Antialiasing and wave equation statics by series approximation
and inversion

Robert J. Ferguson
ABSTRACT

To address the problems of irregular trace spacing anccstatirrection, simultane-
ous regularization and wave equation statics (WE statiag)pgemented by least-squares
inversion. In general, inversion is found to be intractatlerently in 3D, so series ap-
proximation is made to reduce significantly the number otinegl integrals. The resulting
operator is suitable for both direct inversion, or for usévgradient methods.

Real and synthetic data are used to demonstrate the wattilihe inversion. Synthetic
data show that even for severe velocity variation and togalgy, inversion converges to
an acceptable solution, and that aliasing is significartiuced. Similarly for real data,
inversion is shown to return a regularized result with WEistaaipplied that is anti-aliased.

INTRODUCTION

An inversion for seismic data is given in Ferguson (2006)dwext for strong velocity
variation in the near-surface simultaneously with tragrifarization. The wave equation
statics component of that method is implemented with anagmtr related to themigration
by deconvolution of Yu et al. (2006) where operator error associated withrédteetero-
geneity (Etgen, 1994) is mitigated through least-squaresrsion. Ferguson (2006) adds
regularization to least-squares inversion to regularizaeacnd reduce operator error for
negligible additional cost. The analytic basis for this hoet results in a multidimensional
Fourier integral, and an approximation is developed thenetluce computational effort.
That approximation achieves efficiency through computatb only the central diago-
nals of the associated wavefield operators, so it is an appation that has no analytical
justification. Here, a new analytic basis is provided forragpnation through series ap-
proximation and truncation. This approach provides anyditebrm that is used as a basis
for an improved inversion algorithm. This improved algbnt is based on implementation
of the Newton method (Tarantola, 1987, pg. 251, for exampld)it has direct application
to gradient methods (Smith et al., 2009; Tarantola, 1987, 239, for example) where it
may be used as a fast approximation to the preconditioniegabqr.

Central to the method presented here is the use of wave-equaperators to focus
irregular wavefields and reduce spatial aliasing. In thig,waversion is similar to regular-
ization methods that require a velocity model. Robertssal.€2008), for example, ap-
ply a normal-move-out (NMO) correction to data acquiredwitulticomponent streamer
prior to interpolation of crossline pressure measuremdnt&ulitinay (2003), to help en-
sure that the dip content of lower frequencies is similahtt of linear events in the input,
NMO correction is applied prior to prediction error filtegn In a least-squares inversion
that is similar to the approach proposed here, modified $&atilt, 1978) and Kirchhoff
(Schneider, 1978) operators are used by Trad (2003) toredayperbolic events and solve
a similar equation by gradient methods.
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A number of other interpolation / regularization methodslaased on thg — x method
of Spitz (1991). Naghizadeh and Sacchi (2009) extend: interpolation for variable dips
using adaptive prediction filters. For regularization, Zijes and Sacchi (2007) extend
Spitz (1991) through the use of the non-uniform Fouriergfarm (NFFT) (Duijndam and
Schonewille, 1999, for example).

Under the heading of Fourier reconstruction methods, Hefemt and Herrmann (2008)
demonstrate that random undersampling is better thanaegudersampling. Abma and
Kabir (2006) use an iterative Fourier method to regulara@gdand Duijndam et al. (1999)
use least-squares to estimate a regularized Fourier spectn their method, Duijndam
et al. (1999) use energy-adaptive stabilization and nalsptive weighting in a stable and
efficient regularization.

In this paper, a number of ideas from the above authors anptedi@o the problem
of trace regularization and wave-equation statics apjitina Similar to Trad (2003), for
example, wave-equation operators are used to localizectieiteenergy, and weighting
operators are used to ensure stability and minimize noisere Hather than Stolt and
Kirchhoff operators, one-way operators are used to enstoeracy and multipathing in
heterogeneous media.

