Seismic modelling in parallel MATLAB

Seismic data modelling using parallel distributed MATLAB
Kayla Bonham and Robert J. Ferguson
ABSTRACT

Numerical modelling of seismic wave propagation is certbaeismic imaging and in-
version. Modelling of 3D heterogeneous anisotropic media tlowever, simultaneously
be both costly and of low fidelity. To address some aspectsefitielity / cost problem,
we present our implementation of seismic modelling witlie Rayleigh-Sommerfeld al-
gorithmic framework and implemented in a parallel compgtamvironment. We demon-
strate through example, that knowledge of relationshipsragardware architecture, sup-
port software systems, and resource usage of our algorighoficrucial importance to the
achievement of worthwhile performance using parallel cotimg. From an initial, sim-
plistic expression of our parallel algorithm in theAVLAB system, exhibiting ‘negative
improvement’, we incrementally adapt the parallel confralmework without losing the
clarity or correctness of the original model expressionbypass successive bottlenecks
and achieve substantial performance gains.

INTRODUCTION

To model high fidelity structural and textural informatioor farge 3D spaces, we are
currently in development of a large scale seismic modeltiaygability.

Our effort is based on the Rayleigh-Sommerfeld integrab@r 2007, p.59) formu-
lation of wave propagation. This is a familiar integral iratrconventional imaging by
phase shift (Gazdag, 1978) is a special case of this morega@eheory, and it is unique in
that wave propagation is controlled numerically by a sethageshift operators, reflection
operators, and transmission operators (Cooper and Marg2@@8). Within this scheme,
basically, seismic modelling and imaging are the reverseauh other, and they differ
mainly where (and when) data are evaluated during comput&Cooper and Margrave,
2008).

In our implementation, a planewave source is distributedr demporal frequency
among nodes of our computer cluster. This distribution ohowhromatic components
of the source wavefield ensures that no internode commumicest required until model
data are collected and summed — execution is, therefordydenassingly parallel” (Foster,
1995, Section 1.4.4 for example). That is, sets of similé&sudations are done with few or
no dependencies among parallel computational threads.

The hardware system we use is is a cluster computer of 19 nedet with eight
processors, where each node has common shared memory ahdliklc storage. The
software support system mirrors this, in that we have 9&idiged MATLAB ‘workers’
enabled on twelve of the nodes, with eight workers to a node fadbour MATLAB due to
its concise notation, comprehensive matrix manipulatioilitees, and the fact that arrays
of complex numbers are a fundamental data type.

Our initial naive MATLAB implementation using the built-iparfor construct for the

CREWES Research Report — Volume 21 (2009) 1

Bonham and Ferguson

"outer loop" uncovered unsatisfactory parallel perfornaari®y paying attention, however,
to both the hardware architecture and the software supgestés, we have been able to
substantially increase parallel performance withoutultsing the simplicity of the code

(much).

HARDWARE ARCHITECTURE

‘Gilgamesh’ *, our Linux-based (Centos 5) cluster, consists of a mastee aod 18
slave nodes. The master node acts as gateway and networkrfitr 0 the slave nodes,
and all communicate locally by Gigabit Ethernet. The maatet slaves have identical
system architectures comprising two quad-core Intel Xddarpertown’cpu chips with
two-level cache and 16 GB of shared random access memoryger gach node has 300
GB of temporary local storage space. The master node hasraidyfes of disk storage to
hold permanent user files and is accessible on all nodes @iadtwork file system. We
estimate the theoretical performance of our system in raw GRles to be approximately
1 TFLOPS (02 FLoating point OPerations Per Second).

Gilgamesh exhibits a Non-Uniform Memory Accessi(MA) architecture at several
levels, as do most so-called ‘cluster computers’ compogettiovork-linked commodity
computer systems. This means that the speed of accessitulaarélements of memory,
by any givencpu in the system, depends on their physical and logical prayi@cross
various levels of interconnection that the system architedmposes.

This architecture has both advantages and disadvantagesrdlel processing. Use of
off the shelf components ensures scalability, and low cost is a definitardgdge. A major
disadvantage is that, at the application program level, wstipay attention to granularity
issues, patterns of memory access, plus network conteatmmg processing threads.

