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Estimation of elastic stiffness parameters in weakly anisotropic 
rotated HTI media 

David Cho and Gary F. Margrave 

ABSTRACT 

The presence of fractures and directional in-situ stress fields in the subsurface has 
profound implications for numerous geophysical and engineering applications. These 
phenomenon manifest as azimuthal variations in the seismic response and can be detected 
in the amplitudes of the scattered wavefield. Therefore, the study of the azimuthal 
amplitude variation with offset (AVO) can provide information regarding the fracturing 
or the stress state of the subsurface. 

In this study, a transversely isotropic medium with a horizontal axis of symmetry 
(HTI) was used to model the presence of fractures and directional in-situ stress fields. 
Previous formulations of the reflections from HTI media invoke conditions that are often 
unrealistic in the natural world. Therefore, a more generic HTI reflection model was 
presented. This involves a transformation of the elastic stiffness matrix to represent an 
unknown symmetry axis azimuth where it is allowed to vary as a function of depth. In 
addition, we investigate the effect of dipping fracture sets and when the vertical stress is 
not equal to one of the principle stresses. It is shown that the corresponding reflection 
coefficients for a transformed HTI medium is capable of resolving the symmetry axis 
azimuth but lacks the complete set of parameters required to characterize the dipping 
fractures or when the vertical stress is not equal to one of the principle stresses. However, 
a different parameterization of the model space in the parameter estimation problem can 
provide an inference as to the presence of dipping fractures or a non-vertical principle 
stress component. These concepts are illustrated through a numerical example.  

INTRODUCTION 

Characterization of azimuthally anisotropic media has been the subject of considerable 
interest in recent years due to the increased exploration of unconventional resources. 
Whether the anisotropy is due to fracturing or directional in-situ stress fields, it has 
profound implications in numerous geophysical and engineering applications. For 
example, oriented fracture sets can influence the permeability pathways in subsurface 
formations and the in-situ stress field can influence the fracture response in hydraulic 
stimulation.  

Subject to the assumption that linear elasticity holds, analysis of the stress and strain 
relationship will yield the elastic stiffness parameters that characterize the medium. In a 
reflection seismic experiment, stresses imposed on the medium by the incident wavefield 
result in strains that excite particle motion that can be detected by the scattered wavefield. 
Therefore, analysis of the reflection coefficient or azimuthal amplitude variation with 
offset (AVO) provides the means to estimate the medium parameters. These parameters 
can then be used to infer the presence of fractures (Schoenberg and Sayers, 1995) or 
determine the in-situ stress field (Gray, 2010).  
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A transversely isotropic medium with a horizontal axis of symmetry (HTI) provides a 
simple model for the description of a parallel vertical fracture system or the presence of 
directional horizontal stresses where the vertical and maximum horizontal stresses are 
assumed equal. The properties of P wave reflection in HTI media have been discussed in 
detail in the literature. For example, Haugen and Ursin (1996) derived approximate P 
wave reflection coefficients for an interface separating a transversely isotropic medium 
with a vertical axis of symmetry (VTI) from an HTI medium and Rüger (1998) derived 
approximate formulas for an interface separating two HTI media. However, the models 
presented are often constrained to measurement profiles in the symmetry planes and 
invoke conditions that are often unrealistic in the natural world. Therefore, the discussion 
here is to present a more representative model for P wave reflection in HTI media and 
discuss the implications for the parameter estimation problem.  

HTI MEDIA UNDER A COORDINATE ROTATION 

Consider a medium that exhibits HTI symmetry as shown in Figure 1. The HTI model 
has an axis of rotational symmetry normal to the fracture plane or along the direction of 
minimum horizontal stress for the fracture and stress models respectively. This is referred 
to as the symmetry axis. The natural coordinate system of the medium is then one where 
the symmetry axis is coincident with the x1 axis.  

 

FIG. 1. HTI media in its natural coordinate system where the symmetry axis coincides with the x1 
axis. 

Here we use the Voigt notation Aαβ rather than the tensor notation aijkl for the density 
normalized elastic stiffness parameters, with α and β running from 1 to 6 and i, j, k and l 
running from 1 to 3. From here on in, the density normalized elastic stiffness parameters 
will be referred to as the elastic stiffness parameters. The elastic stiffness matrix for the 
configuration in Figure 1 is given by  
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where the following symmetry relations are satisfied: 

 ,2233
nn AA =  ,6655

nn AA =  ,1213
nn AA =  nnn AAA 443323 2−= . (2) 

The superscript n denotes the elastic stiffness parameters are in its natural coordinate 
system. Since the elastic stiffness matrix is symmetric, equation 1 consists of nine non-
vanishing components of the elastic stiffness parameters where five are independent as 
governed by the relations in equation 2. We note that the conditions in equations 1 and 2 
are only applicable if the reference coordinate system coincides with the natural 
coordinate system.  