From the general expression for regularization and reddiynthe Newton method
(Ferguson, 2006), | depart from this development at the tpoirapproximation of the
Hessian. Where Ferguson (2006) offers a sparse matrix-mpelet is fast to compute,
an asymptotic expansion is developed here and then truhcates results in significant
computational savings, and it makes this inversion trdetai3D.

This approximate inversion is then tested on synthetic dathreal data. As a bench
mark, inversion (hereafter in this papenversion will represent the regularization / re-
datum method presented here)iofegular, aliased data is compared to interpolation of
regular, aliased data that is interpolated using fhe = method* of Spitz (1991) followed
by WE statics. Equivalent results are found for this benchnaae found. Increasingly
irregular synthetic data reveal that, even in the presehsewere variation in velocity and
topography, and where data are extremely irregular andediginversion restores missing
traces and removes traveltime effects. The real-data ebeashpws similar results even in
the presence of strong topography, strong velocity vanmgaiand severe trace decimation.

THEORY
Given monochromatic wavefield, at depthz, the Newton-method solution for extrap-
olated wavefield), A is

Vorne = [UA WU ne + 2 W, 7 U, W, (1)

wherelV, andW,, are a weighting operator and a minimum-length operatoreetsely,
and<? is a scalar that controls the amount of smoothing (Ferguodg; Menke, 1989,

*Though multi-dimensional regularization methods thapediorm f — x interpolation exist (Zwartjes
and Sacchi, 2007, for example), they are not as widely availa
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pg. 53 - 54). Itis assumed in equation 1 that input wavefielis an irregularly sampled
wavefield that has been infilled with null traces in a prior gassing-step. Prior infill
gives a wavefield that is regularly sampled, but one withificant error due to the null
traces. So that null traces don’t influence the solutiongaimal operato#V, weights live
traces and null traces, respectively, with unit value and zalue (Menke, 1989, pg. 54).
Minimum-length operatoVV,,, ensures that the minimum-length solution is found (Menke,
1989, pg. 53 - 54). Operatdf_,. and its adjoint/4, . are known as one-way operators
that move wavefields distaneeAz and+Az along the depth axis respectively according
to a user-defined model of seismic velocity (Margrave angf&wn, 1999).

Computationally,U_». and U#,_ are matrices that can be very large; for 2D data,
they may have hundreds or thousands of columns and a simitaber of rows. In 3D,
computation of[U4,, W, U_a. ¢. (2')] (x) within equation 1 is impossible (practically
speaking) in 3D currently.

Ferguson (2006) and Kuhl and Sacchi (2004) explore difteapproximations to
S =UA L W.U_a., (2)

for use within Hessian of equation 1. Kiihl and Sacchi (208é)phaseshift-plus-interpolation
(PSPI) (Gazdag and Sguazzero, 1984) within a conjugateemtaflamework, and Fergu-
son (2006) computes and applies directly only a limited neind$ diagonals foiS, and
then computes the inverse using an efficient LU operators TEtier inversion results in a
dip-limited operator related to — = migration (Berkhout, 1985).

OperatorS transforms from space coordinate’sto wavenumber coordinates, and it
applies a nonstationary phase shift — operétox. does this. The result is then reversed
by U4, and transformed back to space coordinatesOnce computeds is added to
minimum-length operatos? W, and the result is inverted. The redatum aspect of the
inversion is actually implemented in equation 1%y, applied tolV, ¢, (the weighted
input). Extrapolatoré/4,. andU_. in S act together as a migration-deconvolution oper-
ator similar to that of Hu et al. (2001).

For arbitrary wavefield),, the action ofS can be written as a nonstationary convolution
(Margrave, 1998)

[&m@m@»:/ﬂxfwﬂmx—fo, 3)

wherex andz’ are 2D space coordinates of output and input at recordirfgesay respec-
tively, and

1
(2m)*

S =) = [t e o (g, 1) (k)b dy dE. (9

Two dimensional space coordinateorresponds to datum-+ Az, and wavenumbers,,
andk’, are wavenumber duals efandz’ respectively. Extrapolatay is

Qip, = eiiAZkzy (5)
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and for temporal frequendy| = w, wavenumberg, are

ko \ ko \
k,=R<k 1—(%) +isgn(Az) ISk 1—(%) , (6)

wherek = #, andwv is seismic velocity that varies laterally with This prescription for
k. ensures exponential decay in the evanescent regioa 3 {k.}). Extrapolatora_x.
results from the application of diagonal weighting operaiQ to a_x ..

