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Histograms of the Kirchhoff migration operator 

James Close and John C. Bancroft 

ABSTRACT 

A new method of Kirchhoff migration is examined which utilizes a histogram to 
isolate for amplitude coherency along each diffraction shape.  A histogram of amplitude 
frequencies is used to eliminate non-coherent and small amplitude data from the final 
migration summation.  The method explored is data driven as opposed to model driven, 
which allows the definition of a space varying migration aperture without the need for a 
preconceived model. 

In this method, a histogram is formed of the frequency of amplitudes along each 
diffraction shape defined by Kirchhoff migration.  It was found that if a constant 
amplitude scale is applied to our histogram, similar results are produced by applying an 
energy threshold mute to the data.  It was also found that varying the histogram amplitude 
scale, according to the maximum energy on each diffraction shape, biased small 
amplitude data which aliased the migration output.  

It was concluded that this method works well for eliminating noise and spikes in the 
data while preserving dipping events, diffraction events, and flat events, which could 
have practical application for examining spiky seismic data. 

INTRODUCTION 

In migrating seismic data, there are three main methods which are used; Kirchhoff, 
Fourier transform (FK), and downward continuation (for example finite difference and 
phase shift migration) (Bancroft, 2008).  Kirchhoff migration is a widely used tool for 
both time and depth imaging and iterative velocity analysis.  Algorithms used for 
Kirchhoff migration range from the very simple to the relatively complex, although the 
following main principles are followed in each variation: For each migrated output 
sample, diffraction curves (hyperbolic paths) are defined at migration output locations; 
the energy within that diffraction shape is then weighted and summed. The summed value 
is then inserted at the migrated position (being the amplitude value at the output location) 
and then, if desired, additional scaling and filtering can be applied.  The diffraction shape 
for a Kirchhoff time migration is computed using equation (1), where x is the distance 
between the input and migrated trace, 𝑇଴ the two-way time at zero offset, and V the 
velocity defined at 𝑇଴ (Bancroft, 2008). 

  𝑇ଶ(𝑥) = 𝑇଴ଶ + ସ௫మ௏మ( బ்)  (1) 

The size of the diffraction, also known as the aperture, is usually limited by the dip 
angles and/or a maximum offset.  In general, as the migration aperture is increased, the 
migration fidelity is improved.  However, since seismic data sets consist of discrete trace 
sampling, the aperture must be restricted to avoid the degrading effects of spatial aliasing 
(Kosloff et al., 1997).  A taper can also be applied which zeroes the data over a small 
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range of dips at the dip limit. The amplitude of the data is then usually weighted using 
equation (2) (Bancroft, 2008).   

 𝐴𝑚𝑝(𝑥) = బ்்  (2) 

Antialiasing is important for improving imaging in Kirchhoff migration. Aliasing may 
occur in the input data, the migration algorithm (operator), or the output data.  Aliasing 
problems caused by the input data generally happen for two reasons.  One reason aliasing 
may occur on the input data is due to coarse trace spacing which does not support events 
over a certain dip angle.  This type of aliasing can be explained by equation (3), known as 
the aliasing equation, where 𝑓௠ is the maximum cutoff (unaliased) frequency, 𝐶𝑀𝑃௫ is the 
trace spacing, V is the velocity, and 𝛼 is the dip angle.  This implies that we want to 

choose our maximum cutoff frequency as defined in equation (4) where  డ௧డ௫ is the 

migration operator slope, and ∆𝑇 is the relative time shift of the operator between the two 
traces (Abma et al., 1999).  This means that ∆𝑇 must increase with the dip for an anti-
aliasing filter applied to the diffraction shape. 

  𝑓௠ = ௏ସ஼ெ௉ೣ ୲ୟ୬ ఈ = ଵଶ∆்  (3) 

 𝑓௠ ≤ ଵଶ∆் = ଵଶങ೟ങೣ஼ெ௉ೣ  (4) 

The second common cause of aliasing on the input data is due to sampling frequency 
along each trace.  This is known as the Nyquist criterion, which requires the sampling 
frequency must be greater than twice the maximum frequency, or in other words, there to 
be at least two samples per cycle for the period of the highest frequency of the signal 
(Bancroft 2008).  In data processing, compromises must be made over what sampling rate 
to use due to the resulting high memory requirements and longer run times caused by 
higher sampling rates. 

