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Numerical experiments in high frequency diffraction theory 

Pat F. Daley 

ABSTRACT 
Formulae for diffraction theory in elastodynamic media, based on the high frequency 

Asymptotic Ray Theory (ART) formulation are presented. The original papers and texts 
from which the formulae used here were obtained are highly mathematical, and the 
progression from theory to the development of associated software is not a 
straightforward endeavour. This paper addresses the diffraction of seismic waves by 
linear edges, employing an extension of zero order asymptotic ray theory. This extension 
is obtained through the implementation of the boundary layer method. To provide some 
initial insight into this problem for the elastodynamic case, a few simple models were 
chosen for analysis. The motivation for this was to establish a basis for the extension of 
diffraction theory to more complicated and realistic geological structures. Program 
packages, based on ART, dealing with these structure types are common in seismic 
modeling software packages. However, at present their use is limited, with a few 
exceptions, to modeling of only reflected seismic response recorded at the earth’s surface, 
or vertical seismic profile (VSP) arrays as a result of some form of point source media 
excitation. The inclusion of diffracted arrivals in these packages would produce more 
realistic synthetic traces, enhancing their usefulness.  

Also discussed is how complicated seismic diffracting structures may be divided into a 
configuration consisting of several linear edge components so that the total diffracted 
response from the more complicated structure is the sum of these individual linear edge 
building blocks. 

INTRODUCTION 
The works of Klem-Musatov (1986 (1995)) and Klem-Musatov et al. (2008) deal with 

elastic waves diffracted by the linear edges of seismic interfaces. An extension of 
Asymptotic Ray Theory (ART), was employed to obtain a high frequency approximation 
to waves diffracted by linear edges. Discussions of ART may be found in the works of 
Hron and Kanasewich (1971), Červený and Ravindra (1971) where the work of 
Gel’chinsky (1961) is summarized, Červený and Hron (1980) which contains the theory 
of Dynamic Ray Tracing (DRT), and Červený (2001), among others. The diffraction 
theory employed here employs modifications of ART and DRT, which requires 
introducing the boundary layer method and utilizing analytic continuation for explaining 
some of the more subtle points. The theory is valid for the three dimensional case of rays 
emanating from a point source. The text by Klem-Musatov (1980), once relatively 
inaccessible as it was written in Russian now appears in an English translation, Klem-
Musatov (1995). A work based on the original Russian text may be found in the PhD. 
thesis of Chan (1986), where many of the topics contained in that text are addressed. 
Subsequent papers by Bakker (1990), Hron and Chan (1995) and Gallop and Hron (1997) 
contain selected analysis of this theory. What follows from these papers is that any final 
formulae for a diffracted wavefield would ideally be such that they: (a) would allow for 
simple physical interpretation, (b) provide a practical means for the efficient calculation 
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of the diffracted field and (c) maintain a reasonable degree of accuracy when describing 
the diffracted wavefield.  

The above conditions require an accurate approximation of the diffracted wavefield, 
based on sound physical and mathematical principles, which can be incorporated into 
existing programs for the computation of synthetic seismograms for complex geological 
models. This approximation would preferentially employ a zero order ART solution for 
the incident wave field at the diffracting edge multiplied by a diffraction coefficient. The 
resulting diffracted field is obtained by considering the diffracting edge as a source of 
seismic energy and tracing its minimum time path to receivers and include the effects of 
any interactions with seismic boundaries as well as geometrical spreading in its 
amplitude. The theory may be referred to as 2.5 D as out of plane geometrical spreading 
is included. 

The accuracy of a method similar in development to the one described above was 
presented in the work of Chan (1986) where a geometrical optics (high frequency) 
method for the reflected and diffracted contributions to the SH wavefield was compared 
with the highly numerically accurate results obtained by the Alekseev-Mikhailenko 
Method (AMM). The AMM is a hybrid technique for constructing the total 
elastodynamic wavefield response of a complex three dimensional geological model due 
to point source excitation, assuming, in this application, an uncommon usage of radial 
symmetry. A combination of finite integral tranforms and finite difference methods was 
employed to achieve this (Mikhailenko, 1985).  

