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ABSTRACT

Time-lapse vertical seismic profile data was obtained near Violet Grove, Alberta,
using an array of eight 3-component geophones at depths between 1497 m to 1640 m.
Baseline data were recorded in 2005 and the monitor recorded in 2007. Analysis of
rotation angles was undertaken for both surveys, resulting in differences of less than 2°
for 54.2% in Line 2 and 85.9% in Line 3. Rotation angles were found to be more
consistent at offsets greater than about 500 m. NRMS analysis gave averages of 61.4%
and 45.3% for horizontal components, and 42.8% and 41.4% for the vertical component.
Predictability analysis showed averages of 0.72 and 0.83 for horizontal components and
0.83 and 0.86 for the vertical component. In addition, traces were examined visually, and
showed good qualitative repeatability. Since the receivers were cemented into place, the
greatest effect on the repeatability was judged to be from small differences in the source
locations between surveys, and differences in noise.

INTRODUCTION

The Pembina CO; monitoring pilot has produced a wealth of interesting information
regarding many geophysical and geological concepts, including CO, sequestration time-
lapse geophysics. Over the course of this pilot, CO, was injected into the Cardium
Formation in the Pembina oil field near Violet Grove, Alberta. A vertical seismic profile
was recorded in an observation well 1650 m deep, using eight 3-component geophones
placed roughly every 20 m starting at 1498 m depth (Hitchon, 2009). In this report, the
Phase I (acquired in March 2005) and Phase III (acquired in March 2007) VSP data are
studied for a repeatability analysis. This analysis includes the raw data of all three
components, as well as examination of the calculated orientation angles for all
geophones.

STUDY AREA

Out of several potential sites for a CO, monitoring pilot, the Pembina oilfield (Figure
la) was judged to be the most promising. This oilfield is just over 100 km southwest of
Edmonton and its major pool, in the Cardium, is the largest conventional oil pool that has
been discovered in Western Canada (Hitchon, 2009). The seismic surveys consisted of
three 2D lines: two parallel, east-west trending lines (Lines 2 and 3) and a north-south
line (Line 1); the source used for all lines was dynamite. It should be noted that the data
for Line 1 was corrupted and could not be used in this study. Furthermore, an additional
line (Line 6) was acquired during Phase III. The geometry for this survey, including the
location of the observation well 07-11-048-09WS5, is shown in Figure 1b. The raw z-
component data are shown in Figure 2 (Phase I) and Figure 3 (Phase III). In addition,
some of the raw x and y-component data are shown side-by-side in Figure 4 (Phase I) and
Figure 5 (Phase III).
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FIG. 1. (a) Location of study area, in the Pembina oilfield. Figure from Dashtgard et al. (2006). (b)
Acquisition geometry showing source locations and the well position; Line 2 and Line 3 are
examined in this study.
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FIG. 2. Raw z-component geophone data with agc applied for Line 2 of Phase | for (a) receivers
1-2, (b) receivers 3-4, (c) receivers 5-6 and (d) receivers 7-8.
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Trace: Number

left corner of each trace. X-component is shown in blue and y-component is shown in red. Data

FIG. 4. Raw x and y-component for Line 2 of Phase [; receiver numbers are indicated on the top
was decimated to show every fourth shot.
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Trace Nurber

component is shown in red. Data was decimated to show every fourth shot. Note that receiver 6

needed to be rescaled due to the strong noise present in the y-component.

FIG. 5. Raw x and y-component data from 0.4 to 2 seconds for Line 2 of Phase IllI; receiver
numbers are indicated on the top left corner of each trace. X-component is shown in blue and y-
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GEOPHONE ROTATION
Methods

Analysis was undertaken on the horizontal components of the data in order to
determine the geophone orientation in the well. This was performed using the equation

2XQY

tan 20 = Yox—rar’

(1)

where ® is a zero lag cross-correlation operator, X is the windowed x-component data
and Y is the windowed y-component data (DiSiena et al., 1984). In order to determine a
window, first breaks needed to be picked; in this case, they were picked on the x-
component data. Window lengths of 50 ms, 100 ms and 200 ms were tested, but for the
purposes of this study only the results using the 100 ms window will be shown. Code was
written based on equation (1) using the code from McArthur (2004) as a starting point.

