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P-SV wave propagation in a radially symmetric vertically 
inhomogeneous TI medium: Finite difference hybrid method 

Patrick F. Daley 

ABSTRACT 
The hybrid finite difference – finite integral transform method is considered for the 

coupled VP S−  wave propagation problem in a radially symmetric vertically 
inhomogeneous (plane layered) transversely isotropic medium. Apart from the 
development of the equations of motion, a number of numerical considerations are 
addressed. As in most problems where numerical methods are employed in the solution, 
there are several areas that are given special attention to indicate how to improve run 
times and accuracy. 

INTRODUCTION 
This method is most often referred to as the pseudo-spectral method, but due to the 

extensive work done in this area by B.G. Mikhailenko and A.S. Alekseev it is sometimes 
referred to, in seismic applications, as the Alekseev-Mikhailenko Method (AMM), 
(Alekseev and Mikhailenko, 1980). It falls within the genetic class of pseudo-spectral 
methods (Gazdag, 1973, 1981, Kosloff and Baysal, 1982) but is possibly more formal 
and rigorous in its development.  However, much of their work is relatively physically 
inaccessible and a considerable number of the more significant contributions are in 
Russian. 

One numerical advantage of applying finite integral transforms is that the resultant  
finite difference problem is in one spatial variable and time and there are no cross 
derivative terms. These are differentials of the 
form ( )1 2 3, , , , 1, 2,3 :i k jx c x x x u x i j k i j⎡ ⎤∂ ∂ ∂ ∂ = ≠⎣ ⎦ .  Several approaches for dealing 
with these in a finite difference context may be found in Zahradník et al. (1993). 

THEORETICAL DEVELOPMENT 

General Theory 

Consider the problem of coupled VP S−  wave propagation in a radially symmetric (no 
lateral inhomogeneities), vertically inhomogeneous transversely isotropic half space.  

The equations of motion are defined by the elastodynamic equations (Martynov and 
Mikhailenko,  1984 or Mikhailenko,  1985)  
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where the particle displacement vector u  is of the form 
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 ( ) ( ) ( )( ), , , , , , ,r z t U r z t V r z t≡ =u u . (2) 

Here ( ), ,U r z t  and ( ), ,V r z t are the radial (horizontal) and vertical components of vector 
particle displacement, the azimuthal component of displacement being zero for the 
coupled VP S−  problem. The coordinates andr z  are the radial and vertical coordinates 
in a cylindrical coordinate system, respectively, t is time In Voigt notation, the ijc are the 
stiffness parameters of the medium and ρ  is the density, all of which may be dependent 
on the vertical ( )z  coordinate. The density normalized anisotropic parameters, 

ij ija c ρ= , having dimensions of velocity squared, may also be used at some points 
within this report. 

The problem is solved subject to the initial conditions 
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and the free surface boundary conditions that are required to be satisfied are 
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= =
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That is, the normal stress and shear stress are zero at the free surface. These will be 
defined shortly for a transversely isotropic medium. 

Two typical types of point sources, ( ), ,r z tF , used in seismic applications are 
(Mikhailenko, 1980): 

1. Vertical point force : 

 ( ) ( ) ( ) ( ) ( ), , , s s sx y z t x x y y z z f tδ δ δ= − − − zF n . (5) 

  where zn  is a unit vector in the z (vertical downwards) direction. 

2. Explosive point source of P waves: 

 ( ) ( ) ( ) ( ) ( ), , , s s sx y z t x x y y z z f tδ δ δ⎡ ⎤= ∇ − − −⎣ ⎦F . (6) 

In the above, ( )δ ξ  is the Dirac delta function and ( )f t  is some band limited source 
wavelet, about which more will be said later. In what follows, an explosive point source 
of P waves is assumed. The Green’s function solution for this problem would require that, 

( ) ( )0f t t tδ= −  such that ( )0 max0 t t≤ <  for some finite time maxt . 