Even if we have perfect input data in which no aliasing occurs, we can still get aliased 
migration data due to our operator, or migration algorithm.  Since basic Kirchhoff 
migration passes a diffraction shape over our input data without taking the frequency 
content of the data into consideration we can get operator aliasing.  For example, the 
steep part of a diffraction shape may under-sample the seismic wavelet as it passes over a 
flat portion of the un-migrated data.  One way to overcome this problem is to reduce the 
frequency content of the data encountered by the steep part of the diffraction shape (Gray 
et al., 2001). 

In the 2D zero-offset constant-velocity case of Kirchhoff migration, the number of 
output data points is normally defined as equal to the number of input data samples which 
is also equal to the number of diffraction summations that we perform over our data set.  
If we decide that this number of output samples is not optimal, then we can choose a 
different output trace and sample spacing.  Since it is difficult to determine a perfect 
solution for output trace and sample spacing, we can assume at least a small amount of 
output data aliasing. 
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As previously mentioned, in order to apply a proper migration to our seismic data, an 
aperture must be defined as large enough to properly migrate dipping data and yet not so 
large as to introduce artifacts from spatial aliasing.  Once an aperture is defined for a 
given data set, the aperture normally remains constant throughout the entire migration 
process (Kosloff et al., 1997).  Since the characteristics of a data set can have drastic 
variation, an aperture selected for one part of the data section may not be optimum for 
another part.  In order to address this problem, Kosloff et al. (1997) propose a method of 
migration which uses a model-based aperture technique in order to determine the range of 
the seismic data that is most relevant for imaging a selected area in depth. 

The model-based migration method automatically calculates a migration aperture size 
from a seismic data set to be migrated, rather than rely on user judgment to determine the 
aperture size (note that this migration aperture is space varying).  It uses a different 
migration aperture for every part of the seismic data and also limits the area to be 
migrated as defined by a displacement section of the data (Kosloff et al., 1997). The 
result is that only imaged points within the local aperture are considered for the 
summation value of the migration output, that is, if we picture this as a basic Kirchhoff 
migration diffraction shape, only a select amount of the data over the diffraction (the 
coherent energy) will be added to our migration value (as opposed to summing over the 
entire diffraction). 

Although this model-based migration method addresses the problem caused by having 
a constant aperture, it introduces a brand new problem - the requirement of a 
preconceived model.  That is, it requires the formation of a velocity section and a depth 
model from the CMP gathers, and then forms a displacement model (used to calculate the 
space dependent aperture) by ray tracing the velocity section and the depth model.  
Therefore if the wrong model is chosen, everything that follows will also be wrong.  The 
resulting migration output will tend to verify the wrong model leading to interpretation 
errors.  

This paper introduces a method which is similar to the model-based migration method 
of Kosloff et al. (1997) except that it is data-driven instead of model-driven, eliminating 
some of the problems resulting from requiring a preconceived model.  In our method, we 
use a histogram of the amplitudes for each diffraction shape in Kirchhoff migration in 
order to isolate for the coherent energy along that diffraction.  This essentially forms a 
different aperture for every migration location with the aperture being defined by the 
input data.  This can minimize interpretation errors since the results will be based strictly 
on the seismic data and not on any preconceived model of the subsurface.   

INPUT MODEL 

A numerical input model called Mod50 (Figure 1) was used to perform our migration 
and test our method.  This model has a constant velocity of 10000 ft/sec.  It contains 
linear and dipping reflections, diffractions, and localized points of reflection energy.  The 
model has 150 traces with a trace interval of 100 ft.  It is sampled at a 2 ms sample rate 
for a total time of 1.5 seconds resulting in a total of 750 time samples for each trace.  
After defining all the events, the entire section was bandpass filtered to a maximum 
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frequency of 50 Hz.  We use a constant velocity over the entire model in order to migrate 
our results (Bancroft, 2008). 