Another common method used for finding geophone rotation is through the use of
hodograms. Although analysis was performed using only the method described above,
sample hodograms are shown in Figure 6. From these examples, it is clear that data from
shots close to the well show more irregularity in their shape than the far offset shots.
Examining the data quality of the x and y components, shown in Figure 5, illustrates the
relationship between raw data quality and hodogram quality.

Consistency within surveys

Using the x and y-coordinates of each shotpoint, and using the x and y-coordinates of
the well, source-receiver azimuths (65) were calculated. In order to judge the consistency
of each survey, the calculated geophone rotation angles were also converted into
azimuths; Figure 7 shows histograms of these results. Except for receivers 4 and 6, the
mean geophone azimuths were generally within about £2°. When only the farther offsets
(those greater than 500 m) are examined (Figure 8) the dispersion decreases dramatically;
this is an intuitive result, as farther offsets should contain more horizontal energy in
general. Interestingly, while the standard deviations of the far offset angles are much
lower, the mean values remain close to the mean values of the complete datasets (Table
1), given that both Line 2 and 3 (and thus the complete range of source azimuths) are
considered.
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FIG. 6. Hodogram examples from Phase lll, using a window of about 100 ms from the first
breaks; shot 2106 (left) is a far offset and shot 2191 (right) is a near offset. Geophone 1 (a) had
better data quality than geophone 2 (b), which is evident when examining the scatter of the

hodograms.

CREWES Research Report — Volume 22 (2010)



Borehole geophone repeatability experiment

Table 1. Means and standard deviations of geophone orientation angles for Phase | and Phase
I, using all data and only far offsets.

Phase | Phase Il

Receiver Mean (°) Standard Deviation (°) Mean (°) Standard Deviation (%)

Offsets All Far All Far All Far All Far
1 134.4 134.2 4.1 1.0 135.5 135.2 6.2 5.4
2 246.6 246.2 2.2 0.89 243.5 2415 7.8 8.637
3 143.9 143.0 1.6 0.46 143.0 143.0 1.9 0.64
4 134.3 134.1 4.8 16 105.6 N/A 67.3 N/A
5 257.7 257.2 3.4 15 258.5 255.6 10.8 4.7
6 316.5 317.2 2.6 1.1 279.8 N/A 52.0 N/A
7 190.7 190.0 4.6 2.2 190.4 189.9 3.9 2.0
8 90.3 90.2 4.4 2.6 90.4 89.0 4.2 2.4

Average 3.4 14 19.3 4.0

The increased reliability of the far offset data can be seen clearly when the geophone
azimuths are plotted against the source-receiver offset (Figures 9 and 10). Note that the
source locations nearer to the well have much more scatter than those beyond about 500
m. Another interesting trend that can be seen is that geophone depth generally correlates
to the offset required for consistent angle measurement. For example, geophones 1 and 2
appear to be approaching a stable angle faster than geophones 7 and 8. For Phase I,
results were quite consistent within each line, and still fairly consistent between the two
lines. For Phase III, however, some problems are evident. The noise on geophones 4 and
6 causes the angle calculations to become meaningless, exhibiting essentially only the
trends of the well-shot azimuth; in addition, Line 2 seems to have a little bit of extra
scatter compared to Line 3, especially for geophones 2 and 5.
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FIG. 7. Histograms of the calculated geophone azimuths; results include both lines. Phase | is
shown in blue and Phase lll is shown in green. Bin sizes were based on Phase | calculations.
Dashed lines indicate means; Phase | is red and Phase lll is dark yellow. Note that the Phase I
means for receivers 4 and 6 are significantly different due to the high-amplitude noise on these
geophones.
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FIG. 10. Calculated geophone azimuths vs. source-receiver offset for Phase Ill. Line 2 is in blue
and Line 3 is in red. All plots except 4 and 6 show a window of +/- 8° centered on the mean; this
highlights the inconsistency of these two receivers.
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Repeatability between surveys

Geophone azimuth comparisons between the Phase I and Phase III data were focused
on individual shots. Figures 11 and 12 show orientation azimuth differences for each
geophone; Table 2 catalogues the percentage of measurements that fall within various
ranges.
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FIG. 12. Orientation azimuth differences for individual geophones (Line 3).

