
Seismic modelling in parallel MATLAB

Seismic data modelling using parallel distributed MATLAB

Kayla Bonham and Robert J. Ferguson

ABSTRACT

Numerical modelling of seismic wave propagation is centralto seismic imaging and in-
version. Modelling of 3D heterogeneous anisotropic media can, however, simultaneously
be both costly and of low fidelity. To address some aspects of the fidelity / cost problem,
we present our implementation of seismic modelling within the Rayleigh-Sommerfeld al-
gorithmic framework and implemented in a parallel computing environment. We demon-
strate through example, that knowledge of relationships among hardware architecture, sup-
port software systems, and resource usage of our algorithm,is of crucial importance to the
achievement of worthwhile performance using parallel computing. From an initial, sim-
plistic expression of our parallel algorithm in the MATLAB system, exhibiting ‘negative
improvement’, we incrementally adapt the parallel controlframework without losing the
clarity or correctness of the original model expression, tobypass successive bottlenecks
and achieve substantial performance gains.

INTRODUCTION

To model high fidelity structural and textural information for large 3D spaces, we are
currently in development of a large scale seismic modellingcapability.

Our effort is based on the Rayleigh-Sommerfeld integral (Ersoy, 2007, p.59) formu-
lation of wave propagation. This is a familiar integral in that conventional imaging by
phase shift (Gazdag, 1978) is a special case of this more general theory, and it is unique in
that wave propagation is controlled numerically by a set of phaseshift operators, reflection
operators, and transmission operators (Cooper and Margrave, 2008). Within this scheme,
basically, seismic modelling and imaging are the reverse ofeach other, and they differ
mainly where (and when) data are evaluated during computation (Cooper and Margrave,
2008).

In our implementation, a planewave source is distributed over temporal frequency
among nodes of our computer cluster. This distribution of monochromatic components
of the source wavefield ensures that no internode communication is required until model
data are collected and summed – execution is, therefore, “embarrassingly parallel” (Foster,
1995, Section 1.4.4 for example). That is, sets of similar calculations are done with few or
no dependencies among parallel computational threads.

The hardware system we use is is a cluster computer of 19 nodes, each with eight
processors, where each node has common shared memory and local disk storage. The
software support system mirrors this, in that we have 96 distributed MATLAB ‘workers’
enabled on twelve of the nodes, with eight workers to a node. We favour MATLAB due to
its concise notation, comprehensive matrix manipulation abilities, and the fact that arrays
of complex numbers are a fundamental data type.

Our initial naïve MATLAB implementation using the built-inparfor construct for the

CREWES Research Report — Volume 21 (2009) 1



Bonham and Ferguson

"outer loop" uncovered unsatisfactory parallel performance. By paying attention, however,
to both the hardware architecture and the software support system, we have been able to
substantially increase parallel performance without disturbing the simplicity of the code
(much).

HARDWARE ARCHITECTURE

‘Gilgamesh’ ∗, our Linux-based (Centos 5) cluster, consists of a master node and 18
slave nodes. The master node acts as gateway and network file server to the slave nodes,
and all communicate locally by Gigabit Ethernet. The masterand slaves have identical
system architectures comprising two quad-core Intel Xeon ‘Harpertown’CPU chips with
two-level cache and 16 GB of shared random access memory per node. Each node has 300
GB of temporary local storage space. The master node has 14 Terabytes of disk storage to
hold permanent user files and is accessible on all nodes via the network file system. We
estimate the theoretical performance of our system in raw CPUcycles to be approximately
1 TFLOPS (1012 FLoating point OPerations Per Second).

Gilgamesh exhibits a Non-Uniform Memory Access (NUMA ) architecture at several
levels, as do most so-called ‘cluster computers’ composed of network-linked commodity
computer systems. This means that the speed of access to particular elements of memory,
by any givenCPU in the system, depends on their physical and logical proximity across
various levels of interconnection that the system architecture imposes.

This architecture has both advantages and disadvantages for parallel processing. Use of
off the shelf components ensures scalability, and low cost is a definite advantage. A major
disadvantage is that, at the application program level, we must pay attention to granularity
issues, patterns of memory access, plus network contentionamong processing threads.

SOFTWARE INFRASTRUCTURE

MATLAB is a commercially-available matrix-oriented programmingsystem with a suc-
cinct, clear notation in which it is easy to express mathematical and scientific formulae and
methods.