      

a)       b) 

FIG. 1  Input model and its FK transform 

If we examine the FK transform of Mod50, we can see that the energy is band limited 
to 50 Hz.  We can also see the aliased energy from the two steeper dipping events that 
have wrapped around (inside blue circle on Figure 1a and red circle on Figure 1b) 
(Bancroft, 2008).  This aliased energy occurs due to the Nyquist criterion – for example, 
we can see that there is a distinct separation between the wavelets at the bottom of our 
steepest dipping event (circled in blue in Figure 1) whereas there is little separation 
occurring for the three shallower dipping events. 

HISTOGRAM MIGRATION ALGORITHM – THEORY AND EXAMPLES 

The algorithm to perform our histogram migration method was written in FORTRAN 
and built upon John Bancroft’s (1993) basic Kirchhoff migration code.  It consists of the 
following seven distinct steps, each of which will be discussed in detail, including 
examples from our input model (Section 3).  Note that any desired filtering to the input 
data (such as a rho filter) may be implemented prior to performing the histogram 
migration. 

1. A diffraction shape (defined, in our case, by an angle aperture with a taper) is 
constructed for each data sample over each trace (as in basic Kirchhoff 
migration) defining an amplitude array. 

2. Amplitude scaling and smoothing is applied to the amplitude array. 

3. A fixed-scale histogram of amplitudes is constructed for each array. 

4. Noise, defined as small amplitude energy, is removed from the histogram. 

5. The histogram is smoothed (we use a box-car filter). 

6. The amplitude coherency of highest frequency within the histogram is isolated. 

7. The migration output energy is calculated using the coherent energy isolated 
from the histogram. 
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1  Diffraction Shape 

After any desired initial filtering is applied to the input data (for example, a rho filter), 
the algorithm loops through the desired migration output locations.  In this case we chose 
the simple method of looping over every sample for every trace.  All seven steps are 
performed on each sample (migration output location) before moving on to the next.  For 
each sample a diffraction shape is computed using equation (1).  A dip limited (angle) 
migration aperture and a diffraction taper were also included as per the basic Kirchhoff 
migration method. 

In order to provide a visual example of what is happening, we will focus on two data 
points which occur at the same locations on our input model and our migration due to our 
choice of having every data sample represent a migration output location.  

 The two points which we will examine are defined as Point 1 – located at trace 
20, sample 135, and Point 2 – located at trace 55, sample 125.  These two points 
represent migrated data on (Figures 3 and 4) and off (Figures 5 and 6) a reflector.  We 
will show the difference between the energy that is isolated at these points using our 
histogram method. 

Figure 2a shows a diffraction shape (illustrated, not the true diffraction) which is 
tangential to our steepest dipping event (Location A) and also passes through our 
horizontal event (B) and our deepest diffraction event (C).  Circled in black is the energy 
that we want to isolate for and migrate to our Point 1 location indicated in Figure 2b.  The 
migration in Figure 2b shows a basic Kirchhoff migration where the output energy was 
summed over the entire diffraction, which in this case is inclusive of all the energy from 
A, B, C, and any other small noise or events along the diffraction. 

    
a)                                                                b) 

FIG. 2  A diffraction tangent to a reflector in a) places the energy at the apex of the diffraction as 
highlighted in b) at trace 20 and time 170 ms. 

Examining Figure 3a, we see that our diffraction shape now passes through many 
events (labeled A to G) but is not actually tangential to any events (note that this is not 
the true diffraction shape, but an illustration showing the approximate locations).  Since it 
is not tangential to any of our events, it will not represent any real events in our 
migration.  We can see this in Figure 3b where there is aliasing (noise) at our output 
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location.  Instead of wanting to keep coherent energy as part of the migration, as was 
previously desired for Point 1, we now want to eliminate all energy along this diffraction.  
The remaining steps will show how the histogram method aims to accomplish this. 

    
a)                                                                         b) 

FIG. 3  Diffraction shape located in a) over non-tangential events and in b) the aliasing noise. 

2  Construct Array of Diffraction Amplitudes 

Once a diffraction shape has been defined, we construct an array of amplitudes 
representing the amplitude of the energy at every point on the diffraction.  This amplitude 
array can be scaled, smoothed, or have any other filter applied to it if desired.  We chose 
to smooth the data using a 3-point boxcar filter. 

