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ABSTRACT

“Diagram analysis” is a way of parsing, classifying, and manipulating the non-linear terms
of inverse scattering, ultimately aiding in the derivation of new seismic processing algo-
rithms. Scattering diagrams originate in forward as opposed to inverse scattering, and so
an introduction to these topological organizational devices is best accomplished by consid-
ering the forward problem. We will use them to help derive a familiar expression in wave
theory. The eikonal approximation, a relative of the WKBJ approximation, can be arrived
at in several ways, for instance by direct integration of the Lippmann-Schwinger equation.
In this paper we will demonstrate that, by retaining only Born series terms that correspond
to a certain class of scattering diagrams, the same approximation can be recovered. In fact
the diagram derivation could be argued to achieve its goal in a less roundabout way than
the older approach.

INTRODUCTION

The eikonal approximation is an expression for modeling scalar wave propagation
(Morse and Feshbach, 1953), which, together with its relative the WKBJ approximation,
is relevant to seismic exploration (e.g., Clayton and Stolt, 1981; Amundsen et al., 2005).
Non-linear scattering theory too is highly relevant to seismic exploration—inverse scatter-
ing diagram analysis has led to powerful algorithms for the removal of multiple reflections
from seismic data, and is the subject of current research into processing and inversion of
primaries (for a review and discussion, see Weglein et al., 2003). Here we link the two,
providing a simple derivation of the eikonal approximation from a scattering-diagram anal-
ysis of the Born series. We compare it with the derivation of Morse and Feshbach, which
is based on a truncation of the integral in the Lippmann-Schwinger equation.

Consider two simple 1D configurations of actual and reference media, c(z) and c0 re-
spectively, actual and reference wavefields, G and G0 respectively, and source depth zs and
observation depth zg. The two fields, in the space-frequency domain, satisfy[

d2

dz2
g

+
ω2

c2(zg)

]
G(zg, zs) = δ(zg − zs),[

d2

dz2
g

+
ω2

c20

]
G0(zg, zs) = δ(zg − zs).

(1)

Scattering theory is an expression of actual media and actual fields as series expansions
about reference media and reference fields. Defining α(z) = 1− c20/c2(z), the Lippmann-
Schwinger equation is

G(zg, zs) = G0(zg, zs) +

∫ ∞
−∞

G0(zg, z
′)k2α(z′)G(z′, zs)dz

′, (2)
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where k = ω/c0
∗. The Born series then arises through iterative back-substitution of equa-

tion (2) into itself, generating

G(zg, zs) = G0(zg, zs) +G1(zg, zs) +G2(zg, zs) + ..., (3)

where Gn is n’th order in α. For instance,

G1(zg, zs) =

∫ ∞
−∞

dz′G0(zg, z
′)k2α(z′)G0(z

′, zs), (4)

G2(zg, zs) =

∫ ∞
−∞

dz′G0(zg, z
′)k2α(z′)

∫ ∞
−∞

dz′′G0(z
′, z′′)k2α(z′′)G0(z

′′, zs), (5)

etc. Assuming convergence, summation of a large number of these terms produces an
expression for the full wavefield. Each term contains propagations and interactions strung
together in a chain. For instance,G2 in equation (5) involves, reading right to left, reference
propagation from zs to z′′, at which location an interaction of strength k2α occurs, then a
further reference propagation from z′′ to z′, another interaction of strength k2α, and a final
propagation from z′ to zg. The term Gn involves n interactions with the perturbation α and
n+1 propagations in the reference medium. To discuss “scattering geometry” is to discuss
the characteristic path in z that all or part ofGn takes during the course of its n interactions.

A SCATTERING DIAGRAM DERIVATION OF THE EIKONAL
APPROXIMATION

Consider a source plane embedded in a homogeneous 1D reference medium, above
a measurement plane at depth, and assume the reference and the actual medium to be
in agreement at and above the source, but different above and below the measurement
point. In Figure 1 some of the components of the resulting wavefield are illustrated. The
eikonal approximation is an expression for the “direct” component, (A) in Figure 1, which
dominates when medium variations are smooth. Equations (1)–(5) reflect this arrangement
if zs is placed above the depth support of the perturbation, embedded in the homogeneous
reference medium, and zg is placed below or within the perturbation.