In terms of  ( ), ,U r z t , ( ), ,V r z t  and the anisotropic stiffness coefficients, ijc , the 
expressions for the normal and shear stresses at the free surface are given by 
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Introducing the finite Hankel integral transforms and the vector designation 

( ) ( ) ( )( ), , , , , , , ,i i i ik k z t S k z t R k z t=G % %  yields 

 ( ) ( ) ( )1
0

, , , ,
a

i iS k z t U r z t J k r r dr= ∫  (9) 

 ( ) ( ) ( )0
0

, , , ,
a

i iR k z t V r z t J k r r dr= ∫% %  (10) 

where the ik  and ik%  are the roots of the transcendental equations 

 ( )0 0iJ k r =%  (11) 

and 

 ( )1 0iJ k r = , (12) 

respectively. Using the two formulations of the Hankel transforms discussed in Appendix 
A, it may be shown that both of the inverse series summations may be accomplished 
using only the roots of one of the Bessel function transcendental equation, ( )1 0iJ k r = , so 
that the inverse transforms are defined by 
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Thus both inverse series summations may be taken over the roots of one rather than two 
transcendental equations and as a consequence, ( ) ( ) ( )( ), , , , , , ,i i ik z t S k z t R k z t=G . The 
matter of what, numerically, constitutes an infinite number of terms in the inverse series 
summations is addressed in Appendix C. It is shown there that an earlier assumption that 
the source wavelet be band limited is significant in this determination. As the only spatial 
direction in which a finite difference is used is the z direction the most economical 
manner to introduce a damping conditions at the lower z boundary, i.e., ( )z R tγ ∂ ∂  and 

( )z S tγ ∂ ∂ . A safe estimate for the length of this damping region is of the order of 1 
wavelength (WL) but 2WL are commonly used (B.G. Mikhailenko, 1980). 
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Applying the appropriate Hankel transforms to equations (1) and (2) results in 
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while the transforms of the shear and normal stresses at the free surface, which is 
assumed to be planar, have the form 
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The transformed initial conditions at 0t =  are 
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Here ik  are the roots of the transcendental equation ( )1 0iJ k a =  which requires additional 
boundary conditions at r a=  (pseudo boundary such that) 

 0
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=
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The pseudo boundary is placed at some distance r a=  so that no spurious reflections 
from this boundary are present in the synthetic traces. Care is required in choosing this 
distance, as the number of terms in the inverse series summation depends on it in a linear 
fashion. More on this may be found in Appendix C. 

Development of a finite difference analogue for terms of the form  

 ( ) ( ), ,ik z t
z

z z
ψ

ζ
⎡ ⎤∂∂
⎢ ⎥∂ ∂⎣ ⎦

 (21) 

is given in Appendix B, as is a staggered grid analogue for  

 ( ) ( ), ,iz k z t
z

ζ ψ∂
⎡ ⎤⎣ ⎦∂

 (22) 

If it is assumed that the anisotropic parameters (stiffness coefficients) are spatially 
independent of the Hankel transformed equations and take on the simplified forms given 
below. For convenience, it is assumed that the first two grid points in z , at the free 
surface are of this form so that equations (15) and (16) may be written there as 
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The Hankel transformed shear and normal stresses required at the free surface as 
boundary conditions have been given in equations (17) and (18). 

Free Surface Finite Difference Analogues 
Introducing the transformed stress equations, (17) and (18), into equations (23) and 

(24) results in the finite difference analogues at the free surface having the form 
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where time stepδ − , spatial steph −  and all quantities with the subscript "0"  are to be 
evaluated at the surface ( )0z = . The time point " "m  corresponds to time along the 

synthetic trace of ( )0,1, ,mt m t m Mδ= = K , where M tδ  is the length in time of the trace 
and ik  has been previously defined. 

General Point Finite Difference Analogues 
Horizontal component: 
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Vertical component: 
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Alternate methods of introducing attenuating boundary conditions at fictitious boundaries 
which produce spurious reflections on the synthetic traces may be found in the well 
known works of Cerjan et al. (1985), Clayton and Enquist (1977) and Reynolds (1979). 

An explosive point waveqP − source has 

 ( ) ( )1ˆ
2rF z d f tδ
π

= −  (29) 

 ( ) ( )1ˆ
2z

dF z d f t
dz

δ
π

= −⎡ ⎤⎣ ⎦  (30) 

This matter will be dealt with later in this report in Appendix D. 