Within MATLAB , we use the Parallel Computing Toolkit (PCT) to define extensions to
MATLAB for parallel processing. The PCT provides (among others) language primitives
‘parfor’ (for distributing iterations of a parallel loop among the available ‘workers’ or
independent threads of execution) and ‘distributed arrays’ (for allocating slices of a large
array among workers, to be worked on separately and combinedlater).

The PCT interacts with another facility, called the ‘MATLAB Distributed Computing
Service’ (MDCS) to provide infrastructure to manage workersacross multiple computers.
Many MATLAB operators and toolkit functions are enhanced to automatically detect and
make use of PCT, MDCS and multiple parallel workers, if they arepresent and enabled in
a MATLAB installation.

∗named after the ancient Sumerian hero-king of Uruk, theBeowulf of 4000 B.C!

2 CREWES Research Report — Volume 21 (2009)



Seismic modelling in parallel MATLAB

APPLICATION

The present work is a numerical implementation of scalar wave propagation in anisotropic
media in three dimensions according to the Rayleigh-Sommerfeld approach (Cooper and
Margrave, 2008). Fundamentally, a source planewaveϕ (z = 0) is extrapolated to a new
grid level atz = ∆z according to

ϕ (p,∆z)ω = A (p,∆z)ω ϕ (p, 0)ω e
i ω q(p)∆z, (1)

wherep = p1 î+p2 ĵ andω are plane wave coordinates. AmplitudeA (∆z) is a reflectivity
or transmissivity scalar, and slownessq (∆z) may be anisotropic. To visualize propagating
wavefieldψ in three spatial dimensions, for example as a ‘snapshot’ at time t, source
planewavesϕ (0)ω0

throughϕ (0)ωNyq
, whereωNyq is Nyquist frequency, are extrapolated

to allN depth levelsz = ∆z, · · · , N ∆z, and then summed according to

ψ (x, z)t = ε
∑

ω

Tp→x {ϕ (p, z)ω} e
i ω,t, (2)

whereε is a scalar for normalization, and Tp→x Fourier transformsϕ (p) to space coordi-
natesx = x1 î+ x2 ĵ. Figures 1a and b are ‘snapshots’ of a point source extrapolated from
z = 0 into the subsurface for a fixed time. The medium is homogeneous but anisotropic,
so the P- and SV-wavefronts are not spherical (Figures 1a andb respectively).

Numerically, each worker in the computer cluster gets a copyof slowness modelq (ω, z).
Then, monochromatic sourceϕω is initialized (a 2D numerical array), and monochromatic
wavefieldψ (x, z)ω (a 3D array) is computed through recursive application of equation 1
followed by the Tp→x part of equation 2 and application of scalarsε andei ω t. The sum-
mation step in equation 2 is computed carried separately.

To evaluate the performance of our algorithm on our architecture and software infras-
tructure, a small model space (500 inline / x-line and 250 depths† is chosen. The number of
frequenciesω of interest is∼ 330. Ultimately, we will wish to perform higher-resolution
studies to the reasonable limits of the machine.

GENERALIZED EXPRESSION OF THE PROBLEM

Implementation of the modelling algorithm detailed above consists of two main steps:
extrapolation followed by summation. Here, extrapolationconsists of initialization of the
mononchromatic source plus recursive extrapolation of thesource to allz plus scaling, and
we represent these combined operations with pseudo-code functionA(X,Y,Z,f). Dimen-
sionsX,Y,Z represent the spatial dimensions of the 3D visualization matrix, and there areF frequenciesf of interest. Rendered in pseudo-code, forf, extrapolation and summation
are computed according toProgram1:% Program1

†A total of 62 500 000 double-precision complex elements in each array∼ 1 GB each.

CREWES Research Report — Volume 21 (2009) 3



Bonham and Fergusoninit();R = zeros(X,Y,Z);for f = 1:FL = A(X,Y,Z,f);R = R + L;endfinal();
where ‘R = R + L’ above is the summation step; Time to execute this function is approx-
imately

T1 ≈ Ti + TcaF + TsF + Tf (3)

whereTi is the constant time to initialize theR array and other internal program parame-
ters,Tca is the time to compute functionA for one frequency value and return a matrix of
dimensions[X,Y,Z℄, andTs is the time to sum one single-frequency result matrix ‘L’ into
the global result matrix ‘R’. Final time Tf is the constant time to write out the ‘R’ result
array and perform other internal program tear-down overhead.