Let us now investigate the effect of a reference coordinate system that does not coincide 
with the natural coordinate system. We demonstrate this by investigating the effect of an 
elastic stiffness matrix that undergoes a coordinate transformation. In the interest of 
economy of space and efforts in algebraic manipulation, the coordinate transformation is 
performed by employing a matrix technique purposed by Bond (1943) to avoid 
converting to full subscripts. It involves the construction of a matrix operator to be used 
in transforming stress and strain by a single matrix multiplication. The corresponding 
result for the rotation of the elastic stiffness matrix is  

 Tn MAMA = , (3) 

where A represents the rotated elastic stiffness matrix and M represents the Bond 
transformation matrix and is a function of an operator containing the directional cosines 
for the desired rotation (see Bond, 1943). In the following, we investigate the effect of a 
coordinate rotation about the x2 and the x3 axes.  

Coordinate rotation about the x2 axis 

Consider a rotation of the coordinate system about the x2 axis by an angle ξ as in 
Figure 2. This scenario represents the condition for dipping fracture planes or when the 
vertical stress is not equal to one of the principle stresses. This condition represents areas 
of structure and in the vicinity of faults.  
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FIG. 2. HTI media under a coordinate rotation about the x2 axis by an angle ξ. 

The Bond (1943) transformation matrix for a rotation about the x2 axis by an angle ξ is 
given by  
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and the resulting elastic stiffness matrix in the rotated coordinate system takes the form 
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Note the appearance of A15, A25, A35 and A46. The non-vanishing components of the 
elastic stiffness matrix now consist of 13 parameters.  

Coordinate rotation about the x3 axis 

Next consider a rotation of the coordinate system about the x3 axis by an angle ψ as in 
Figure 3. This scenario represents the typical case for fracture detection or stress 
estimation where the symmetry axis azimuth is unknown.   
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FIG. 3. HTI media under a coordinate rotation about the x3 axis by an angle ψ. 

The Bond (1943) transformation matrix for a rotation about the x3 axis by an angle ψ is 
given by  
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and the resulting elastic stiffness matrix in the rotated coordinate system takes the form 
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Note the appearance of A16, A26, A36 and A45. As in the case of a rotation about the x2 axis, 
the non-vanishing components of the elastic stiffness matrix now consist of 13 
parameters.  

The individual equations representing each elastic stiffness parameter in the rotated 
coordinate system are not shown here due to spatial constraints. They consist of various 
combinations of sinusoidal functions and the elastic stiffness parameters in the natural 
coordinate system. Therefore, no simple symmetries can be invoked once the reference 
coordinate system deviates from the natural coordinate system. The application of a 
rotational operator results in a distribution of elastic stiffness parameters to specific 
locations in the matrix depending on the nature of the rotation. Note that in the above 
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representation of the rotated elastic stiffness matrix for HTI media (equations 5 and 7), 
the symmetry relations in its natural coordinate system as given by equation 2 were not 
invoked. Therefore, the discussion thus far can be generalized to an orthorhombic 
medium with nine independent non-vanishing elastic stiffness parameters in its natural 
coordinate system. 

RELECTION COEFFICIENTS FOR WEAKLY ANISOTROPIC HTI MEDIA 

Approximate scattering coefficients have been derived by various authors using 
perturbation techniques (i.e. Thomsen, 1993, Rüger, 1998 and Vavryčuk and Pšenčík, 
1998). The basis for perturbation theory is to obtain an approximate solution for a 
problem which cannot be solved exactly. This is achieved by the addition of “small” 
perturbation terms to the description of a similar exactly solvable problem. In the case of 
approximate reflection coefficients in anisotropic media, the perturbations represent the 
anisotropic deviation from a solvable isotropic background. The “small” perturbations 
therefore dictate a weak contrast interface separating two weakly anisotropic media. 
However, according to Thomsen (1993), this condition is valid for most reflecting 
interfaces and therefore the assumption of a weak contrast interface is appropriate.  

In the following, we investigate two scenarios for the reflection of P waves from an 
interface separating two homogeneous HTI half-spaces. The first is a model discussed in 
Rüger (1998) where the upper and lower HTI half-spaces have the same symmetry axis 
azimuth above and below the interface. The second is a more generic scenario where the 
upper and lower HTI half-spaces each have an arbitrary symmetry axis azimuth. Figure 4 
shows the two scenarios.  