Scattering-diagrams arise because of the absolute value operation within the reference
Green’s function (De Santo, 1992)

G0(zg, zs) =
eik|zg−zs|

i2k
. (6)

WhenG0 is substituted into the terms in equation (3), and each term is broken up into cases
based on the absolute values, each broken up bit has a characteristic scattering geometry.
For instance, in equation (5) there are 4 possible cases: (A) zg > z′, z′ > z′′; (B) zg >

∗To derive the LS equation, replace c(zg) in the actual equation in (1) with α and c0 using the definition
of α. Bring the α term to the right hand side of the equation. Notice that the resulting expression looks
exactly like the reference equation in (1) except with a more complicated source. From standard PDE theory,
we know we can solve for G then by multiplying the complicated source by the Green’s function G0 and
integrating over all space. The result is equation (2).
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FIG. 1. A schematic illustration of a 1D wavespeed profile c(z), with source plane (zs) above all
layer structure and receiver plane (zg) embedded within it, and the paths in the medium of some of
the wave events measured at zg, (A)–(E). The eikonal approximation is an expression for event (A),
which dominates the full solution when the profile c(z) is smooth.

z′, z′ < z′′; (C) zg < z′, z′ > z′′; and (D) zg < z′, z′ < z′′. These are represented
schematically by scattering diagrams (Figure 2).

Let us allow the geometry of these diagrams to suggest an approach for deriving certain
types of wave solution. We know that the eikonal approximation corresponds to the direct
part of the wave; no reflections, or changes in direction with respect to the z axis occur as
this part of the wave propagates. So, let us see what happens if, instead of summing together
all terms in equation (3), we reject from the summation any contribution whose diagram
involves a change in direction (B–D). At first order, rejecting scattering interactions taking
place below zg leaves a portion of the full wavefield we call T1:

T1(zg, zs) =
eik(zg−zs)

i2k

(
−ik

2

∫ zg

zs

α(z′)dz′
)
, zg > zs. (7)

At second order, 3 of the 4 contributing terms involve a change in reference propagation
direction. Our program retains only one contribution (as described above and in Figure 2),
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which we call T2:

T2(zg, zs) = −e
ik(zg−zs)

i2k

k2

4

∫ zg

zs

α(z′)

∫ z′

zs

α(z′′)dz′′dz′

=
eik(zg−zs)

i2k

1

2

(
−ik

2

∫ zg

zs

α(z′)dz′
)2

, zg > zs.

(8)

By repeating this retention/rejection of scattering diagrams over several orders, we discern
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FIG. 2. Scattering diagrams at second order, overlain on the wavespeed profile of Figure 1. The
reference medium is chosen to be a homogeneous wholespace, meaning all of the layer structure
is part of the perturbation. In contrast to the scheme in Figure 1, all of the wave paths drawn here
represent propagation in the reference medium. Dots represent interactions with the perturbation.
The eikonal approximation is derived by retaining only diagrams like (A) at all orders.

a pattern in the retained terms, and use the pattern to collect the desired contributions
together at all orders. Calling the result T , we have

T (zg, zs) =
∞∑
n=0

Tn(zg, zs)

=
eik(zg−zs)

i2k

∞∑
n=0

1

n!

(
−ik

2

∫ zg

zs

α(z′)dz′
)n

, zg > zs.

(9)
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The series in equation (9) is recognizable as a Taylor’s series expansion. Summing it, we
produce

T (zg, zs) =
eik[zg−zs− 1

2

R zg
zs

α(z′)dz′]

i2k
, zg > zs. (10)

Equation (10) is substantially the same as the eikonal approximation presented by Morse
and Feshbach (1953, pg. 1095), where it is referred to not by that name but rather in terms
of a low-order expansion of the phase of the WKBJ solution.