Figures 4a and (b) show the amplitudes along our diffraction shapes at Point 1 and 
Point 2 (respectively) prior to smoothing.  Examining Figure 4a, we can see the 
amplitude representing the portion of our diffraction shape which is tangential to the 
steepest dipping event in our model (location A, circled in red).  The spike of high 
amplitude at point B occurs due to the diffraction passing through our horizontal event 
and the small spike of amplitude at point C represents when the migration diffraction 
passes through the deepest diffraction event of our input model. 

Examining Figure 4b, we see seven distinct spikes of positive amplitude which are 
lettered corresponding to when they occur on our input model (Figure 2b).  The spikes at 
A and G represent the two occurrences of our diffraction passing through the horizontal 
event.  The spikes at B through D represent when the diffraction passes through our three 
dipping events to the left of our model, spike E occurs when the diffraction passes 
through the shallowest diffraction event, and finally spike F represents when the 
diffraction just catches the bottom of our steepest dipping event on the right of our model.  
Our goal is to eliminate the energy of all of these spikes in Figure 4b as this energy is 
only representative of noise and not of any real events.  The first step towards eliminating 
these energy spikes is to apply amplitude smoothing. 
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a)                                                                           b) 

FIG. 4  Amplitudes of the energy along the diffraction shape in a) from Figure 2a and in b) from 
Figure 3a.  The letters in these figures correspond to the locations in those figures. 

 Examining Figures 5a and b) we can see what happens after smoothing.  A 3-
point boxcar filter was applied three times (3BX3) to our amplitude arrays, and as we can 
see, the amplitudes of the spikes have been greatly diminished for both Point 1 and Point 
2.  At the same time our desired migration energy, circled in red, has remained at 
approximately the same high amplitude as desired.  

    
b)                                                                           b) 

FIG. 5  Amplitudes along the diffraction after smoothing with a 3-point boxcar 3 times. 

3  Construct a Histogram of Amplitude Frequency 

We now use our (smoothed) amplitude array to construct a histogram of the frequency 
of the amplitudes.  The histogram is defined from the negative amplitude value of a user 
defined threshold energy to the positive amplitude value of this energy.  The threshold 
energy must be chosen by examining the data.  For our case it was found that an 
amplitude threshold of approximately 0.1 gave us our best results (see Section 6).  For 
our example Points 1 and 2, we will show what happens when the amplitude threshold is 
chosen as approximately 0.15 as this gives a nice example of how non-coherent energy 
(spikes and noise) are eliminated from our migration.  The histogram can be divided into 
any amount of bins as defined by the user, and in our example case was divided into 
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twenty-one equal sized bins.  After the scale and bin sizes are defined, the amplitude 
frequencies are assigned to each of the bins. 

Figures 6a and (b) show the amplitude frequencies for the diffraction shapes 
originating at Points 1 and 2 respectively.  As expected, both histograms are dominated 
by zeroes and very small amplitudes which represent most of our noise.  Note, however, 
that in some cases we may have some small amplitude or non-coherent amplitudes that 
represents real events, data spikes are one example of this (a buried pipe for instance).  
As we will see, we eliminate this energy using the histogram method, and in such cases, 
our method has application where the removal of spikes and the migration of larger, more 
energy coherent events is desired. 

 An important feature to notice is that in Figure 6 (for Point 2) all of the 
amplitudes are relatively close to zero compared to that of Figure 5b (for Point 1) where 
we get amplitudes higher than 0.1. This reiterates the fact that smoothing our data with 
the boxcar filter has already eliminated a fair amount of noise. 

      
a)                                                                        b) 

FIG . 6  Histograms for diffraction amplitudes in a) for Point 1, and b) for point 2. 

4  Removal of Noise (Small Amplitude) from Histogram 

The next step in our histogram anti-aliasing method is to eliminate the small values 
(and zeroes) on our histograms which most likely represent noise, but also can represent 
real event spikes.  It is a case-by-case decision based on the input data to decide what 
portion of bins to remove.  For our input model, it was decided that the elimination of the 
bin representing zero amplitude along with three bins on either side of this gave optimal 
results.  

