Kumar et al. (2006) demonstrate the use of
PS stacking velocity for offshore Trinidad & Tobago. Using stacking velocities for P-waves
and S-waves (Dix (1955), and Appendix A, equations 34 and 35 respectively), equation 7
for a single depth becomes
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where Ẽ and Ẽβ are new coefficients that correspond to P-wave and S-wave stacking ve-
locities respectively. Though S-wave velocity is a rare measurement, PS-stacking velocity
is readily available from PS-seismic analysis. To derive a pressure equation for PS-waves,
write
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ṽβ

obs

ṽβ
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β
n

=

(
σobs

σn

) 1
E

+ 1
Eβ

. (11)

Then, from Tessmer and Behle (1988) (Appendix A, equation 37),
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The root of equation 12 gives the desired relationship between pressure gradient and PS-
stacking velocity according to
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where Eα β = 2
EαEβ

Eα+Eβ
is a new coefficient for PS-waves.
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FIG. 1. Plot of % change in stacking velocity versus overpressure. For 3000m depth in this nu-
merical experiment, S-waves and C-waves are more sensitive than P-waves. From Ebrom et al.
(2002).

FIG. 2. Predicted pressure compared to pressure encountered during drilling. The predicted pres-
sure is based on S-wave interval velocity obtained from dipole sonic logs. Note, the depth axis is
omitted for proprietary reasons. From Ebrom et al. (2003).
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FIG. 3. Comparison of P-wave and PS-wave data. a) P-wave stacked section showing ambiguous
reflectors due to a gas cloud. b) Corresponding P-stacking velocity. c) PS-wave stacked section
showing continuous reflectors. d) Corresponding PS-stacking velocity. From Kumar (2008).
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CONCLUSIONS

The method of Ebrom et al. (2003) that relates differential stresses due to anomalous
pore pressure and converted-wave velocity is described analytically. The relationship be-
tween pure P-wave modes, S-modes, and the PS-modes is explored in the context of PS-
wave velocity analysis. The PS velocity, rather than being inverted and analyzed as sep-
arate modes, is examined as it is, and pore pressure predictions are made. This approach
has advantages in basins where overpressure hazards exist, and where gas and fluid effects
preclude analysis using P-waves alone. Systematically, this approach is attractive because
no specialized software needs to be developed for PS-wave velocity analysis or pore pres-
sure prediction. PS moveout velocity is simply interpreted as is, and only the associated
coefficient range differs from the P-wave range.

ACKNOWLEDGEMENTS

The authors wish to thank BP America, the sponsors of EDGER at the University of
Texas at Austin, and the sponsors of CREWES for their support of this work.

APPENDIX A

This appendix follows closely the paper of (Tessmer and Behle, 1988) but, for clarity,
we fill in a number of missing steps in that derivation. In general, reflection traveltimes T
are hyperboloid functions of offset X

T 2
m = am + bmX

2
m + cmX

4
m · · · . (14)

where, for the nth interface, Tm is the reflection traveltime,Xm is the source-receiver offset,
and +ve powers of Xm ensure +ve travel times. For simplicity, assume the relationship is
hyperbolic

Tm =
√
am + bmX2

m (15)

Estimate am and bm to unravel zm (thickness of nth layer) and αm and βm — P- and S-
velocity of the nth layer respectively. Determination of am is easy, set Xm = 0 to get

T 2
0,m = am (16)

where T0,m is the zero-offset travel time for the mth reflection. This leaves bm in units of
slowness squared (s/m)2

bm =
T 2

m − T 2
0,m

X2
m

. (17)

The traveltime from the source to the nth layer is the sum of the P-wave travel times through
each layer

Pm =

[
P1 + P2 + · · ·+ zm

αm cos θm

]
=

m∑
j=1

zj

αj cos θj

(18)

where zj and θj are thickness and angle of refraction through the jth layer respectively, and
αj is the corresponding P-wave velocity. The traveltime from the nth layer to a receiver is
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the sum of the S-wave travel times through each layer

Sm =

[
S1 + S2 + · · ·+ zm

βm cosφm

]
=

m∑
j=1

zj

βj cosφj

(19)

where φj is the refraction angle through the jth layer, and βj is the corresponding S-wave
velocity.

The total traveltime Tm for a converted wave reflection from the mth layer is the sum
of the P-wave and S-wave traveltimes

Tm = Pm + Sm (20)

or

Tm =
m∑

j=1
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1
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+
1

βj cosφj

]
(21)

For general angle ψ and general velocity v, cosψ =
√

1− sin2 ψ, and from Snell’s Law
sin2 ψ = (vp)2 where p is ray parameter.

Tm, therefore, becomes
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On the P-wave side, the lateral distance xj travelled through layer j is:

xj = zj tan θj = zj
sin θj

cos θj

=
αjzjp√

1− (αjp)
2

(23)

and a similar relationship will hold for the S-wave side.

For the mth layer, then, total distance Xm is the sum of distances from the P-wave side
and the S-wave side

Xm = p

m∑

k=1

zk


 αk√

1− (αkp)
2

+
βk√

1− (βkp)
2


 . (24)

To eliminate dependence on p, use the series for [1 + u]−
1
2

1√
1− (αp)2

≈ 1 +
1

2
(αp)2 . (25)

As shown in Figure 4, only for p = 0 is the approximation exact, and Tm becomes
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FIG. 4. Approximate vs. exact curve for 1/

√
1− (αp)2 a). b) Zoom of a)
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Using zero-offset time T0;m =
∑m

j=1 zj

[
1
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+ 1
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]
, Tm becomes
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To find bm, we need T 2
m and X2

m, but we’re only keeping powers of p2, so T 2
m and X2

m

become:

T 2
m ∼ T 2

0;m + T0;m p
2

m∑
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zj [αj + βj] (29)

and,
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(30)
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Using T 2
m and X2

m above, bm becomes

bm = T0;m

(
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where we have used

T0;m =
m∑

k=1

zk

[
1

αk

+
1

βk

]
. (32)

For each reflector m, bm is a measurable quantity - it is simply the second coefficient in
a hyperbola fit to the mth reflection event. Traveltime T0;m is also measurable - it is the
projection to zero-offset of the nth reflection event.

Define the stacking velocity for PS-waves, then, as

(
ṽαβ

m
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]

∑m
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Assume now that βk
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= γ is constant for all k, then γ = βk
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= β

α
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m
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m

where
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and

ṽβ
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are stacking velocities for P-waves and S-waves respectively, and write equation 33 in terms
of γ

(
ṽαβ

m

)2
=

1 + γ

1 + 1
γ

∑m
k=1 αk∑m
k=1

1
αk

= γ

∑m
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k=1

1
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. (36)

Recognizing (ṽp
m)2 in the second term of equation 36, we have

(
ṽαβ

m

)2
= γ (ṽα

m)2 =
ṽβ

m

ṽα
m

(ṽα
m)2 = ṽβ

mṽ
α
m. (37)

Equation 37 is used in the body of this paper to convert P-wave and S-wave estimation of
pore pressure to an estimate that is based on PS-wave stacking velocity.
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