As the treatment of this problem contained in Klem-Musatov (1995) and Chan (1986) 
is quite comprehensive, only minimal theoretical developments of the problem will be 
presented here. For clarity, the problem will be defined in the next section along with 
some comments and a restatement of the final formulae required for computation of the 
wavefield due to an edge diffractor will be presented. Other sources of intermediate 
theoretical and numerical development (Hron, 1986 and Daley, 1990) might be of some 
use for those interested in the theoretical development of this problem. However, these 
reports are fairly mathematically intense and of minimal attraction to the majority of 
readers. 

THEORETICAL OVERVIEW 

Consider a three dimensional Cartesian coordinate system ( ), ,r y z , in a halfspace 

0z >  with an explosive point source of compressional ( )P  waves located at the origin, 
(Figures (1) and (2)). A semi-infinite wedge is assumed to be located at a depth zD  
below the surface, occupying the three dimensional space 
(  ,  0 , - ).z z r r y≤ < ∞ ≤ ≤ ∞ < < ∞D D  Receivers are placed both at the surface and in a 
vertical array (VSP) in the ( ),r z  plane containing the source. For the VSP case only the 
direct and diffracted P  arrivals will be included in the synthetic traces while for the 
surface receivers (AVO) the reflected compressional ( )P  wave from the top horizontal 
boundary of the wedge and the diffracted P wave from the edge at ( ),r z= D DD  are the 
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only arrivals considered The compressional ( )P  wave velocities in the half plane, α , 
and in the wedge strip, 1α , are chosen such that 1α α< . The shear wave ( )VS  velocities 

are defined by the relation 3β α=  and the densities are obtained from Gardner’s Law. 
This will be referred to as Model I. In a later section a modification of Model I will be 
considered, denoted as Model II and shown schematically in Figure 3.  

When considering diffraction from the wedge in Model I there are two regions to be 
considered in the half plane, the illuminated ( )IΩ  and the shadow ( )SΩ  regions (Figures 
(1) and (2)). These regions are different for the AVO and VSP situations. The shadow 
region consists of all points that do not lie in the "direct line of sight path" from the 
source. (This assumes that possible energy propagation through the elastic wedge strip is 
not considered.) The illuminated and shadow regions are separated from one another by 
what is termed the "boundary ray". In the simple situations being considered here the 
direct and reflected arrivals only appear on the synthetic traces in the illuminated regions 
while the diffracted arrival exist in both regions. As an example, for the AVO case from 

0Mr =  to 2Mr r= D  at 0z = , both the reflected and diffracted P waves may be registered 
at a surface receiver. Beyond 2Mr r= D  only the diffracted P arrival is recorded. 

The Fourier time transformed vector particle displacement of an incident 
compressional wave generated at the point source at the origin 0 and recorded at the 
vertical or surface receiver arrays may be written in terms of the zero order ART 
approximation as 

 ( ) ( )
( ) ( ), expG G

G

F
i

L
ω

ω ωτ= ⎡ ⎤⎣ ⎦
Π

U r r e
r

 (1) 

where the subscript " "G  (geometrical) indicates either the direct or reflected P  arrival, 
r  is the generally three dimensional position vector of some point in the halfspace that 
may, when convenient be denoted as M , ω  is the circular frequency, ( )Gτ r  ( )G Mτ⎡ ⎤⎣ ⎦  

is the travel time along the ray from the source to some point r , ( )GL r  ( )GL M⎡ ⎤⎣ ⎦ is the 
3D geometric spreading of the ray between the source and the point r  which for the 
direct arrival case is given by 

 
( ) ( )0cos1 1

M
G M M

z z
L R z

θ= = ≤
r D . (2) 

and for the reflected arrival as 

 ( ) ( )0sin1 1 0 M
G M M

r r
L R r

θ= = ≤ ≤
r D . (3) 

In terms of the ray parameter p , the direct and reflected arrival times may be written as 

(Aki and Richards, 1980) 
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 ( ) ( ) ( )1 22 2 DirectG M Mp r p z pτ α −= + − . (4) 

 ( ) ( ) ( )1 22 22 ReflectedG Mp r p z pτ α −= + −D . (5) 

Minimizing ( )G pτ  produces the values of p  that gives the minimal travel times, i.e., 

 ( )
( )