 

FIG. 4. HTI/HTI interface with a) similar symmetry axis orientations and b) arbitrary symmetry axis 
orientations. 

HTI/HTI interface with similar symmetry axis orientations 

For the case of the HTI/HTI interface with the same symmetry axis azimuth above and 
below the interface (Figure 4a), the P wave reflection coefficient in the natural coordinate 
system of the medium is given by (Rüger, 1998) 
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where α and β are the P and S wave velocities respectively, Z=ρα is the acoustic 
impedance, G=ρβ2 is the shear modulus, ρ is the density, θ is the angle of incidence and 
φ is the measurement azimuth. The bar represents an averaging of the values (i.e. w
=½[w2+w1]) and Δ represents a difference of the values (i.e. Δw= w2-w1) above and 
below the reflecting interface. Equation 6 corresponds exactly to equation 5 of Rüger 
(1998) with the exception that the elastic stiffness parameters were used instead of 
anisotropy parameters.  

If the symmetry axis azimuth is unknown, the measurement azimuth φ is expressed as 
the difference between the azimuthal direction of the kth observed azimuth and the 
direction of the symmetry axis φsym (Rüger, 1998). The AVO gradient (i.e. angle 
dependent) term in equation 6 is then defined as  
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and 
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Equation 9 can be used to determine the symmetry axis azimuth by solving for φsym. 
However, due to the nonlinearity of equation 9, the solution for φsym is non-unique and 
will yield two possible directions for the symmetry axis orthogonal to one another 
(Rüger, 1998). In addition, since the symmetry axis above and below the interface must 
have a similar azimuth, for a multi-layered Earth, this model implies that the symmetry 
axis azimuth is invariant with depth. To overcome this issue, numerous authors have 
imposed the condition of an isotropic overburden. The above scenarios however, pose an 
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unrealistic constraint and therefore, a more generic HTI reflection model is required for a 
more accurate description.  

HTI/HTI interface with arbitrary symmetry axis orientations 

To remove the constraint of an invariant symmetry axis azimuth with depth, an 
HTI/HTI interface with an arbitrary symmetry axis azimuth above and below the 
interface is considered (Figure 4b). As discussed above, HTI media rotated about the x3 
axis must be regarded as an anisotropic medium with non-vanishing elastic stiffness 
parameters given by equation 5.  

Vavryčuk and Pšenčík (1998) derived P wave reflection coefficients for weak contrast 
interfaces separating two weakly but arbitrarily anisotropic media. As a result of the 
perturbation theory, the formula depends on the choice of parameters (P and S wave 
velocities) used for the background isotropic medium. A discussion of the effects for 
various background velocities can be found in Pšenčík and Martins (2001). Here, the 
background P and S wave velocities were chosen to be α2=A33 and β2=A44 respectively. 
These are the vertical P wave velocity and the vertical S wave velocity with a 
polarization orthogonal to the symmetry axis. The P wave reflection coefficient is then 
given by  
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Equation 12 consists of an isotropic term with the addition of a perturbation term to 
account for anisotropy. The isotropic term given by equation 13 is the well-known Aki 
and Richards (1980) approximate AVO equation for P wave reflection. The anisotropic 
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correction term consists of various combinations of 13 elastic stiffness parameters called 
weak anisotropy parameters. These are manifestations of the natural coupling of elastic 
stiffness parameters that govern wave propagation. Note that the reflection coefficient 
does not depend on elastic parameters A14, A15, A24, A25, A34, A35, A46 and A56. Therefore, 
these parameters can never be recovered from a P wave reflection experiment (Vavryčuk 
and Pšenčík, 1998).  

THE PARAMETER ESTIMATION PROBLEM 

Downton and Roure (2010) described an approach for the estimation of fracture 
parameters using a simulated annealing technique similar to that of Coulon et al. (2006). 
Through forward modeling, the simulated annealing algorithm perturbs an initial model 
until a minimized misfit is achieved between the synthetic and real data. In their 
formulation of the parameter estimation problem, an HTI model was implemented where 
the anisotropy is assumed to be the result of a vertical fracture system with an unknown 
symmetry axis azimuth. The parameterization of the model space is then in terms of the 
layer time thickness, P and S wave impedances, density, the Thomsen parameters delta, 
epsilon and gamma and the azimuth of the symmetry axis. They further demonstrated that 
the number of free parameters that must be estimated could be reduced through the 
implementation of a rock physics model. For example, the linear slip deformation model 
(LSD) of Schoenberg and Sayers (1995) or the penny-shaped crack model of Hudson et 
al. (1981) can be applied. The elastic stiffness matrix is subsequently constructed and the 
Bond transformation (rotation about the x3 axis) is applied to allow for the symmetry axis 
azimuth to vary. Reflection coefficients as a function of incidence angle and azimuth are 
then calculated and convolved with a source wavelet to generate the synthetic 
seismograms. Through this approach, the elastic stiffness parameters are estimated 
through the iterative optimization scheme of the simulated annealing technique.  