As it is, operatorS is extremely costly to apply, and in 2D for example, coskisV?
floating-point operations (flops) wher€ is the number of traces (Ferguson, 20063
is the cost of the inner loop of the inversion, and outsideta$ ia loop over temporal
frequency, and then a loop over depth. So, for hundreds césidrequencies, and depths,
inversion of a single trace gather can run for hours on a sipgbcessor. In 3D, cost of
the inner loop grows tac N® flops as is shown in Appendix A (we are interested in the
order-of-magnitude-cost, so for simplicity, the numbenmine and crossline traces are
assumed here to be equallXg. For a1000 x 1000 receiver array, for example, minimum
cost isoc 10?4 flops per frequency per depth.

Approximate Hessian

Because inversion is so costly, some kind of approximatiostrbe considered. Begin
with equation 4, and introduce coordinates: k., — k., k., = ¢ + k., andd¢ = dk/, to get

1

S(z,x—2') = )

/6iy€€ix/k”6_m[§+kx]a (y, € + km)Az a (y, kl’)—Az dky dy d§. (7)

Expanda (£ + k,) o, as a Taylor series ik, according to

o0

o (€ +ka)a Z [0, (ka) ] €, (8)

0

and then computg — £ to eliminate an integral in favour of an infinite sum (that waym
expect to truncate later) so that

6—ikw[x—m']€—’ixf fj H (gv kx)j,Az dkm dg’ (9)

where
H(E k), 0 = / W [0f o (3, k) a.] & (9, Ka) s dy. (10)

Then, because functighand its spectrunt’ are related through

101 (@) < 5 [P s (11)
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we may computé — x to eliminate another integral

[e.9]

/ ij 1 —iky|z—2' j
R Pr I [eme o kst @2
where .
hi (x, k), = [0 a (@, ko) a,] & (2, k)4, - (13)

Our arrival at equation 12 involves elimination of two intalg (four integrals in 3D) in ex-
change for the cost associated with differential operadacsan infinite sum. For practical
implementation, truncate series equation 12 ta< oo terms so that

n

/ 71 —ikg[x—a' j
Sz, —a') ~ Zﬁ(zﬂ)g /e Rele= w10 hy (2, k) o] (14)

J=0

The cost of this series is dominated by the sum dyeandj is o« N2?x the number of
termsn in the series orx n N2 in 3D andx n N in 2D. Forn = 4 and N = 1000, for
example, 2D cost isc 102 flops per frequency per depth 4&° fold reduction in cost over
exact solution (equation 4). For 3D, cosbis10*? flops per frequency per depth —16'2
fold reduction in cost relative to the exact solution (ApgerA).

IMPLEMENTATION

In this section, a basic description of the implementatibtine inversion is presented.
For simplicity, components of the inversion will be rend#ie a notation where bold
symbols represent matrices, for exam@ap < [S ¢ (') (x). To implement equation 14
we have

S~> S, (15)
j=0
where, for example,

In equation 16, FFT indicates fast Fourier transform dygre < ¢~**+*, @ indicates the
scalar product of matrices, and, from equation 13,

hO =apn; © &—Aza (17)

wherea, « e'27% a_r, = a_r, W (the weighting operator applied to extrapolator
a_na,), andk, is given by equation 6 (now as a function xofather thany). For these
matrices,z varies along columns, ard. varies along rows. The next term,= 1, in the
series equation 15 is

S, =FFT{e® [h, D]}, (18)
whereD' is a finite-difference operator for coordinatesvith rows[--- 1 — 1 ---]+ Axz,
Ax is trace spacing, and

hi = [D'aa.] ®a_a.. (19)