After the small energy values are eliminated, we are either left with just the high 
amplitudes, which may be of high positive or high negative amplitude in Figure 7a, or we 
may have already eliminated all noise and spikes (non-coherent energy) in Figure 7b.  
Now it is simply a matter of smoothing our histogram data for the high amplitude 
coherent energy, which will better focus our desired migration output energy as well as 
further diminish any noise not caught by our filtering of the mplitudes along our 
diffraction and our histogram zeroing method. 
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Note that in the case of a histogram having both high positive and high negative 
amplitudes, either the positive or negative energy is chosen and extracted based on the 
frequency of this coherent energy in the histogram as we will later see. 

    
a)                                                                  b) 

FIG. 7  Histograms after zeroing energy. 

5  Histogram Smoothing 

After eliminating the small energy values from our diffraction, we smooth our 
histogram data.  We chose to apply a 3-point boxcar filter three times just as we did to the 
amplitude array.  We want to search for amplitude coherency, which is expected to 
represent real events in our data.  Smoothing the amplitude frequencies over our 
histogram has the desired effect of focusing our data in a more coherent manner.  
Smoothing the histogram also has the effect of further decreasing the amplitude of single 
bins which may have escaped our zeroing method and represent noise. 

When convolving a box-car (running average) filter together with itself many times, 
the central limit theorem states that the resulting shape will tend to a Gaussian.  This 
effect could be seen previously in Figure 5 after the amplitude arrays were smoothed, and 
it can also be seen after boxcar smoothing was applied to the histogram.  

Figures 8a is boxcar filtered once, Figure 8b boxcar filtered twice, and Figure 8c 
boxcar filtered three times to show the smoothing progression of the coherent high 
energies for the diffraction originating at Point 1.  Note that since the energy for Point 2 
has already been eliminated after zeroing our small amplitude histogram values, there is 
no need to look at the effect of smoothing the histogram on this diffraction. 
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a)                                                                   b) 

 
c) 

FIG. 8  Histogram energy a) for boxcar filtering once, b) boxcar filtering twice, and c) boxcar 
filtering three times. 

6  Isolate for Highest Frequency Amplitude Coherency 

As previously mentioned, it is expected that some diffractions will contain energy of 
both high positive and negative amplitudes representing events.  In our method we simply 
compare the frequency of coherent negative versus positive high amplitude on the 
histogram and choose whichever amplitude has the highest frequency in order to use as 
our migration energy.  Note that the fact we are potentially eliminating a large portion of 
high amplitude (positive or negative) could eliminate events which we would like to 
image, as a slight frequency advantage of positive amplitude over negative amplitude for 
example, may mean that a negative amplitude event, which may be desired over the 
positive event, is entirely eliminated. 

For our example diffraction originating at Point 1, Figure 8c represents the amplitude 
frequency histogram which will be used to calculate our migration output energy.  We 
have isolated for a grouping of coherent high amplitude positive energy in this case, 
which represents a portion of our steepest dipping event.  In the case of the diffraction 
originating at Point 2, which we have seen represented noise, all the energy has been 
eliminated as desired. 
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7  Compute Migration Output Energy for Input Sample Location 

The final output for our migration is weighted as the amplitude of the bin with the 
highest frequency within the coherent section of the histogram (the highest amplitude is 
chosen if more than one bin has the same high frequency), multiplied by this frequency, 
and then multiplied by the width of the coherent histogram section.  This energy is then 
placed at the top of our diffraction which results in our migration output. 

We can now make an approximate calculation of what our migration output energies 
will be for Points 1 (we know it is zero for Point 2).  Examining Figure 8c for Point 1 
which represents our real event, we can see that the bin containing the highest frequency 
of approximately 4.25 is located at the amplitude of approximately 0.14.  The width of 
the coherent energy section is 9 bins; therefore for the location at Point 1 (trace 20, 
sample 135) we get a migration output energy of approximately 4.25*0.14*9 = 5.4. 

RESULTS 

We will now examine and compare various migration outputs resulting from 
modifications to our algorithm.  We will look at the FK Spectrum for each output.  For 
ease of comparison, Figure 9 shows our input model and Figure 10 shows the result of 
basic Kirchhoff migration without an aperture, taper, or any filtering. 