INTEGRATING THE LIPPMANN-SCHWINGER EQUATION

Consider again the 1D Lippmann-Schwinger equation:

G(zg, zs) = G0(zg, zs) +

∫ ∞
−∞

G0(zg, z
′)k2α(z′)G(z′, zs)dz

′. (11)

The derivation of the eikonal approximation presented by Morse and Feshbach (1953),
which we will deviate from only slightly, is obtained by altering the upper limit of the
integral in the Lippmann-Schwinger equation to coincide with the observation point zg. Let
us confirm that this produces the same result that we got in equation (10). Remembering
that zg > zs and zs is smaller than all z for which α 6= 0, equation (11) turns into

T (zg, zs) = G0(zg, zs) +

∫ zg

−∞
G0(zg, z

′)k2α(z′)T (z′, zs)dz
′, (12)

which upon substitution of the Green’s function in equation (6) becomes

T (zg, zs) =
eik(zg−zs)

i2k
− ik

2
eikzg

∫ zg

−∞
e−ikz

′
α(z′)T (z′, zs)dz

′. (13)

This expression is next transformed into a differential equation and integrated. We multiply
through by e−ikzg , and take the derivative with respect to zg, producing:

dT (zg, zs)

dzg
e−ikzg − ikT (zg, zs)e

−ikzg = −ik
2
e−ikzgα(zg)T (zg, zs). (14)

Collecting the two terms in T we integrate to obtain

T (zg, zs) = Ceik(zg− 1
2

R zg
zs

α(z′)dz′), (15)

whereC is the integration constant. The zs lower limit in the integral is allowable since α =
0 at zs and below. We determine C by placing ourselves, the observers, at the origin zg = 0
and considering zs to be slightly negative. We furthermore have that T (zg, zs)|zg=0 = C.
We then assume that the only non-negligible contribution to T for this zg, zs pair is the
reference wave, which implies that the perturbation is too smooth to have reflected any
observable wave energy. This leads to an integration constant of

C = T (zg, zs)|zg=0 = G0(zg, zs)|zg=0 =
e−ikzs

i2k
, (16)

in which case we recover the same form for the eikonal approximation,

T (zg, zs) =
eik[zg−zs− 1

2

R zg
zs

α(z′)dz′]

i2k
, (17)

as that due to the scattering-diagram retention/rejection program.
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COMPARING THE TWO DERIVATIONS

At first blush the above equivalence might seem strange. The diagram version of the
derivation looks like it is “throwing away” much more of the wave than Morse and Fesh-
bach do in their approach. Comparing equations (5) and (8), we see that at second order
only 1/4 of the diagrams are retained, and at every order higher, retention is dramatically
decreased (to be precise, only 1 of a total of 2n diagrams contribute at n’th order), whereas
Morse and Feshbach merely throw away contributions from below zg. Surely a large part
of the actual field comes from things happening above zg. Why would we get the same
result from both?

The fact is, M&F reject more of the wave field by changing the upper limit than one
might think. To see this, let’s look again at the altered Lippmann-Schwinger equation:

T (zg, zs) = G0(zg, zs) +

∫ zg

−∞
G0(zg, z

′)k2α(z′)T (z′, zs)dz
′. (18)

This time, rather than manipulating it as an integral equation, we will expand equation (18)
in series through back-substitution, just as if we were deriving the Born series. Taking care
in particular with the variable zg, we have

T (zg, zs) =G0(zg, zs) +

∫ zg

−∞
dz′G0(zg, z

′)k2α(z′)

×

{
G0(z

′, zs) +

∫ z′

−∞
dz′′G0(z

′, z′′)k2α(z′′)

×

[
G0(z

′′, zs) +

∫ z′′

−∞
dz′′′G0(z

′′, z′′′)k2α(z′′′) [G0(z
′′′, zs) + ...]

]}
,

(19)

or,

T (zg, zs) = T0(zg, zs) + T1(zg, zs) + T2(zg, zs) + ..., (20)

where

T0(zg, zs) = G0(zg, zs), (21)

T1(zg, zs) =

∫ zg

−∞
dz′G0(zg, z

′)k2α(z′)G0(z
′, zs), (22)

T2(zg, zs) =

∫ zg

−∞
dz′G0(zg, z

′)k2α(z′)

∫ z′

−∞
dz′′G0(z

′, z′′)k2α(z′′)G0(z
′′, zs), (23)

etc.