TermssS;,, Ss, andS, in equation 15 are constructed similarly.
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As an improvement to the preconditioning operator for geatlimethods, we would
multiply .S by minimum-length operatoW,,,, add ones to the main diagonal, and then
compute an approximate inverse of the result (Tarantol8719%g. 251, for example).
To implement the Newton method, equation 1, we sd&lg, by 2, add this toS, and
then compute the inverse of the result. Extrapolated wddefie, . (a vector) is then
calculated according to

’d)z-l-Az = [S + 52 Wm} - UfAz We wzv (20)

where W,,, is a finite-difference operator with rows-- 1 —2 1 ---] + Az?. Vector
U“,. W,1. in equation 20 is the result of matri¥, applied to input vectoty.. Re-
call, ¥a. is infilled with null traces in a prior step, sb/, has '1’s (live trace) and '0’s
(null trace) along the main diagonal. The result is then pkasfted byU“, . and the
inversion operator is applied. Determination of scafais done by trial and error (Menke,
1989, pg. 52). In the current implementation, invefSet > Wm]*1 is found through
LU decomposition (Press et al., 1999, pg. 48, for example).

The procedure outlined in this section is general in thas i isolution for one fre-
guency, one x-line wavenumber, and one depth step. Fordon@ain output). . IS
computed for all positive frequenciesof interest, and IFFTv — ¢ is computed. For 3D,
equation 20 is applied iteratively for eagtand each x-line wavenumbgy. This inversion
accommodates () variation (lateral variation) naturally through nonstataryU#, . and
Ua.. Herev (z, Az), extrapolation depti\z is split into; small intervalsiz; so that

Az = Z 0z;, (21)
j=1

wherejz; is small enough thals., v (z,z;) = 0. Based on equation 21, thes, A is
computed recursively as

wz—O—Az — ¢z+6z1+522 - ]N‘/Q {]N‘/l {¢z}} ) (22)

for example, wherd NV, represents implementation of equation 20 for lateral vigloc
variationv (z, §z2), and/ NV; accommodates lateral velocity variatiofiz, dz1). In gen-
eral, for Az divided inton depth steps,

lszrAz == ¢z+5z1+---+5zn == [an { T IN‘/l {¢z}} s (23)

where- - - indicates recursive application of inversioh¥ V5 through/ NV, _;.

When elevation variesAz — Az (x), the recursive method of Reshef (1991) is em-
ployed. In this method, a zero wavefield is installed at theedba regular grid where the
top of the grid is higher than the highest elevation. Thersedaon the near-surface ve-
locity, the zero wavefield is propagated recursively i intervals until a surface point is
reached. If receivers exist there, wavefield data are adddwedlive’ locations (Reshef,
1991). Similar to equation 5 in Reshef (1991), modi¥, at eachyz; to give unit weight
to ’live’ traces, and zero weight to traces elsewhere. R&eearinversion is then computed
according to equation 23 until a datum is reached.
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EXAMPLES

Two examples demonstrate regularization and WE staticsdinttersion method pre-
sented here. The first example consists of two syntheticsdsathat exhibit aliasing. The
first synthetic consists of a superposition of point souwred a line source in a medium
whose velocity varies linearly, and where the recordingasag has significant elevation
change. Linear variation plays to the strength of the ineers that convergence depends
(partially) on spatial derivatives of velocity (as in egoat12), and is presented as thest
case of a heterogeneous medium. The second synthetic has thegesometry as the lin-
ear example, but its step variation in velocity is preserg@ challenge to the inversion
method. Again, because convergence of the inversion depmmndpatial derivatives, step
variation will reveal effects due to non-convergence. gilig in all examples is achieved
through random decimation of traces.

A real data example based on the Husky dataset (Stork, 19€7gn presented. A com-
mon source-gather from this dataset is severely decimaeddoon a common receiver-
gather that is very sparse and irregular. The required glowodel of the near-surface is
obtained through turning-wave tomography.