Figure 11 shows our final migration (and FK spectrum) after a rho filter was applied to 
the input data, an angle aperture and diffraction taper were defined (80 degrees for 
aperture, 70 degrees for taper), amplitude scaling was applied to the amplitude spectrum 
of each diffraction, a 3-point boxcar filter was applied to the amplitude spectrum of each 
diffraction three times, and a 3-point boxcar filter was applied to the zeroed histogram 
three times.  Figure 11 was given an amplitude threshold of 0.1. Note that this migration 
has eliminated our diffraction events as well as our spiking events.  

    
a)                                                                   b) 

FIG. 9  Input model a) and in b) its FK transform. 
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a)                                                                      b) 

FIG. 10  Basic Kirchhoff migration of the model in a), and in b) the FK transform. 

 

    
a)                                                                           b) 

FIG. 11  The migration in a), and the FK transform after a histogram threshold of 0.l, rho filter, 
aperture taper, amplitude scaling, 3BX filtering amplitude filtering and 3BX histogram smoothing. 

 Keeping all other aspects of the algorithm equal and only changing the histogram 
amplitude threshold has about the same effect as muting does.  Figure 12 shows the 
output due to an amplitude threshold of 0.05 and Figure 13 shows the output due to an 
amplitude threshold of 0.15. Note that decreasing the histogram amplitude threshold 
(Figure 12) outputs our diffraction events as well as our dipping events and increasing the 
histogram amplitude threshold significantly decreases the output of our dipping events. In 
fact, increasing the histogram amplitude threshold to 0.2 effectively eliminates all events 
from our final migration except for our horizontal event. 
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a)                                                              b) 

FIG. 12  Migration and FK transform with a threshold of 0.05. 

 

    
a)                                                          b) 

FIG. 13  Migration and FK transform with a threshold of 0.15. 

For interest’s sake we also tried varying the histogram amplitude threshold based on 
the maximum amplitude within each diffraction spectrum, that is, the histogram was 
defined from the negative of the maximum of the absolute value to the positive of this 
value and divided into (for our case) 21 bins.  Figure 14 shows the resulting output of a 
varying histogram method using the maximum amplitude of each diffraction – note that 
small amplitudes tend to be biased in this method and appear as the aliasing we see 
surrounding the middle diffraction event in Figure 14. 
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a)                                                          b) 

FIG. 14  Migration and FK transform with a varying histogram amplitude based on the maximum 
amplitude within each diffraction amplitude. 

CONCLUSIONS 

A new method of anti-aliasing in Kirchhoff migration was explored which utilizes a 
histogram to isolate amplitude coherency along each diffraction shape.  A histogram of 
amplitude frequencies is used to eliminate non-coherent and small amplitude data from 
the final migration summation.  This method is data driven as opposed to model driven, 
which allows us to define a space varying migration aperture if desired without the need 
for a preconceived model. 

We saw that this method produces a similar result to applying an energy threshold 
mute when the histogram is based on a constant amplitude scale.  Varying the histogram 
amplitude to match the maximum amplitude for every diffraction has the result of biasing 
for small amplitude data which we want to eliminate.  Another method to try in future 
work could be a histogram scale which varies according to time or depth. 

 We saw that this migration method works well for eliminating noise and spikes in 
the data while preserving dipping events, diffraction events, and flat events.  This could 
have a practical application when examining spiky seismic data.  There is a need to 
examine the effects of this method on different data sets while using different methods of 
varying the histogram scale and zeroing the histogram in order to understand its full 
potential. 

FUTURE CONSIDERATIONS 

There are many improvements that need to be made to make this concept practical.  
There are many other filtering methods that can be tried such as a median filter that can 
be very successful at removing spiked data.   

In addition, the threshold parameters need to be time or depth varying to accommodate 
the changing size of the tangential area.  Shallow data will require a smaller tangential 
area relative to a deep area.  The size of the tangential area will also depend on the dip on 
the diffraction which could be related to the displacement from the center of the 
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diffraction.  The width of non-tangential energy on the diffraction amplitude may also 
vary with dip and could also be related to the displacement from the center of the 
diffraction.  An offset varying median filter may have better success. 

The basic assumption only considered linear reflection energy.  Curved surfaces and 
truncated events will also require consideration. 

The data used was free from noise, and will have a significant effect on the choice of 
parameters. 

This process will add considerable processing time to the migration.  We assume that 
it would be used in special applications such as with data that has been acquires with 
considerable aliasing, or even significant noise.  These applications will require 
significantly more development and testing. 
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