Now what is going on is a bit clearer. The zg in the upper limit of equation (18) looks
benign and would appear to have a straightforward effect on the field, making it amenable to
sweeping interpretive statements like the one at the beginning of this section. But, equation
(18) is not a solution, rather it is an integral equation for T , and its ingredients can affect
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the actual solution in ways that are difficult to guess. When we do solve it, by expanding
T as a modified Born series, we see that zg does not affect the character of the solution in a
simple way at all. It gets forced to play the role of an integration variable again and again
in the solution, stopping and starting wave contributions not at one fixed position, zg, but
everywhere, and repeatedly.

Especially if you follow along going through the math, you can see that with the partic-
ular brand of stopping and starting that Morse and Feshbach enforce, each nested integral
in equation (20) is interrupted exactly where it begins to incorporate scattering interactions
that involve a change of propagation direction. In other words, this is the same rejection of
wavefield components that underlies the scattering-diagram approach. Substitution of the
appropriate Green’s functions confirms that the Ti in equation (20) are identical to those of
equation (9).

DISCUSSION

As a tutorial and introduction to the origin and use of scattering diagrams, a scattering-
diagram based derivation of the eikonal approximation for transmitted wave fields is dis-
cussed. The derivation is designed to produce a form substantially the same as that pre-
sented by Morse and Feshbach (1953), so that through comparison scattering diagrams and
their retention and rejection can be understood.

Since equations (9) and (20) are exactly the same, it appears that the two derivations
differ only procedurally, with the new one simply going about its business using scattering
diagrams. However, there is a slight additional difference. The two approaches make
fundamentally the same choices about retention of wavefield components, but because in
the truncated Lippmann-Schwinger integral approach the equation was differentiated, we
were forced to additionally argue for the form of C. Since it is based on a series, the
scattering diagram derivation lacks a certain expediency, but it clarifies that the original
integral limitation alone is sufficient to obtain the eikonal approximation in that form. From
our comparison we can now see that, in carrying out the older approach, it was necessary to
at first throw away information critical to the solution, and later return it again by imposing
a (in the grand scheme of things) redundant boundary condition. With diagrams we were
able to avoid all that.

It is finally worth emphasizing that making direct waves with a scattering-diagram ap-
proach can and has been generalized to multidimensional fields and perturbations (Innanen,
2009), while the truncated Lippmann-Schwinger approach seems to be fundamentally re-
stricted to 1D media.

ACKNOWLEDGMENTS

The author is grateful to CREWES sponsors and personnel.

CREWES Research Report — Volume 21 (2009) 7



Innanen

REFERENCES

Amundsen, L., Reitan, A., Helgesen, H. K., and Arntsen, B., 2005, Data-driven inver-
sion/depth imaging derived from approximations to one-dimensional inverse acoustic
scattering: Inverse Problems, 21, 1823–1850.

Clayton, R. W., and Stolt, R. H., 1981, A Born-WKBJ inversion method for acoustic re-
flection data: Geophysics, 46, No. 11, 1559–1567.

De Santo, J. A., 1992, Scalar Wave Theory: Green’s Functions and Applications: Springer-
Verlag.

Innanen, K. A., 2009, Born series forward modeling of seismic primary and multiple re-
flections: an inverse scattering shortcut: Geophys. J. Int., 177, No. 3, 1197–1204.

Morse, P. M., and Feshbach, H., 1953, Methods of theoretical physics: McGraw-Hill Book
Co.

Weglein, A. B., Araújo, F. V., Carvalho, P. M., Stolt, R. H., Matson, K. H., Coates, R. T.,
Corrigan, D., Foster, D. J., Shaw, S. A., and Zhang, H., 2003, Inverse scattering series
and seismic exploration: Inverse Problems, , No. 19, R27–R83.

8 CREWES Research Report — Volume 21 (2009)