Synthetic data examples

Finite differences are used to generate synthetic datadbasehe velocity models
and source / receiver geometries of Figures 1a and b. Theaeadathen decimated in
two stages of increasing severity and inversion is perfakmi@aversion is then followed
by phase-shift redatuming to the highest receiver elematitth the mean of the velocity
model as a reference velocity. Here, the mean velocity id tseeduce both evanescent
leakage and dip-limiting of diffraction tails.

Linear velocity variation

Data that correspond to the linear model in Figure 1a arengineigure 2a. Here,
the original gather is decimated randomly from 512 trace25®. Inversion of these data
based on the velocity model of Figure la regularizes theerand applies WE statics,
and the result is given in Figure 2b. Time variation due tovatien and velocity changes
is removed, and the event associated with the line sourcevislinear and continuous.
Diffractions associated with the point sources are recanstd and continuous to high
dip. Aliased energy, as indicated in Figure 2c is now rem@a&dan be seen in Figure 2d.

For comparison, the original gather is decimateehly (as opposed to randomly) from
512 to 256 traces (Figure 3a), and interpolation by the x method of Spitz (1991) fol-
lowed by WE statics is performed. Note, null traces used aseflalders in Figure 3a are
removed prior tof — x interpolation. Though the styles of decimation are quifeedent
(random vs. even)f — x interpolation (aliased, even sampling) and regularizaby in-
version (aliased, random sampling) are quite similar. Bgghroaches result in continuous
linear events and diffractions, and aliasing is eliminated

The original gather is then decimated randomly to one thirthe original number
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of traces {12 — 171, Figure 4a), and inversion is performed again. Though ialps
now more severe (Figure 4c), inversion returns continuaen s (4b) and an unaliased
spectrum (Figure 4d).

Sep velocity variation

As a challenge to the inversion presented here, a tracergabed on the step model of
Figure 1b is generated, and then decimated randomly fronira&@s to 256 traces (Figure
5a). Though a large, discontinuous change in velocity (2000— 3725 m/s at 2.5 km
in Figure 1b) is present in this model, convergence of thersion is sufficient such that a
good result is returned. As can be seen in Figure 5b, eveatsoatinuous though artifacts
(discussed in the next paragraph) are present @t3 seconds between 3000 m and~
4200 m. Aliased energy (Figure 5c), as before, is now rem@vaglire 5d).

Similar to the linear example, the original gather is dedsdaevenly (512— 256
traces, Figure 6a), anfl — x interpolation and WE statics are performed. Again, though
we compare random vs. even decimation, regularizationefandomly sampled gather
by inversion is comparable t6 — x interpolation of the regular gather. Artifacts apparent
on the regularized gathex(0.3 seconds between 3000 m and~ 4200 m, Figure 5b) are
present, to a slightly lesser extent, on the interpolatedeggFigure 6b). These artifacts
are due, presumably, to some shared aspect of these two iffergiat algorithms. Com-
monalities might include wave-equation operators cemdrabth WE statics (here applied
following f — z interpolation) and inversion, or perhaps due to the finiteegence algo-
rithm employed to generate the input data. Regardlessjniikasty of regularization and
interpolation under these extreme conditions lends condiééo the inversion method.

The original gather is then decimated randomly to one thirthe original number
of traces {12 — 171, Figure 7a), and inversion is performed. Though aliasingaw
more severe (Figure 7c), inversion returns continuoustsvéigure 7b) and an unaliased
spectrum (Figure 7d).

Real data example

Figure 8 is a common-source gather obtained form the Huskgsda (Stork, 1994).
The elevation profile indicates 300 m of elevation changd,tha corresponding spectrum
(Figure 8b) shows that data are not aliased. Five reflectomsbered 1 through 5 are
indicated on Figure 8a. Of these, arrows associated witbateils 2 through 5 point to
distance 13 000 m — the distance associated with the datweh(lewest elevation). WE
statics will not time shift these reflectors at this distgremethey are indicated here and on
all subsequent examples as points from which direct corspatietween input and output
is made. The marker for reflector 1 is offset from the othersalbse, though it is a strong
event, it does not persist laterally to distance 13 000 m.