The naïve parallel solution can be expressed as follows:% Program2init();R = zeros(X,Y,Z);parfor f = 1:FL = A(X,Y,Z,f);R = R + L;endfinal();
where the only difference is the substitution of ‘parfor’ for ‘ for’ in the main loop. One
might hope for the execution time to be something like

T2 ≈ Ti + Tca
F

W
+ TcoF + TsF + Tf, (4)

whereW is the number of worker processes operating in parallel, andthe calculation of all
F frequencies is divided equally among workers.Tco is the time to communicate the value
of a single-frequency result matrix ‘L’ back to the main MATLAB session for summing into
the global ‘R’ array. We can’t expect theTco term to parallelize to the same degree asTca so
the worst-case assumption is that network access will serialize the communications (and
summations);

MATLAB ’s implementation ofparfor, however, is such that as each ‘L’ array is pro-
duced, it is transmitted in its entirety to the master session for summation. Contention for
the network resource results, plus memory overhead in the master session for buffering the
‘L’ arrays that wait simultaneously to be summed into the global ‘ R’ array. WithProgram2,

4 CREWES Research Report — Volume 21 (2009)



Seismic modelling in parallel MATLAB

then, we find that the multiple ‘L’ matrices, each as large as the ‘R’ array, become so numer-
ous that they exceed virtual memory of the designated ‘master’ host doing the summation,
and execution must terminate.

So that virtual memory of the ‘master’ host is not exceeded,Program3 (below), sub-
divides theF frequencies among theW workers so that each worker performsF/W fre-
quency calculations, and then sums the ‘L’ arrays to reduce the number of ‘L’ arrays trans-
mitted and buffered to the master session. Then, one of the workers present at a given
node is designated as a ‘node representative’ that collectsand sums the per-worker local
sum arrays ‘S’ into a single per-node sum array ‘M’ for reporting to the master session and
summing into the global result ‘R’.% Program3init();R = zeros(X,Y,Z);parfor w = 1:WS = zeros(X,Y,Z);for f = 0+w:W:FL = A(X,Y,Z,f);S = S + L;endwrite_file(w,S);endparfor w = 1:Wif (iam_node_rep(w))M = zeros(X,Y,Z);for k = 1:Wif (file_exists_lo
ally(k))S = read_file(k);M = M + S;endendR = R + M;endendfinal();
Although, for sound theoretical reasons, the MATLAB parfor construct prohibits commu-
nication between threads of execution on separate workers,we have bypassed that restric-
tion in a safe way by having workers write their result arraysto the local disk, to be re-read
and summed by the designatednode_rep worker. Thenode_rep worker subsequently
communicates with the master session to sum its single per-node ‘M’ array into the global
result ‘R’. Since communication overhead is a determining factor foroverall performance,
this ends up being faster, despite the overhead of writing and reading the local ‘S’ files.

CREWES Research Report — Volume 21 (2009) 5



Bonham and Ferguson

WhereasProgram2 tried to send allF intermediate ‘L’ result arrays, to the master
session for summing,Program3 only needs to sendN ‘M’ arrays (one for each node), a
huge efficiency gain, at a cost of only (up to) eight ‘S’ arrays written to and read back from
the local disks on each of the nodes.

The time to executeProgram3 is

T3 ≈ Ti + [Tca + Ts]
F

W
+ [Tw + Tr]

W

N
+ [Tco + Ts] N + Tf (5)

whereN is the number of cluster nodes participating in the computation, andTw + Tr is
the time to write and then read oneS array.

There is some new overhead in having the workers determine whether they are the
designatednode_rep for their node (we use the success or failure of an indivisible file
‘touch’ operation), as well as some overhead coordinating the secondparfor loop, but
these are small, constant overheads which we ignore here.

Also, notice that in the second ‘parfor’, all workers but thenode_rep have nothing
to do; this ends up saving communication time, but one could argue that for the time thenode_rep is reading, and summing globally, the non-node_rep workers are under-utilized
andCPU cycles wasted.Program3 has given us quite reasonable performance speedups. The extra control we
now have withProgram3, over the number of workers per node that participate in the
computation, will be quite useful when we increase the dimensions of the problem. At
some point, the memory required to contain 8 replicated 3D matrices of the size we wish
to use will cause virtual memory contention among the workers. At that time it may be
more optimal to specify only 7 or 6 workers per node, and put upwith the communication
overhead of an extra node or two when summing the final result,rather than risk virtual
memory contention causing the computation to thrash on eachnode.