SOFTWARE INFRASTRUCTURE

MATLAB is a commercially-available matrix-oriented programmsygtem with a suc-
cinct, clear notation in which it is easy to express math@aband scientific formulae and
methods.

Within MATLAB, we use the Parallel Computing Toolkit (PCT) to define extamsio
MATLAB for parallel processing. The PCT provides (among othergjuage primitives
‘parfor’ (for distributing iterations of a parallel loop among theadable ‘workers’ or
independent threads of execution) and ‘distributed atrdgsallocating slices of a large
array among workers, to be worked on separately and comietex).

The PCT interacts with another facility, called the AvLAB Distributed Computing
Service’ (MDCS) to provide infrastructure to manage workasreoss multiple computers.
Many MATLAB operators and toolkit functions are enhanced to autonibtidatect and
make use of PCT, MDCS and multiple parallel workers, if they@esent and enabled in
a MATLAB installation.

*named after the ancient Sumerian hero-king of Uruk,Beenulf of 4000 B.C!

2 CREWES Research Report — Volume 21 (2009)

Seismic modelling in parallel MATLAB

APPLICATION

The present work is a numerical implementation of scalareyaepagation in anisotropic
media in three dimensions according to the Rayleigh-Sorfatdeapproach (Cooper and
Margrave, 2008). Fundamentally, a source planewaye = 0) is extrapolated to a new
grid level atz = Az according to

¢ (p,Az), = A(p,Az), ¢ (p,0), ')Az (1)

wherep = p; i +p» j andw are plane wave coordinates. Amplitudé Az) is a reflectivity

or transmissivity scalar, and slownesg\ z) may be anisotropic. To visualize propagating
wavefield in three spatial dimensions, for example as a ‘snapshotina t, source
planewavesy (0),, throughy (O)WNM, wherewy,, is Nyquist frequency, are extrapolated
to all N depth levels: = Az,--- | N Az, and then summed according to

V(x2), =Y Tou{p(@2),} e, (@)

wheree is a scalar for normalization, and,Tx Fourier transforms (p) to space coordi-
natesx = z, i + - j. Figures 1a and b are ‘snapshots’ of a point source extragmbfeom
z = 0 into the subsurface for a fixed time. The medium is homogesn®at anisotropic,
so the P- and SV-wavefronts are not spherical (Figures 1daaspectively).

Numerically, each worker in the computer cluster gets a afgjowness model (w, z).
Then, monochromatic souree, is initialized (a 2D numerical array), and monochromatic
wavefieldy (x, z) , (a 3D array) is computed through recursive application afetipn 1
followed by the T, part of equation 2 and application of scalarande’“*. The sum-
mation step in equation 2 is computed carried separately.

To evaluate the performance of our algorithm on our architecand software infras-
tructure, a small model space (500 inline / x-line and 250l s chosen. The number of
frequenciesv of interest is~ 330. Ultimately, we will wish to perform higher-resolution
studies to the reasonable limits of the machine.

GENERALIZED EXPRESSION OF THE PROBLEM

Implementation of the modelling algorithm detailed abowesists of two main steps:
extrapolation followed by summation. Here, extrapolatomsists of initialization of the
mononchromatic source plus recursive extrapolation osthece to alk plus scaling, and
we represent these combined operations with pseudo-codédn A (X,Y,Z,f). Dimen-
sionsX, Y, Z represent the spatial dimensions of the 3D visualizatiotrimyand there are
F frequencie< of interest. Rendered in pseudo-code, fpextrapolation and summation
are computed according Rrogram1:

% Programl

A total of 62 500 000 double-precision complex elements thearay~ 1 GB each.

CREWES Research Report — Volume 21 (2009) 3

Bonham and Ferguson

init();
R = zeros(X,Y,Z);
for £ = 1:F
L =AKX,Y,Z,f);
R =R+ L;
end
final();

where R = R + L’ above is the summation step; Time to execute this funcsapprox-
imately
Ty =T+ TeaF +Ts F + Tt 3

whereT; is the constant time to initialize tieearray and other internal program parame-
ters, T, is the time to compute functiok for one frequency value and return a matrix of
dimensiondX,Y,Z], andTyis the time to sum one single-frequency result mattixnto
the global result matrixg’. Final time 7; is the constant time to write out th&’‘result
array and perform other internal program tear-down ovethea

The naive parallel solution can be expressed as follows:

% Program?2
init();

R = zeros(X,Y,Z);
parfor £ = 1:F

L = AX,Y,Z,f);
R=R+1L;

end

final();

where the only difference is the substitution parfor’ for ‘ for’ in the main loop. One
might hope for the execution time to be something like

F
T2%Ti+TcaW+TcoF+TsF+Tfa (4)

wherelV is the number of worker processes operating in parallel thedalculation of all
F frequencies is divided equally among workefy, is the time to communicate the value
of a single-frequency result matrik*back to the main MTLAB session for summing into
the global R’ array. We can’t expect th&,, term to parallelize to the same degre€/asso
the worst-case assumption is that network access willlsgrithe communications (and
summations);

MATLAB’s implementation oparfor, however, is such that as eadt array is pro-
duced, it is transmitted in its entirety to the master ses&o summation. Contention for
the network resource results, plus memory overhead in trgtenaession for buffering the
‘L’ arrays that wait simultaneously to be summed into the dlatjarray. WithProgram?2,

4 CREWES Research Report — Volume 21 (2009)

Seismic modelling in parallel MATLAB

then, we find that the multiple.’ matrices, each as large as tl¢array, become so numer-
ous that they exceed virtual memory of the designated ‘mastet doing the summation,
and execution must terminate.

So that virtual memory of the ‘master’ host is not exceededgram3 (below), sub-
divides theF' frequencies among thé workers so that each worker performg 1V fre-
guency calculations, and then sums thiearrays to reduce the number af ‘arrays trans-
mitted and buffered to the master session. Then, one of thikengpresent at a given
node is designated as a ‘node representative’ that collextssums the per-worker local
sum arrays$’ into a single per-node sum array’ ‘for reporting to the master session and
summing into the global resulk”.

% Program3
init();
R = zeros(X,Y,Z);
parfor w = 1:W
S = zeros(X,Y,Z);
for £ = O+w:W:F
L AKX,Y,Z,f);
S S+ L;
end
write_file(w,S);

end
parfor w = 1:W
if (iam_node_rep(w))
M = zeros(X,Y,Z);
for k = 1:W
if (file_exists_locally(k))

S = read_file(k);
M =M+ S;
end
end
R =R + M;
end
end
final();

Although, for sound theoretical reasons, themMAB parfor construct prohibits commu-
nication between threads of execution on separate wonkerbave bypassed that restric-
tion in a safe way by having workers write their result arraythe local disk, to be re-read
and summed by the designateede_rep worker. Thenode_rep worker subsequently
communicates with the master session to sum its single qee-N’ array into the global
result R’. Since communication overhead is a determining factoofarall performance,
this ends up being faster, despite the overhead of writimgraading the locals’ files.

CREWES Research Report — Volume 21 (2009) 5

Bonham and Ferguson

WhereasProgram? tried to send allF’ intermediate L’ result arrays, to the master
session for summing@rogram3 only needs to send/ ‘M’ arrays (one for each node), a
huge efficiency gain, at a cost of only (up to) eigsitarrays written to and read back from
the local disks on each of the nodes.

The time to executBrogram3 is

F W
ngTiJr[TcaJrTs}WJr[TerTr]W+[TCO+TS]N+Tf (5)

where N is the number of cluster nodes participating in the compartaiand”,, + 7; is
the time to write and then read oBerray.

There is some new overhead in having the workers determiretheh they are the
designatechode_rep for their node (we use the success or failure of an indivesiide
‘touch’ operation), as well as some overhead coordinatiregseconcarfor loop, but
these are small, constant overheads which we ignore here.

Also, notice that in the secong@drfor’, all workers but thenode_rep have nothing
to do; this ends up saving communication time, but one corgdeathat for the time the
node_rep is reading, and summing globally, the nasde_rep workers are under-utilized
andcPu cycles wasted.

Program3 has given us quite reasonable performance speedups. Thecextrol we
now have withProgram3, over the number of workers per node that participate in the
computation, will be quite useful when we increase the dsimars of the problem. At
some point, the memory required to contain 8 replicated 3@Dioes of the size we wish
to use will cause virtual memory contention among the wakekt that time it may be
more optimal to specify only 7 or 6 workers per node, and puvith the communication
overhead of an extra node or two when summing the final resatlier than risk virtual
memory contention causing the computation to thrash on eadé.