Velocity variation in the near surface is significant forstlgather as can be seen in
Figure 9. This velocity model is obtained by turning-waventgraphy, and it is based on
first breaks picked on the entire data volume. Velocity \aiais strong in the vertical and
horizontal dimensions with a minimum velocity of 2900 m/sheg surface and a maximum
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velocity of 4200 m/s at 300 m elevation. The combined effe€tepographic and velocity
variation result inpush up and pull down of reflections as is apparent, for example, in
Figure 8a — a flipped pattern of the topography is imprinte@ibreflectors.

Though in the synthetic examples, interpolation of aliasedularly sampled data,
and regularization of aliased, irregularly sample datarresimilar results, real data often
presents unforeseen challenges. So, to verify inversen¢émmon-source gather of Fig-
ure 8 is decimated evenly to half the number of original tsa@96— 153 traces, Figure
10a) so that an aliased spectrum results (Figure 10b). Tdeseare then interpolated by
both inversion and by th¢ — x method of Spitz (1991) wherg — x is followed by WE
statics. Thef — x result is given in Figure 11. Here, continuity of reflect@greserved,
and lateral coherence of these events is enhanced whertigflegents 1 through 5 are
compared to those on Figure 8a. The spectrum in Figure 1ssbioccessful de-aliasing
when compared to the aliased spectrum in Figure 10b.

The inversion result given in Figure 12 is comparable diyeict the f — « result (Fig-
ure 11) in terms of reflector continuity. A small amount of gnal-roll leakage is apparent
beginning at about 0.5 s to the left of the source locatiod, iairs found to be the result
of the use of the chosen value forc = 0.3). Whene = 1, for example, ground roll is
mostly eliminated, but reflectors haveanarmy appearance. Values ef < 0.3 result in
undesirable growth of amplitude. As shown in Figure 12 b,dhta are now de-aliased.
Note, during inversion, topographic variation is accomated according to the adaption
of Reshef (1991) that is described in thmaplementation section above. That i3y, (im-
plicit in equation 22) is modified at eadh; to give unit weight to ’live’ traces, and zero
weight to traces elsewhere. Actual missing traces are awgasen zero-weight, and zero-
weight is given to those traces lower than the depth assatiwsith the current recursion.

The common-source gather is then decimated from the oti§btraces to 60 traces
or about 20% of the original number of traces. The 60 livedrkxations coincide with
those from a common-receiver gather at the same locatiomceTspacing is pseudo-
random. As Figure 13a shows, large trace gaps are presengxfmple between 750
m and 900 m distance), and the lateral extent of all reflectath the exception of reflec-
tor 5, is ambiguous due to severe aliasing. Severe aliasingrified in the spectrum of
Figure 13b. Inversion of the data of figure 13a is given in Fegl4. Though based only on
60 traces, this regularization result is comparable to BttPace interpolations of Figures
11 and 12. A significant difference is found on reflector 1 -aitkds coherence laterally
beyond 10 100 m to the left from the marker. Reflection everits@ugh 5 are well con-
structed as can be seen on Figure 13a, and much of the aliagsgligninated. Aliasing
does, however, appear to be present above 50 Hz betweenuwvabers -0.01»~! and 0
m~L. Here, a value of 0.5 is used foris used to ensure stability at the expense of some
smoothness in appearance.