PEER-TO-PEER COMMUNICATION

Recently added to the MATLAB version R2008b implementationof the Parallel Com-
puting Toolkit, is the ‘spmd’ construct. ‘Spmd’ stands for ‘single program, multiple data’,
which is a computer science term denoting hardware or software architectures in which
the parallel processing agents (CPUs, program threads or, in our case, distributed MAT-
LAB workers), all execute the same program while being given, orpermitted to derive,
independently varying data objects in their work-spaces.

What we did inProgram3, with the ‘parfor w = 1:W’ loop variablew governed byW, the number of workers, is to execute the code governed by theloop exactly once per
worker. That is exactly what the ‘spmd’ construct would do also.Spmd has most of the
same restrictions asparfor on variables local to the loop, but the constraint on peer-to-
peer communication between workers is lifted. Workers may know their ownlabindex
and may use MPI-derived communication methodslabSend andlabRe
eive to exchange
data.

6 CREWES Research Report — Volume 21 (2009)



Seismic modelling in parallel MATLAB

RewritingProgram3 to usespmd andlabSend,labRe
eive gives usProgram4:% Program4init();R = zeros(X,Y,Z);spmdw = labindex();S = zeros(X,Y,Z);for f = 0+w:W:FL = A(X,Y,Z,f);S = S + L;endif (mod(w,2) > 0)labSend(w+1,S);elseS = S + labRe
eive(w-1);if (mod(w,4) > 0)labSend(w+2,S);elseS = S + labRe
eive(w-2);if (mod(w,8) > 0)labSend(w+4,S);elseS = S + labRe
eive(w-4);R = R + S;endendendend %spmdfinal();
This replaces the calls towrite_file(my_wID, data ) andread_file(writer_wID) with
a pair of calls tolabSend(receiver_wID, data_value) and labRe
eive(sender_wID),
where the worker identifiersxx_wID are obtained from built-in functionlabindex, or de-
rived from the worker->node distribution scheme. The modulus functionmod(my_wID,
power_of_two) is a way of determining an order of combination of the local ‘S’ arrays
among the eight workers on a node, in a binary tree pattern, increasing the parallelism of
the node-level summation step. The ‘R = R + S’ step still implies serial network commu-
nication, and summation into the global result array.

Because thelabSend andlabRe
eive operations occur strictly between workers hosted
by the same node, communication is faster than between workers on different nodes.

The time to executeProgram4 is

T4 ≈ Ti + [Tca + Ts]
F

W
+ [Tsr + Ts] log2

[

W

N

]

+ [Tco + Ts] N + Tf (6)

CREWES Research Report — Volume 21 (2009) 7



Bonham and Ferguson

whereTsr is the time to send and receive one ‘S’ array between workers on the same node.

Disappointingly, the version of MPI used by MATLAB uses Unix‘so
kets’ for all
communication whether communicating processes are on the same or different nodes, so
that copying between workers on the same node is still serialized, as if transferring data
across the network, rather than being an instantaneous, direct memory-map operation that
theoretically would be possible using the shared virtual memory hardware on the cluster
node.

Nevertheless, the net result is that the speed ofProgram4 does improve on that ofProgram3 by a factor of almost two. A side benefit is a gain in simplicity, wherespmd gives
us a simpler mechanism to obtain and manipulate node identifiers (e.g.(mod(labindex,8)== 0)), and communication among workers withlabSend/labRe
eive is much simpler
to specify and set up thanwrite_file/read_file that we were forced to adopt when
usingparfor.

PERFORMANCE ANALYSISProgram3 was run on an unloaded cluster with function ‘A’ and parametersX,Y,Z,F
held constant, while run-specific variablesW (number of workers participating in com-
putation), andN (number of nodes participating) are varied to evaluate runtime under
different degrees of parallelism. The overall elapsed timeto compute and write out ‘R’ was
observed, and an eye was kept on virtual memory usage on both worker nodes and the node
hosting the main MATLAB session, to ensure virtual memory was not being over-filled and
performance degraded by thrashing.