Equation 12 can be used to implement the forward modeling of the reflection 
coefficients subject to the assumption that a weak contrast interface separating two 
weakly anisotropic media holds. Note that in equation 12, the 13 elastic stiffness 
parameters that describe the reflection coefficient happen to be the same non-vanishing 
components that describe a rotated HTI or orthorhombic medium about the x3 axis. 
However, equation 12 does not include certain elastic stiffness parameters that appear as 
a result of a rotation about the x2 axis. This implies that information is present in the P 
wave reflections for a rotation of an HTI or orthorhombic medium about the x3 axis but 
not for the x2 axis. Therefore, a medium with dipping fractures can never be fully 
characterized by a P wave reflection experiment.  

In addition, all the elastic stiffness parameters in equation 12 can be uniquely defined 
with the exception of A12 and A66 where they are coupled through the term A12+2A66. In 
HTI media, A12 and A66 are non-independent and are equal to A13 and A55 respectively. 
Therefore, for the parameter estimation problem, the non-uniqueness of A12 and A66 do 
not affect the characterization of HTI media. However, for orthorhombic media, A12 and 
A66 are independent and the parameter estimation could result in a false distribution 
between A12 and A66. In this case, an independent measurement is required to validate the 
solution. For example, A66 could be obtained through the analysis of the Stoneley wave 
mode in borehole sonic measurements (Sinha et al., 2003).  
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NUMERICAL EXAMPLE 

To illustrate the concepts presented above, we consider an HTI medium that 
undergoes a rotation about the x2 axis to represent dipping fractures followed by a 
rotation about the x3 axis to represent an unknown symmetry axis azimuth. The 
orientation of the symmetry axis then consists of all three components of the basis vectors 
that define a Euclidean space. We use case C of the HTI model presented by Vavryčuk 
and Pšenčík (1998) where the anisotropy of the medium is assumed to be caused by a 
system of vertical parallel dry cracks. The P and S wave velocities of host rock are 4.0 
km/s and 2.3 km/s respectively, the density is 2.6 g/cm3, the aspect ratio is 10-4 and the 
crack density is 0.05. The corresponding elastic stiffness matrix in its natural coordinate 
system takes the form 
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where the units are in (km/s)2. Now consider a rotation of equation 14 about the x2 axis 
by an angle ξ=10 degrees followed by a rotation about the x3 axis by an angle ψ=30 
degrees. The corresponding elastic stiffness matrices are given by  
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For a rotation about the x2 followed by the x3 axes, the elastic stiffness matrix becomes 
fully populated. However, in a P wave reflection experiment the only parameters that can 
be recovered are A11, A12, A13, A16, A22, A23, A26, A33, A36, A44, A45, A55 and A66. Therefore, 
the presence of dipping fractures results in information that is forever lost to the non-
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retrievable elastic stiffness parameters. What we are left with is a truncated form of 
equation 16 given by 
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where AT denotes the truncated elastic stiffness matrix.  

Now, to recover the orientation of the symmetry axis in the x1-x2 plane, we make use 
of the fact that the difference between the fast and slow polarizations of the vertical S 
wave velocity must be maximized in its natural coordinate system. Therefore, the 
symmetry axis orientation in the x1-x2 plane can be recovered by searching for the angle 
ψ such that the condition 

 ]max[ 5544
nn AA −  (18) 

is satisfied. Since nA44  and nA55  in a rotation about the x3 axis are only dependent on A44, 

A45 and A55, equation 17 is sufficient for the recovery to the symmetry axis orientation in 
the x1-x2 plane. Figure 5 shows A44-A55 from zero to 180 degrees. The function reaches a 
maximum at 30 degrees, therefore correctly identifying the orientation of the symmetry 
axis in the x1-x2 plane.  

 

FIG. 5. Plot of A44-A55 from zero to 180 degrees. The function reaches a maximum at 30 degrees, 
denoting the symmetry axis orientation.  