( )01 22 2
0 at  DirectG M

M

d p z pr p p
dp p

τ

α −
= − = =

−
. (6) 

 ( )
( )

( )01 22 2

2
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d p z p
r p p

dp p

τ

α −
= − = =

−
D . (7) 

so that 

 ( )0
0 1 22 2

sin Direct
M M

rp
z r

θ
αα

= =
⎡ ⎤+⎣ ⎦

. (8) 

and 

 
( )

( )0
0 1 22 2

sin Reflected
2

M

M

rp
z r

θ
αα

= =
⎡ ⎤+⎣ ⎦D

. (9) 

The term Π  in equation (1) is the product of all reflection and transmission coefficients 
encountered along the geometrical ray from source to receiver. In the VSP case, 1=Π  
and in the AVO case ( )0PP p=Π , the reflection coefficient at the halfspace/wedge 
boundary. The vector e  is either the vector decomposition of the incident particle 
displacement at a receiver into vertical and horizontal components or the surface 
conversion coefficient vector ( )0C pP  which partitions the particle displacement at the 
receiver into vertical and horizontal components at a surface receiver and is defined as 

 ( ) [ ]0 , T
C CV CHp P P=P . (10) 

The superscript " "T  indicates transpose, and " "H  and " "V  refer to horizontal and 
vertical components of the vector ( )0C pP . Expressions for the reflection and surface 

conversion coefficients may be found in Červený and Ravindra (1971). ( )F ω  is the 

Fourier time transform of the band limited source wavelet, ( )f t , t  being time. A 
spherically symmetric radiation pattern of this source function is assumed.  

For the diffracted arrival the travel time from source to receiver consists of two parts; 
the time it takes the ray to travel form the source to the diffraction edge in the ( ),r z  
plane at ( ),r zD D  plus the time taken for the ray to progress from the diffraction point to 
the receiver. This infers that a diffracted arrival generally has a different ray parameter on 
either side of the diffraction point. This will be dealt with shortly. 
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From the works of (Klem-Musatov, 1995 and Klem-Musatov et al., 2007) to the 
elastodynamic case, the diffracted particle displacement at some point r  recorded at 
some receiver due to the diffraction edge in the ( ),r z  plane at ( ),r z= D DD  may be 
written as 

 ( ) ( ) ( )
( ) ( ),

,  exp .
F I

i
L

ω ω ψ
ω ωτ= ⎡ ⎤⎣ ⎦

Π
U r r e

r D
D

D  (11) 

Apart from the introduction of the subscript " "D , which refers to diffraction, the only 
difference between equations (1) and (11) is the term ( ),I ω ψ , which is the radiation 
characteristic of the diffracted wave at a unit distance from the diffraction edge at D . 
The angle ψ  is the angle measured from the shadow/illuminated region boundary and 
chosen as negative in the illuminated region and positive in the shadow region. (See 
Figures (1) and (2)). The geometrical spreading ( ) ( )L L M=rD D  is the three 
dimensional geometrical spreading from the source to the point of diffraction plus the 
addition of the geometrical spreading from this point, assumed to be a point source, to 
M , so that 

 
( ) ( )

0

0 0

cos1 1 1 1 cos

M M ML M R R R r R r r
θ θ= = =

+ −
D

D D D D D DD
. (12) 

and the diffracted travel time ( )MτD  is 

 ( )
( )

1/ 221/ 2 22 2
Mz r rh r

Mτ
α α

⎡ ⎤+ −⎡ ⎤+⎣ ⎦ ⎣ ⎦= +
D DD

D  (15) 

for both the VSP and AVO cases. The parameter θD  is the acute angle the incidence the 
ray at the receiver makes with the vertical and is equal to ( )1tan r z−

D D . 

It is convenient at this point to introduce another Cartesian coordinate system, ( ),u v , 

whose origin is at D , together with a related polar coordinate system, ( ),ρ ψ . As before, 
ψ  is positive/negative in the shadow/illuminated regions which are defined by the 
boundary ray.  The quantity Mρ  is the distance from the point of diffraction at D  to 
some observation point M  fully defined by the additional coordinate, ψD  within the 
context of the Cartesian system ( ),u v . 