DISCUSSION

Though the development of Ferguson (2006) results in imgar@nts in computational
efficiency, diagonal limiting provides little analytic ight, for example for error analy-
sis, or for development of further improvements, so the @iabpproximation taS pre-
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sented here is desirable. The current work provides not arflynctioning inversion, it
also provides an analytic framework by which accuracy amimaational cost may be
analyzed with precision. Experimentally, it is found thas, random trace decimation in-
creases significantly beyond one third, inversion begirfaitdoeginning with the largest
wavenumbers and highest frequencies within the evanessgioh. So, given the analytic
framework provided here, an exact analysis of error astegtiwith trace decimation is
possible — the approximate and exact operators need onlgrbpared for the highest fre-
guency and largest wavenumber of interest. Then, based caxarum-allowable error
for this frequency / wavenumber combination, a minimum nandf terms in the approx-
imate operator can be deduced with the assurance that ecoeakes with frequency and
wavenumber.

Adapted for an an entire survey, a few gathers spread adresstire aperture could be
procured, and a space dependent value foould be constructed. Besides space variable
g, there might be great advantage in the implementation abgredaptive stabilization of
Duijndam et al. (1999) wherehybecomesv andz dependent as well.

Though not explored here, the approximation fis expected to be suitable as a
preconditioning operator for gradient methods. Receiii regularization and redatum
is implemented as a gradient method (Smith et al., 2009)¢ekievwyonly identity/ is used
there as a preconditioner. The use of at least one highertedn ofS given in this paper
could drastically improve the rate of convergence and ttaityuof the solution.

CONCLUSIONS

In this paper, the problem of statics and irregular acqoisigeometry are addressed
simultaneously by least squares. Statics are accommouhatied inversion by the use of
one-way wave operators, and irregular sampling in spaceasramodated using weight-
ing operators. A minimum smoothness criterion is used taenthat a unique solution
is determined. Efficiency is assured through the use of sex@ansion of the Hessian.
Series expansion reduces the number of Fourier integrats &ix to two, and under the
2D assumption, the number of integrals is reduced from ttoeme. Computationally, it
is shown that proportional cost is reduced frai to m N2, whereN is number of traces
in the inline and crossline directions, ands a small scalar, = 4 for example. Assuming
2D, proportional cost is reduced froni* ton N.

Real and synthetic examples are used to demonstrate thesimve Synthetic data
show that inversion of irregular, aliased data gndx interpolation of regular, aliased data
return equivalent results for the same number of tracesifgignt topography and velocity
variation is present in the synthetic data so, for direct parnson, wave equation statics
(WE) are applied aftef — z interpolation. The synthetic data are decimated randomly t
one third the number of original traces, and the inversicultds found to be regularized,
redatumed, and anti-aliased.

Similar tests performed with real data show that, for reg@kased data, inversion and
f — x interpolation return similar, anti-aliased results. Whka teal data are decimated
randomly to one fifth the number of traces, inversion stiliras regularized data that are
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FIG. 1. Velocity models with source/receiver geometry annotated. a) Linear velocity variation. b) A
step-function velocity.

redatumed and anti-aliased.
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COMPUTATIONAL COST IN 3D

OperatorS (equation 4) is a nonstationary integral (Margrave, 1998 ®ix coor-
dinatesk, — (ku,, k), vy — (y1,v2), andk], — (k. ,k. ). Because common inversion
algorithms are based on matrices, computational cost foay be contemplated according
to how many floating-point operations (flops) are requiredrtmuce matrixS (z, & — z’)
for one output locatiort. That is, operatos maps the entire, arbitrary wavefield to a
single output locatior: according to

(S, ()] (7) = /wz (') S (2,2 — ') da'. (24)
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FIG. 2. Irregularly sampled synthetic data corresponding to the linear model of Figure la. a)
Aliased data (256 traces spaced randomly). b) Regularization and WE statics by inversion. c)
Spectrum of a). d) Spectrum of b).
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FIG. 3. Regularly sampled (in space), but aliased, synthetic data corresponding to the linear model
of Figure la. a) Aliased data (256 traces spaced evenly). b) Interpolation by the f — = method of
Spitz (1991) followed by WE statics. c¢) Spectrum of a). d) Spectrum of b).
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FIG. 4. Irregularly sampled synthetic data corresponding to the linear model of Figure la. a)
Aliased data (171 traces spaced randomly). b) Regularization and WE statics by inversion. c)
Spectrum of a). d) Spectrum of b).
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FIG. 5. Irregularly sampled synthetic data corresponding to the step model of Figure 1b. a) Aliased