PEER-TO-PEER COMMUNICATION

Recently added to the MATLAB version R2008b implementabbthe Parallel Com-
puting Toolkit, is the $pmd’ construct. Spmd’ stands for ‘single program, multiple data’,
which is a computer science term denoting hardware or sofhaechitectures in which
the parallel processing agentsH@, program threads or, in our case, distributed™
LAB workers), all execute the same program while being giverpesmitted to derive,
independently varying data objects in their work-spaces.

What we did inProgram3, with the ‘parfor w = 1:W’ loop variablew governed by
W, the number of workers, is to execute the code governed byjotige exactly once per
worker. That is exactly what thespmd’ construct would do alsoSpmd has most of the
same restrictions gsarfor on variables local to the loop, but the constraint on peer-to
peer communication between workers is lifted. Workers magvk their ownlabindex
and may use Mi-derived communication methodsbSend andlabReceive to exchange
data.

6 CREWES Research Report — Volume 21 (2009)

Seismic modelling in parallel MATLAB

RewritingProgram3 to usespmd andlabSend,labReceive gives UsProgram4:

% Program4
init();
R = zeros(X,Y,Z);
spmd
w = labindex();
S = zeros(X,Y,Z);
for £ = O+tw:W:F
L = AX,Y,Z,f);
S =S +L;

end
if (mod(w,2) > 0)
labSend(w+1,8);
else
S = S + labReceive(w-1);
if (mod(w,4) > 0)
labSend (w+2,8) ;
else
S = S + labReceive(w-2);
if (mod(w,8) > 0)
labSend (w+4,8);

else
S =S + labReceive(w-4);
R=R+S;
end
end
end
end %spmd
final();

This replaces the callstarite_file(my wiD, data) andread_file (writer_wiD) with

a pair of calls tolabSend (receiver_wiD, data value) and labReceive (sender_wiD),
where the worker identifiersx_wlD are obtained from built-in functiobabindex, or de-
rived from the worker->node distribution scheme. The maduunctionmod (my wiD,
power_of two) is a way of determining an order of combination of the loclarrays
among the eight workers on a node, in a binary tree pattecneasing the parallelism of
the node-level summation step. Tlke+ R + S’ step still implies serial network commu-
nication, and summation into the global result array.

Because th@abSend andlabReceive operations occur strictly between workers hosted
by the same node, communication is faster than between vgookedifferent nodes.

The time to executBrogram4 is

F W
Ty~ T+ [Tea+ T4 W + [Tsr + T4 log2 {W] + [Teo+Tg) N +T; (6)

CREWES Research Report — Volume 21 (2009) 7

Bonham and Ferguson

whereTy, is the time to send and receive orsearray between workers on the same node.

Disappointingly, the version of MPI used by MATLAB uses Unbockets’ for all
communication whether communicating processes are oratine ®r different nodes, so
that copying between workers on the same node is still $sgt@l as if transferring data
across the network, rather than being an instantaneo@stairemory-map operation that
theoretically would be possible using the shared virtualmey hardware on the cluster
node.

Nevertheless, the net result is that the spee@rolram4 does improve on that of
Program3 by a factor of almost two. A side benefitis a gain in simplicityrerespmd gives
us a simpler mechanism to obtain and manipulate node id&Est{#.g.(mod (1abindex, 8)
== 0)), and communication among workers withbSend/labReceive is much simpler
to specify and set up thamrite_file/read_file that we were forced to adopt when
usingparfor.

PERFORMANCE ANALYSIS

Program3 was run on an unloaded cluster with functiani &nd parameter¥,Y,Z,F
held constant, while run-specific variablds (number of workers participating in com-
putation), andN (number of nodes participating) are varied to evaluateimmmtunder
different degrees of parallelism. The overall elapsed tion@mpute and write OuR' was
observed, and an eye was kept on virtual memory usage on lmokemnodes and the node
hosting the main MTLAB session, to ensure virtual memory was not being over-filketl a
performance degraded by thrashing.