The radiation characteristic function ( ),I ω ψ , which is measured a unit distance from 
D  will be replaced in Equation (11) by the more general related function, 

( )( )W , , ,wω ω ρ ψ , termed the diffraction coefficient. The vector particle displacement at 

the point ( ), ,  M MM ρ ψ=  which is contained in either the surface or vertical receiver 
arrays at the coordinates ( ),M Mρ ψ  may be written as 
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 ( ) ( )
( ) ( )( ),

 ,  expMW w
M i t M

L M
ω

ω ω τ⎡ ⎤= − −⎣ ⎦
Π

U eD D
D

. (16) 

where ( ), ,M M Mw w ω ρ ψ≡ , with ω  being the circular frequency. The geometrical 
spreading ( )L MD  and arrival time ( )MτD  for the diffracted P arrival for both cases of 
model I are 

 ( ) 1/ 22 2
ML M z r ρ⎡ ⎤= + +⎣ ⎦DD D . (17) 

 ( )
1/ 22 2

M
z r

M ρτ
α α

⎡ ⎤+⎣ ⎦= +D D
D  (18) 

respectively. To reiterate, the compressional wave velocity in the halfspace, except for 
the wedge is α . All other quantities have been previously defined. 

To evaluate the diffraction coefficient both the diffracted travel time, ( )MτD , and the 

direct or reflected P  travel time, ( )G Mτ , are required. Referring to Figures (1) and (2), 

( )G Mτ , has either the form 

 ( ) ( )
1/ 22 2

DirectM M
G

z r
Mτ

α
⎡ ⎤+⎣ ⎦=  (19) 

or 

 ( )
( )

( )
1/ 22 22

Reflected
M

G

z r
Mτ

α

⎡ ⎤+⎣ ⎦=
D  (20) 

The diffraction coefficient in Equation (16) ( ),W wω  is now considered, omitting its 
derivation, as it is beyond the scope of this paper. Interested readers are referred to any of 
the earlier cited works where this aspect of the problem is fully addressed. This function 
is defined as 

 ( ) ( )
2

2 2
exp 2

,  1 2,
2

i w
W w i w

π
ω π

π
⎡ ⎤−⎣ ⎦= ± Γ −  (21) 

where ( )2 21 2, i wπ−Γ  is the incomplete gamma function and for the illuminated zone 

 ( ) ( )( )2 2
Gw M Mω τ τ

π
⎡ ⎤= −⎢ ⎥⎣ ⎦D  (22) 

while for the shadow zone 



Diffraction 

 CREWES Research Report — Volume 20 (2008) 7 

 ( )2 2 1 cosM
Mw ω ρ ψ

π α
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (23) 

Equation (22) for 2w  results from the fact that at some points on the surface no reflected 
arrival exists. This formula was obtained using analytic continuation and Appendix A 
contains a discussion of its derivation which is somewhat less than mathematically 
rigorous. 

The operative phrase describing the transition from illuminated to the shadow region 
is "smoothly varying" . This is achieved by employing analytic continuation of the ART 
solution across the boundary layer ( )boundary ray separating these two zones. Any part 
of the solution, either kinematic or dynamic, that does not have this property should be 
considered as suspect. 

The incomplete gamma function, ( )1 2, sΓ  is defined as 

 ( )
s

1 2
e, =   .

u

s du
u

∞ −

Γ ∫  (24) 

and may be written in terms of Fresnel integrals ( ( )Ci s  and ( )Si s ) or the 
complementary error function ( ( )erfc s ), (Abramowitz and Stegun (1980)). However, due 
to the existence of tested software, specifically the subroutine WOFZ  (Gautschi (1980), 
(1969)), and defined as 

 ( ) ( )2zW z z ,e erfc i−= −  (25) 

for complex z , it was determined, after comparison with other algorithms, to employ this 
routine in numerical computations due to its accuracy (14 to 16 floating point digits if 
double precision accuracy is used). Thus Equation (20) may be rewritten so that the 
diffraction coefficient has the new form 

 ( ) ( ) 4, W z , z = 2iW w e wπω ω= ±  (26) 

where the dependence of ( )W z  on frequency is implied. Here, it may be useful to write 
down the asymptotic expansions for ( )zerfc  and ( )W z  for large values of z , 

( )arg z < 3 4π . 