The rotation angle in the x1-x2 plane can be applied to equation 7 and the 
corresponding elastic stiffness matrix takes the form 
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























=

78.400000

077.40000

0031.5000

00043.1586.400.4

00086.455.1502.4

00000.402.405.12

neA , (18) 

where Ane denotes the equivalent medium as seen by the P waves. Note the form of 
equation 18 resembles that of an orthorhombic medium. As noted above, a rotation about 
the x2 axis results in the appearance of A15, A25, A35 and A46. Without knowledge of these 
elastic stiffness parameters, the elastic stiffness matrix cannot be fully recovered in its 
natural coordinate system. Therefore, the presence of dipping fractures will result in 
errors associated with the estimation of elastic stiffness parameters. Figure 6 shows the 
cumulative errors for all the elastic stiffness parameters as a function of the x2 rotation 
angle.  

 

FIG. 6. Cumulative errors for the elastic stiffness parameters as a function of the x2 rotation 
angle.  

However, if we assume an HTI medium and invoke the conditions as given by 
equation 2, we can make an inference as to the presence of dipping fractures. Note that 
the 2,2 component of An and Ane are equal. This is due to the fact that this component is 
invariant under a coordinate rotation about the x2 axis. A further rotation of this 
component about the x3 axis results in a distribution of parameters to recoverable 
components of the elastic stiffness matrix. Given that nA33 is equal to nA22  for an HTI 

medium, the deviation of neA33  from neA22  could be used as an indicator for the amount of 

dip corresponding to the fractures. Therefore, in the parameterization of the model space, 
an independent estimate of  neA33  and neA22  could provide additional information about the 

medium. Figure 7 shows neA33  - neA22  as a function of the x2 rotation angle.  
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FIG. 7. Plot of 
neA33  -

neA22  as a function of the x2 rotation angle.  

DISCUSSION AND CONCLUSIONS 

The estimation of elastic stiffness parameters in weakly anisotropic rotated HTI media 
was discussed. The bond transformation allows for the representation of HTI media in a 
reference coordinate system that deviates from its natural coordinate system. This in 
conjunction with Vavryčuk and Pšenčík’s (1998) formulation of the P wave reflection 
coefficient provides an approach to address the shortcomings of Rüger’s (1998) HTI 
reflection model. Analysis of the rotation of the elastic stiffness matrix and reflection 
coefficient suggests that the symmetry axis orientation in the x1-x2 plane is recoverable 
from a P wave reflection experiment. Characterization of a medium with dipping 
fractures or when the vertical stress is not equal to one of the principle stresses is 
incomplete due to the appearance of elastic stiffness parameters that is not a function of 
the P wave reflection coefficient. However, if an HTI model is assumed in conjunction 
with a re-parameterization of the model space, the presence of dipping fractures or the 
orientation of the principle stresses can be inferred. In addition, if an orthorhombic model 
is used instead of an HTI model, the non-unique definition of A12 and A66 requires 
additional information to validate the solution.  

The methodology discussed provides the means to simultaneously estimate both 
isotropic and anisotropic properties. The isotropic properties provide information 
concerning reservoir lithologies and fluids whereas the anisotropic properties provide 
information concerning the fracturing or the differential stress state of the reservoir. As 
suggested by Norton el al. (2010), the isotropic Poisson’s ratio (PR) exhibits a large 
correlation to the extent of fracture propagation in the hydraulic stimulation of an 
unconventional shale reservoir, where fracture growth is preferential towards the lower 
PR regions. The PR can be inversely correlated to the quartz-clay ratio and therefore is an 
indicator for the material properties of the medium. In addition, a lower PR corresponds 
to lower horizontal stresses resulting from a vertical lithostatic load, resulting in the 
preferred fracture growth towards areas of lower PR (Maxwell et al., 2011). The 
anisotropic properties could then supplement the results by providing information 
regarding pre-existing fractures or the preferred fracture geometry. In areas where 
azimuthal anisotropy exists, this could indicate either the presence of existing fractures or 
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differential horizontal stresses. The differentiation of the two cases would be due to 
whether failure has occurred or not and could be determined using the Mohr-Coulomb 
failure criterion. For hydraulic stimulation in areas of pre-existing faults and fractures, 
fault activation mechanisms could prevail and act as a barrier for fracture propagation 
(Maxwell et al., 2011). If failure has not occurred, the degree of anisotropy could indicate 
whether a planar or complex fracture system will initiate. Therefore, knowledge of the 
isotropic and anisotropic properties is critical in optimizing the development of 
unconventional resources.  

FUTURE WORK 

Through the use of numerical and scaled physical models, the concepts discussed 
above can be further validated. In addition, the concept of stress and strain in elasticity 
provides a common framework for multi-disciplinary studies. The goal is to integrate 
various disciplines including seismology, microseismology and geomechanics to achieve 
an improved characterization of the subsurface.  
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