Time elapsed7s, is plotted for the observed runs in Figure 2. We find that ae'stv
spot’ exists at about 48 workers on 6 nodes with 8 workers pdenr- not too many nodes
reserved, something close to minimum elapsed computatrandf 508 seconds. Slightly
shorter elapsed time could be obtained by using more warkertsmost of the parallel
gains are reached at (48,6). With 48 workers and 6 nodesth®ltluster is left to do a
second computation or to let other users make use of theneesouAdding more workers
past a certain point, only slows the overall calculation dpgecause while the computation
phase may be quicker, the communication phase wheradde reps report their local
sums M’ to the main session, would be increased in duration.

Program4 was run in comparable configurationsPtoogram3, and resulted in a similar
scaling behaviour, achieving a run time of 271 seconds uéghgorkers on 8 nodes, six
workers per node.

CONCLUSIONS

From a prototype sequential (non-parallel) implementaggpressed in MTLAB, we
have gone through several iterations of a parallel implagatem, at each step making
improvements to unblock one or more ‘bottlenecks’ in paerfance, taking account of the
architecture of the host computer system, the problem sire@nd algorithm behaviour,
as well as the characteristics of the software supportstrinature.

8 CREWES Research Report — Volume 21 (2009)

Seismic modelling in parallel MATLAB

Depth (m)

2000 S
3 2000
1000

X-line distance (m) 0 o

1000

Inline distance (m)

FIG. 1. Snapshots of extrapolated wavefields in a dipping anisotropic medium. a) P-wave. b)
SV-wave.

RT =3875s
max

‘ RT . =508s
min

= Gilgamesh

3500

— 3000

(s

) 2500

2000

Runtim

1500

1000

Nodes

Workers per node

FIG. 2. Plot of runtime versus number of workers and workers per node. Maximum and minimum
runtimes are indicated (R7,,.. = 3875s and RT,,;, = 508s) respectively, RT for the 8 worker per
node configuration of Gilgamesh.

CREWES Research Report — Volume 21 (2009) 9

Bonham and Ferguson

Along the way we stumbled on several ‘tricks’ that gave us sarantrol over the
implicit scheduling of MaTLAB workers executingparfor loops within amatlabpool,
that may not have been anticipated by the providers af MB .

In the end we achieved a reasonable performance increakagriaasible our inves-
tigation of the full-scale problem. We have developed a sehéor analyzing the perfor-
mance of the program, which will be helpful when considefiaiyire improvements and
possible re-implementation in a production version.

Certain aspects of run-time behaviour are as expectediuglyit applying more pro-
cessors decreases the time to calculate the per-frequeatixmThe remaining limits
to performance speed-up are due to hardware architecteral(access to the communi-
cation channel to report the per-node fesult arrays and software support architecture
(implementation-specific buffering of entire arrays piecewise result reduction opera-
tions, socket-based communication rather than direct mgaddress space sharing).

We found that writing and reading 8 large per-workgrarrays locally, plus commu-
nicating a single per-nod@&™array to the master session over the local network, takes le
time than sending all 85° arrays over the network directly. At the same time it means
there is only oneM’ array buffered at the master session, rather tha#' 8rrays pending
summation into the global result™

A further level of performance was obtained by usi#mnd instead ofparfor, allow-
ing direct communication between workers withbSend andlabReceive. We find that,
since the $’ arrays are already in memory, local communication withdlesignated node-
rep worker takes place much faster when workers are ablenwrmicate in peer-to-peer
fashion. Although the parallel control framework surroumgdthe computation became
somewhat complex during the evolution of the program, thendien of the model (ab-
stracted as functiomy") remained untouched and unmodified from its essentialesgon
in MATLAB, preserving trust in the correctness of the results.

ACKNOWLEDGEMENTS

The authors wish to thank the sponsors, faculty, and staffi@fConsortium for Re-
search in Elastic Wave Exploration Seismology (CREWES), hedNatural Sciences and
Engineering Research Council of Canada (NSERC, CRDPJ 3797%44+08eir support
of this work.

REFERENCES

Cooper, J. K., and Margrave, G. F., 2008, Seismic modellingdirior migration testing:
Expanded Abstracts, Can. Soc. of Expl. Geophys.

Ersoy, O. K., 2007, Diffraction, Fourier optics, and imagiWiley-Interscience.
Foster, |., 1995, Designing and building parallel prograsddison-Wesley.

Gazdag, J., 1978, Wave equation migration with the phaserséthod: Geophysicg3,
No. 07, 1342-1351.

10 CREWES Research Report — Volume 21 (2009)