 2z(z) zerfc i e π≈  (27) 

 ( ) ( )4 4W( ) i 2  =i i
Rz e w eπ ππ π πω τ τ≈ −D  (28) 

indicating that the amplitude of the diffracted arrival is of the order ( )1O ω  for large 

values of the argument of z . 
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Another simple geological model, depicted schematically in Figure (2) and denoted as 
Model II, will now be examined. It is similar to Model I with the exception that the 
wedge now occupies the space ( , , )r r z z y≤ < ∞ ≤ < ∞ − ∞ < < ∞D D  in the halfplane 

( )0z > . The expressions for the reflected and diffracted waves amplitudes and travel 
times are given by Equations (1) and (11), and (18) and (20) still hold, provided the 
coordinate system ( ),ρ ψ  is properly defined. The VSP problem will not be considered 
for this model as both the direct and diffracted arrivals have geometrical paths for energy 
propagation from source to receivers. The compressional wave velocities in this case are 
chosen such that 2α α>  and all of the velocities and volume densities describing the 
model are given in Table II. The major difference in the arrivals at the surface for this 
model is that the reflected arrival appears only at offsets greater than ( )2Mr r r= = D . As 
is the previous model, the diffracted P  event may be seen at all offsets.  

Models I and II may now be combined to produce Model III (Figure (4)). This model 
is marginally more complicated than either of the two previous cases, but the reflected 
and diffracted wavefields are additive so that the seismic response of Model III is just the 
sum of the wavefields of Models I and II. In this manner, obtaining the diffracted 
wavefield for more complicated geological models may be reduced to computing the 
diffracted contributions due to individual edge diffractors and additively obtaining the 
total response as the cumulative sum of these elementary building blocks. There is no 
reason, however, for not including converted phase. It may be inferred that this process 
may be extended to truly three dimensional geological models by utilizing edge 
diffractors as the elementary structural quantity. 

There are some additional points that should be given some consideration regarding 
the method of introducing diffracted amplitudes into the computation of synthetic traces 
using the method described here. 

(1). Only "primary" diffractions are computed. That is, a given point diffractor may in 
practice excite another point diffractor. As the expressions given are high frequency 
approximations, the amplitude of the primary diffraction decays as 1/ 2ω −  (Equation (28), 
so that the amplitude of the secondary diffraction would decay as 1ω − . For this reason it 
is not considered. 

(2). It is possible, given the proper circumstances, for a critically refracted (head) 
wave to excite a point diffractor. Again, as the formulae presented here are high 
frequency approximations, this combination would decay as 3/ 2ω −  (Červený and 
Ravindra, (1971)). The reason given above would also preclude the inclusion of this type 
of arrival in the present level of program development. 

(3). To keep matters as simple as possible only PP  direct, reflected and diffracted 
arrivals were presented in this report. (PS)/(SP) reflections and diffractions are similar in 
form as PP  the in the high frequency limit. These diffractions decay as 1/ 2ω − , the same 
as in the PP  case. The same is also true for multiple reflections. 
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(4). Finally, the problem of possible diffraction within the wedge(s) should be 
mentioned. The refracted PP  or PS  wave at the point D will produce this effect. It has 
not been treated here in order to keep the discussion as simple as possible. However, in 
future applications to complex geological models, this facet of the theory will have to be 
investigated. 

NUMERICAL RESULTS 
The geological parameters defining the models mentioned earlier in this report are 

given in Tables I and II. Additional quantities required for model definition are the 
distance from the surface to the tops of the wedges, 400h m= , the horizontal distance 
from the source location to the points of diffraction, 1000r m=D  and the horizontal 
distance from the source to the points the boundary ray in Models I and II with surface 
receiver arrays are both 2000Br m= . The offsets of all of the synthetic seismograms 
presented run from 0m to 3000m  in steps of50m . The VSP receiver line is at an offset of 
1500m  with receivers set at 25m  intervals at depths of 100m  to 1600m . These together 
with a time scale and a brief description of what is shown in a given figure appear on all 
of the synthetic seismograms. A Gabor wavelet is used when producing the synthetic 
traces. 