Stability Condition 
This formula is given without derivation as 
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where ( )2
11 33max ,qPV a a= , that is, the maximum value that either 11 33ora a  ( )ii iia c ρ=  

attains on the finite difference grid and ( )2
55max

VqSV a= , where the previous definitions 

hold. The value of ik  is the minimum non zero value in the series ( ), 1,ik i N= , with N  
being the maximum number of roots used in the infinite series summation approximation.  
A more comprehensive derivation of this may be found in almost any text on finite 
difference methods. As there is a possibility that ( )55max a  may not give the maximum 
value of the square of the shear wave velocity on the grid, and if problems occur, a safer 
estimate of tΔ  may be obtained by substituting ( )2

11 33max ,
VqSV a a=  in equation (31). If 

this produces acceptable results, tΔ  may be made larger by using some value for 2
VqSV , 

obtained by numerical experimentation, between ( )55max a  and ( )11 33max ,a a . 

SUMMARY AND CONCLUSIONS 

The theory and development of finite difference analogues for coupled VqP qS−  wave 
propagation in a plane parallel layered transversely isotropic model has been presented. 
The radial coordinate was removed using a finite Hankel transform prior to 
implementation of finite difference process. What results are a coupled system of finite 
difference equations in only depth and time. The infinite inverse series summation may 
be truncated if a band limited source wavelet is used.  

The finite difference analogues given are accurate to second order in both time and 
space (depth). The analogues for a surface point as well as general points within the 
medium are given. Provisions for either a vertical or explosive point source of P – waves 
are included in the derivations. A number of points regarding this seismic modeling 
process, especially where some mathematical rigor is required are dealt with in a series of 
Appendices. 

This is the second in a sequence of six (currently) related to modeling using hybrid 
methods in anisotropic medium. At present, a plane layered orthorhombic structure with 
no anisotropic parameter variations in the two lateral spatial directions, is being tested. 
Two finite Fourier transforms are employed to remove dependence on the lateral spatial 
Cartesian coordinates. The theory presently being developed employs these two finite 
Fourier transforms to reduce the finite difference problem from 3 spatial dimensions and 
time to one spatial dimension (depth) and time. In the most recent development, the 
anisotropic parameters are allowed to “slowly” vary with the two lateral coordinates in an 
orthorhombic medium. 

Using the formulae presented here it should be possible write a hybrid finite difference 
– finite integral transform programs for a transversely isotropic medium for a variety of 
source – receiver configurations including AVO and VSP. 
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APPENDIX A: FINITE HANKEL TRANSFORM 
Although the two following finite Hankel transform methods may be found in the 

literature (Sneddon, 1972, for example), it was felt that for completeness they should be 
included here, at least in an abbreviated theorem formulation. The finite Hankel 
transform of the first kind is a direct application of the following theorem. 

Theorem I: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its 
Hankel transform in that range is defined to be 
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where the sum is taken over all the positive roots of equation (A.2). 

The finite Hankel transform and inverse of the second kind used in the text are given 
as follows: 

Theorem II: If ( )f x  satisfies Dirichlet’s conditions in the interval ( )0, a  and if its 
Hankel transform in that range is defined to be 
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where the sum is taken over all the positive roots of (A.5) and h is determined from a 
boundary operator N at x a=  defined as 

 [ ] ( ) ( ) 0
df a

f hf a
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= + =N  (A.7) 
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APPENDIX B: FINITE DIFFERENCE ANALOGUE 
For determining the finite difference analogue in the case of an operation of the type 
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whose finite difference analogue is of the form 
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which in terms of ( )zχ  and jB  
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from which it follows that 
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with the staggered grid harmonic average of ( )1 2kzζ +  is given by 
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The second finite difference analogue required in this report is 

 
( ) ( ) ( )

( ) ( ) ( )

s z z B z

s z
z B z

dz dz

ζ

ζ

=

∂ ∂
⎡ ⎤= ⎣ ⎦

 (B.14) 

which has the analogue 

 

( )

( ) ( )

1 1 1

1 1 1 1

2

2

k k k k

k k k k k k k

s z B B
dz z
s z B B B
dz z

χ χ

χ χ χ χ

+ + −

+ + + −

∂ −=
Δ

∂ − − −
=

Δ

 (B.15) 

where the staggered grid harmonic averages 1kχ +  and kχ  have been previously defined 
above. 