Time elapsed,T3, is plotted for the observed runs in Figure 2. We find that a ‘sweet
spot’ exists at about 48 workers on 6 nodes with 8 workers per node – not too many nodes
reserved, something close to minimum elapsed computation time of 508 seconds. Slightly
shorter elapsed time could be obtained by using more workers, but most of the parallel
gains are reached at (48,6). With 48 workers and 6 nodes, halfthe cluster is left to do a
second computation or to let other users make use of the resources. Adding more workers
past a certain point, only slows the overall calculation down, because while the computation
phase may be quicker, the communication phase where thenode_reps report their local
sums ‘M’ to the main session, would be increased in duration.Program4 was run in comparable configurations toProgram3, and resulted in a similar
scaling behaviour, achieving a run time of 271 seconds using48 workers on 8 nodes, six
workers per node.

CONCLUSIONS

From a prototype sequential (non-parallel) implementation expressed in MATLAB , we
have gone through several iterations of a parallel implementation, at each step making
improvements to unblock one or more ‘bottlenecks’ in performance, taking account of the
architecture of the host computer system, the problem structure and algorithm behaviour,
as well as the characteristics of the software support infrastructure.

8 CREWES Research Report — Volume 21 (2009)



Seismic modelling in parallel MATLAB

FIG. 1. Snapshots of extrapolated wavefields in a dipping anisotropic medium. a) P-wave. b)
SV-wave.

2
4

6
8

10
12

1
2

3
4

5
6

7
8

1000

1500

2000

2500

3000

3500

 

NodesWorkers per node

 

R
un

tim
e 

(s
)

RT
max

 = 3875 s

RT
min

 = 508 s

Gilgamesh

FIG. 2. Plot of runtime versus number of workers and workers per node. Maximum and minimum
runtimes are indicated (RTmax = 3875s and RTmin = 508s) respectively, RT for the 8 worker per
node configuration of Gilgamesh.

CREWES Research Report — Volume 21 (2009) 9



Bonham and Ferguson

Along the way we stumbled on several ‘tricks’ that gave us some control over the
implicit scheduling of MATLAB workers executingparfor loops within amatlabpool,
that may not have been anticipated by the providers of MATLAB .

In the end we achieved a reasonable performance increase, making feasible our inves-
tigation of the full-scale problem. We have developed a scheme for analyzing the perfor-
mance of the program, which will be helpful when consideringfuture improvements and
possible re-implementation in a production version.

Certain aspects of run-time behaviour are as expected intuitively: applying more pro-
cessors decreases the time to calculate the per-frequency matrix. The remaining limits
to performance speed-up are due to hardware architecture (serial access to the communi-
cation channel to report the per-node ‘M’ result arrays and software support architecture
(implementation-specific buffering of entire arraysvs. piecewise result reduction opera-
tions, socket-based communication rather than direct memory address space sharing).

We found that writing and reading 8 large per-worker ‘S’ arrays locally, plus commu-
nicating a single per-node ‘M’ array to the master session over the local network, takes less
time than sending all 8 ‘S’ arrays over the network directly. At the same time it means
there is only one ‘M’ array buffered at the master session, rather than 8 ‘S’ arrays pending
summation into the global result ‘R’.

A further level of performance was obtained by usingspmd instead ofparfor, allow-
ing direct communication between workers withlabSend andlabRe
eive. We find that,
since the ‘S’ arrays are already in memory, local communication with thedesignated node-
rep worker takes place much faster when workers are able to communicate in peer-to-peer
fashion. Although the parallel control framework surrounding the computation became
somewhat complex during the evolution of the program, the definition of the model (ab-
stracted as function ‘A’) remained untouched and unmodified from its essential expression
in MATLAB , preserving trust in the correctness of the results.

ACKNOWLEDGEMENTS

The authors wish to thank the sponsors, faculty, and staff ofthe Consortium for Re-
search in Elastic Wave Exploration Seismology (CREWES), and the Natural Sciences and
Engineering Research Council of Canada (NSERC, CRDPJ 379744-08) for their support
of this work.

REFERENCES

Cooper, J. K., and Margrave, G. F., 2008, Seismic modelling in3d for migration testing:
Expanded Abstracts, Can. Soc. of Expl. Geophys.

Ersoy, O. K., 2007, Diffraction, Fourier optics, and imaging: Wiley-Interscience.

Foster, I., 1995, Designing and building parallel programs: Addison-Wesley.

Gazdag, J., 1978, Wave equation migration with the phase-shift method: Geophysics,43,
No. 07, 1342–1351.

10 CREWES Research Report — Volume 21 (2009)