data (256 traces spaced randomly). b) Regularization and WE statics by inversion. c) Spectrum of
a). d) Spectrum of b).
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FIG. 6. Regularly sampled, but aliased, synthetic data corresponding to the step model of Figure
1b. a) Aliased data (256 traces spaced evenly). b) Interpolation by the f —x method of Spitz (1991)
followed by WE statics. ¢) Spectrum of a). d) Spectrum of b).
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FIG. 7. Irregularly sampled synthetic data corresponding to the step model of Figure 1b. a) Aliased

data (171 traces spaced randomly). b) Regularization and WE statics by inversion. c) Spectrum of
a). d) Spectrum of b).
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FIG. 8. Common shot gather from the Husky dataset (Stork, 1994). a) Seismic data (306 traces
evenly spaced) plus an elevation profile. Triangles indicate coherent reflections. b) Spectrum of a).
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FIG. 9. Velocity model of the near surface derived from turning-wave tomography. Surface to-
pography is indicated by the red line. Velocity varies between 2900 m/s (dark blue) to 4200 m/s
(red).

Inversion by equation 1, then, proceeds one output-locai@ time according to
wz-‘rAZ (in) = / [S (i‘7 T — 113/) + 52 Wm} o UI—AAz (jjv T — $,) We (ZL’/) wz (ZE/) dajla (25)

where integration over’ is written here explicitly, and extrapolatér’, , is parametrized
to map wavefield), to z. To estimate cost for fixed output locationS (equation 4) as an
N x N matrix operator is

1

S(&,@—1") = 27

/ A (ky, kL) o] et lka@ qpe qk! (26)
wherez’, k, andk!, each have dimensiaN x N, and

A (kxv k;) =

2 / emil=dl gilkislo (y K1) G (y, K.)_a, dy. (27)
(2m)

Here, we assume that the irregular input array of dimensionn, wherem andn are not
necessarily equal, is padded with null traces to dimengion N wherem < N and / or
n < N (i.e.,z’ has dimensioV x N).

For fixed wavenumberk, andl%;, A (equation 27) is a two-dimensional integral with
costox N2 flops. Computationally, thend (fcx, /%;) resides within the inner-loop of an

iterative, 2D inversion. To consider total cost, keep= k. fixed, and compute matrix
A (l%x, k;) for all &, - cost isoc N2x the cost of eachl (l%x, l%;), oroc N2 x N2 = N4,

Next, according to equation 26, multiply matrziM(l%x, l%;) by -

overk’. Cost for this multiplication and then sumds N2 and can be neglected when only
the highest order co$t* is considered. Repeat this procééstimes for eaclk,, multiply

by e’ k2] and sum intoS (according to equation 26) at each iteration. This cosh,tie
x N%? x N* = N°¢ flops. Recall, however, that only a single output locationas been
produced. To compute the entire monochromatic wavefigld), the process above must
be repeatedv? times for a minimum total cosk N2 x N6 = N8,

E e~ %% and then sum
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FIG. 10. Regularly sampled, but aliased, shot gather. a) Seismic data (145 / 306 traces evenly
spaced) plus an elevation profile. b) Spectrum of a).
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FIG. 11. Interpolation of Figure 10 by the f — = method of Spitz (1991) followed by WE statics. a)

Interpolated data. b) Spectrum of a).
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FIG. 12. Interpolation of Figure 10 and WE statics by inversion. a) Interpolated data. b) Spectrum
of a).
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FIG. 13. Irregularly sampled shot gather from the Husky dataset (Stork, 1994). a) Seismic data (60
/ 306 traces randomly spaced) plus an elevation profile. b) Spectrum of a).
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FIG. 14. Regularization of Figure 13 and WE statics by inversion. a) Regularized data.
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