APPENDIX C: TERMS IN INVERSE SUMMATION SERIES 
The analytic Fourier transform of the Gabor wavelet is, apart from some constant 

multiplicative terms, 

 ( ) ( )
1 2 2 2

2
0

0 0

exp 1 cosh
4

F π γ ωγω ω ω
ω ω

⎛ ⎞⎡ ⎤
= − + ⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠
 (C.1) 

The horizontal wave number, k , in a coordinate system with cylindrical symmetry is 
related to the angular frequency as 
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 k
v
ω=  (C.2) 

where v  is velocity ( )ijv a=  and ω  is the circular frequency. It will be assumed that 

some upper bound, uω , on the band limited spectrum of the source wavelet has been 
determined, often through numerical integration of the spectrum and then reintegration to 
the value uω  up to which about 99.99% of the initial integration. Once uω  has been 
determined, the value of uk  may be obtained as 

 
min

u
uk

v
ω=  (C.3) 

with minv  being the minimum velocity qP  ( )33 min
A  or VqS  ( )55 min

A  encountered on 

the spatial grid which is one dimensional. It is known from numerical experiments that a 
good approximation for the duration of the Gabor wavelet in the time domain is 0fγ . 
For some arbitrary ik  in the inverse series, 

 i
ik

a
ζ=  (C.4) 

where the values of iζ  are the roots of the transcendental equation 

 ( ) 0iJ ζ =  (C.5) 

so that 

 
min

u u
uk

v a
ω ζ= =  (C.6) 

or equivalently 

 
min

u
u

a
v
ωζ =  (C.7) 

indicating that the number of terms which must be considered to adequately approximate 
the infinite series summation increases linearly with a. It may be seen upon examination 
of equation (C.1) that the spectral width of the Gabor wavelet decreases with increasing 
values of γ . With the value of 4γ =  used here, 02uω ω , so that with the predominant 
wavelength defined in terms of the predominant circular frequency and the minimum 
velocity encountered, 0 0 minf vλ =  equation (C.7) becomes 

 4u aζ π=  (C.8) 

In the above equation, 0aα λ= , a dimensionless quantity relating the predominant 
wavelength with the pseudo – boundary introduced at r a= . For large values of i, the 
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relation approximate relation i iζ π  holds (Abramowitz and Stegun, 1980). Thus the 
number of terms N, required to approximate the infinite series is, with u Nζ π= , given as 

 4N a=  (C.9) 

For comparison purposes, going through the derivation with 5γ =  results in the value of 
N being given as 

 8 5N a=  (C.10) 

which is less than that estimated for 4γ = , as would be expected. 

APPENDIX D: SOURCE TERM 
The finite Hankel transforms of the two components, radial and vertical, of an 

explosive qP  point source term located at the point ( ),s sr z  within the TI  medium are 
given as: 

Radial component: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
0

0
0

ˆ
2

2

a
s

r s i

a
s i

s i

r r
F z z f t J k a r dr

r r

z z f t k
r r J k a dr

δ
δ

π

δ
δ

π

⎡ ⎤−∂= − ⎢ ⎥∂ ⎣ ⎦
−

= − −

∫

∫
 (D.1) 

where sr  is the radial source position, so that the transformed radial component has the 
form 

 ( ) ( ) ( )0ˆ
2

i i
r s

k J k a
F z z f tδ

π
= − − . (D.2) 

Vertical component: 

 ( ) ( ) ( )1
2z s s

dF z z r r f t
dz

δ δ
π

= − −⎡ ⎤⎣ ⎦  (D.3) 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

0
0

0

1
2
1

2

a
s

z s i

s i

r rdF z z f t J k r r dr
dz r
d z z J k a f t
dz

δ
δ

π

δ
π

−
= −⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

∫
 (D.4) 

The partial derivative of the delta function with respect to ς  can be written using a 
standard finite difference analogue as 
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 ( ) ( ) ( )
( )

( )
( )

( )
( )

1 1 1 1

2 2 2
s s s s

s

δ ζ ζ δ ζ ζ δ ζ ζ δ ζ ζ
δ ζ ζ

ζ ζ ζ ζ
+ − + −− − − − −∂

⎡ ⎤− ≈ = −⎣ ⎦∂ Δ Δ Δ
. (D.5) 

so that the partial derivative of this function at some grid point S Snς ς= Δ  is specified at 
the grid points at 1 1S Snς ς+ += Δ  and 1 1S Snς ς− −= Δ . From past experience with programs 
of the Mikhailenko type and standard finite difference formulations, the above produces 
accurate results when compared to other exact computational methods such as numerical 
integration. 

 