Schematics of the models used are given in Figures (1), (2), (3) and (4) where 
additional information may be found. The synthetic seismograms presented include both 
the vertical and horizontal components of displacement either at the surface or in a 
vertical array for an elastic halfspace with an embedded wedge or wedges. 

Figures (8) through (11) are associated with Model I with Figures (8) and (9) 
displaying the vertical and horizontal components of displacement of the direct and 
diffracted arrivals. The vertical and horizontal components of the surface recorded 
reflected PP  and diffracted arrivals are shown in Figures (10) and (11). There are 3 
panels in each of the Figures (8) – (11)), showing: (a). the direct or reflected arrival, (b). 
the diffracted arrival and (c). the combination of the two. The PP  reflection coefficient 
related to the halfspace/Wedge I interface may be seen in Figure (6.a). The vertical and 
horizontal components of the surface conversion coefficients are given in Figures (7.a) 
and (7.b). 

The figures containing the vertical and horizontal components of displacement for the 
surface receivers in Model II are found in Figures (12) and (13). The PP  reflection 
coefficient related to the halfspace/Wedge I interface is shown in Figure (6.b) and the 
surface conversion coefficients are the same as for Model I. Again, as in the Model I 
surface recorded synthetics there are three panels in Figures (12) and (13). 

Only the total traces (reflected +  diffracted) are shown for Model III in Figures (14.a) 
and (14.b). The vertical and horizontal components are the arithmetic sum of the 
corresponding traces for Model I and Model II. 
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CONCLUSIONS 
A few simple geological models have been considered in which some of the basic 

concepts of diffraction theory in elastic media were presented. This was done within the 
framework of asymptotic ray theory (ART) and certain extensions thereof. ART produces 
results equivalent to those derived using the high frequency geometrical optics solution 
method. The models were designed to investigate properties of edge diffraction from a 
3D wedge. Specifically, the introduction of the boundary ray for different geometries and 
ray types were considered. This ray is such that it defines the illuminated and shadow 
zones for reflected and direct arrivals. The diffracted exist in both regions while the 
direct/reflected only exists in the illuminated region. The formulae for the edge diffracted 
arrival were obtained from other works cited here. The smooth transition of the diffracted 
arrival across the boundary ray from one region to another was taken as an indication that 
the formulae being used satisfied at least that constraint. Comparison of the modified 
ART solution for this problem has been checked by others for more complex media and 
as such was not included here. The diffraction coefficient is a function of the difference 
of the diffracted and direct/reflected travel times. As the direct/reflected arrival does not 
exist in the shadow zone it was necessary to introduce the concept of analytic 
continuation to provide an appropriate value for this quantity. This report is not a 
definitive source of all theory that is required for the introduction of edge diffracted 
arrivals into synthetic traces for complex structures, but rather a simple introduction to 
the topic.   
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 P Velocity (km/s) S Velocity (km/s) Density 
(gm/cm3) 

Wedge I 2.50 1.44 2.20 
Halfspace 2.00 1.15 1.80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 P Velocity (km/s) S Velocity (km/s) Density 
(gm/cm3) 

Wedge II 1.60 0.92 1.50 
Halfspace 2.00 1.15 1.80 

 
 
 

 

 

 

Table 1. Geological parameters for Model I. 

Table 2. Geological parameters for Model II. 
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APPENDIX A 
Assume a point source of compressional ( )P  waves located at the origin of an 

isotropic 3 dimensional Cartesian half space in which there is embedded a wedge of 
infinite dimensions in the y  direction. At a time after an impulsive excitation of the point 
source the direct wavefront will have progressed to the define the wavefront surface at 

Gτ . Wavefronts resulting from reflection from the top of the wedge and transmission 
through it have not been considered. However, the diffracted wavefront from the 
impinging of the wavefront originating at the origin on point D is included. This 
diffracted wavefront defined by Dτ will be assumed to be propagating in the halfspace. 
The ray associated with the point source at the origin which is such that it passes some 
small distance : 0ε ε →  front the point D and denoted BR  will be called the boundary 
ray. This ray separates the illuminated zone ( )IΩ  from the shadow ( )SΩ  zone for the 
direct wavefront which originates from a point source at some arbitrary origin, O . 

In the shadow zone the direct geometrical arrival does not exist even though its travel 
time in this region is required to determine the argument of the diffraction coefficient, 

( )W z , where  

 4z = 2ie wπ ω  (A.1) 

and w  is defined through the relationship 

 ( ) ( )( )2 2
Gw M Mω τ τ

π
⎡ ⎤= −⎢ ⎥⎣ ⎦D . (A.2) 

In the shadow region the travel time of this arrival to the point M  must be determined 
by analytic continuation of ( )0G Mτ  from the shadow/illuminated boundary into the 

shadow region. As TS  is the tangent plane to ( )0G Mτ  on the boundary ray BR  it may 

be interpreted as the local representation of ( )0G Mτ  there, which is to say that from the 
view point of seismic energy partitioning due to encounters of the ray with interfaces it is 
identical to a seismic plane wave at that point. From a mathematical point of view the 
analytic continuation of the travel time along the plane representation of the wave 
front TS  requires that the travel time is the same along the plane wave front as it is at 

0M . The same argument may be used to infer that the amplitude along the plane wave 
front TS  must also be the same as its value at 0M . 

Using the coordinate system ( ),ρ ψ  defined in the text which is centered at the 

diffraction point D, assuming that all rays are constrained to lie in the ( ),x z  plane of the 

( ), ,x y z  Cartesian system initially assumed here,  the travel time of the direct geometrical 

arrival on the seismic boundary ray BR , is ( )0G Mτ  and as a result of the preceding 
argument 



Diffraction 

 CREWES Research Report — Volume 20 (2008) 13 

 ( ) ( )0 whereG G TM M M Sτ τ= ∈ . (A.3) 

If 1τ  is the time taken for the direct geometrical arrival to travel from the point source to 
the diffraction point D , then 

 ( ) 1 MMτ τ ρ α= +D  (A.4) 

and 

 ( ) 1 cosG M MMτ τ ρ ψ α= +  (A.5) 

where α  was defined in the text as the P  wave velocity in the half space. Substituting 
equations (A.4) and (A.5) into (A.2) the quantity z  expressed in terms of w  may be 
obtained from 

 ( ) ( )( ) ( )2 2 2 1 cosM
G Mw M Mω ω ρτ τ ψ

π π α
⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠⎣ ⎦

D . (A.6) 
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FIG. 1. Geometry of Model I for a vertical array of receivers. 

 
FIG. 2.. Geometry of Model I for an array of receivers located at the surface. 
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FIG 3.. Geometry of Model II for an array of receivers located at the surface. Also shown, but not 
used here, is the boundary ray for reflections from the flank of the wedge and the corresponding 
shadow and illuminated zones. 

 
FIG. 4.. Geometry for Model III. 
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FIG. 5. Analytic continuation of the spherical geometrical wavefield into the shadow region. See 
Appendix A for a more complete discussion.  
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FIG. 6. PP reflection coefficients for Models I (a) and II (b). See Tables I and II for more details.  
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FIG. 7. Vertical (a) and horizontal (b) components of the surface conversion coefficient vector for 
Models I, II and III, used for both reflected and diffracted waves at surface receivers.  
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FIG. 8. Vertical component of displacements of the (a). direct, (b). diffracted and (c). combined, 
V
rPP , for Model I (VSP). 
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FIG. 9. Horizontal component of displacements of the (a). direct, (b). diffracted and (c). combined, 
H

rPP , for Model I (VSP). 
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FIG. 10. Vertical component of displacements of the (a). reflected, (b). diffracted and (c). 
combined, V

rPP , for Model I (Surface receivers). 
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FIG. 11. Horizontal component of displacements of the (a). reflected, (b). diffracted and (c). 
combined, H

rPP , for Model I (Surface receivers). 
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FIG. 12. Vertical component of displacements of the (a). reflected, (b) diffracted and (c) 
combined, V

rPP , for Model II (Surface receivers). 
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FIG. 13. Horizontal component of displacements of the (a). reflected, (b) diffracted and (c) 
combined, H

rPP , for Model II (Surface receivers). 
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FIG. 14. Vertical (a) and horizontal (b) components of displacement of the combined, V
rPP and 

H
rPP  for Model III (Surface receivers). 

 