The results of the angle differencing are generally quite encouraging, especially those for
Line 3. Closer analysis reveals that for Line 3, all but two of the geophones (4, at 1558.7
m, and 6, at 1599.7 m) are quite reliable and fall consistently within 5 degrees of error —
this is only the case for half of the geophones in Line 2 (Table 2). If receivers 4 and 6 are
ignored, the number of measurements within 2° improves to 54.2% for Line 2 and 85.9%
for Line 3.
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Table 2. Percentage of angle differences falling within 2, 5 and 10 degrees.

Line2 Line3

Receiver Within 2° Within 5° Within 10°  Within 2° Within 5° Within 10°

1 61.8% 88.2% 92.1% 55.7% 97.1% 100.0%
2 26.3% 42.1% 60.5% 97.1% 100.0% 100.0%
3 92.1% 94.7% 94.7% 92.9% 100.0% 100.0%
4 2.6% 6.6% 18.4% 1.4% 1.4% 2.7%
5 10.5% 30.3% 61.8% 85.7% 100.0% 100.0%
6 1.3% 2.6% 7.7% 0.0% 1.4% 5.7%
7 75.0% 94.7% 94.7% 88.6% 100.0% 100.0%
8 59.2% 93.4% 96.0% 95.7% 100.0% 100.0%

Average 44.1% 56.6% 65.8% 64.6% 75.0% 76.1%

REPEATABILITY
Methods

There were two main repeatability metrics used in this study: nrms repeatability and
predictability. Nrms repeatability is defined as (Kragh and Christie, 2002)

200xRMS(at—bt)

NRMS = RMS(as)+RMS(bt)’

2)

where a, and b, are the two input traces, the RMS operator is defined as

th 2
RMS(xp) = |2 3)

t; and 1, are the start and end times of the input window, and N is the number of samples
in the window. For nrms, lower values generally correspond to better repeatability; the
theoretical value that should be computed for complete noise is v2, which is roughly
1.41, or 141%. (Kragh and Christie, 2002)

Predictability is defined as (Kragh and Christie, 2002)
_ Y Pap(T)XPgp (1)
PRED = Z‘I’aa(":)x‘bbb(":)’ (4)

where @, is the crosscorrelation between traces @, and b,, using the time window ¢;-,.
This metric will give higher values for more repeatable data (Kragh and Christie, 2002).
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Only the zero lag values of the crosscorrelations will be considered in this report. The
time window used for both metrics spanned the entire trace.

Horizontal component repeatability

In general, the repeatability on the x-component was slightly better than that of the y-
component (Table 3). Similarly to the rotation data, Line 3 generally seems to have better
repeatability than Line 2; in addition, it is quite evident which geophones recorded the
poorest data during Phase III. It can be seen, upon individual examination of the
receivers, that the average repeatability of Line 2 is being affected heavily by a few
specific traces, whereas the average repeatability of Line 3 is much more consistent. This
is quite noticeable if the data are plotted (Figures 13 and 14). Ignoring the x-component
of receiver 4 and the y-component of receiver 6, the nrms average for both components
drops to 61.4% for Line 2 and 45.3% for Line 3; the predictability rises to 0.72 for Line 2
and 0.83 for Line 3.

Table 3. Average nrms repeatability (NRMS) and predictability (PRED) values for the horizontal
components of each geophone.

Line 2 Line 3
Receiver Average NRMS Average PRED Average NRMS Average PRED
Component X Y X y X y X y
1 26.8% 48.6%  0.96 0.78 | 42.4% 48.7%  0.86 0.81
2 29.2% 167.5% 0.94 0.04 40.1% 57.7% 0.87 0.73
3 23.7% 23.4%  0.97 0.96 | 41.7% 40.2%  0.86 0.87
4 153.5% 24.8% 0.00 0.96 |178.6% 42.6% 0.00 0.86
5 155.8% 157.3% 0.10 0.09 | 50.1% 54.2%  0.79 0.76
6 24.0% 197.1% 0.97 0.00 41.0% 164.6% 0.86 0.00
7 83.0% 293%  0.55 094 | 46.5% 42.2%  0.83 0.85
8 31.6% 34.5% 0.93 0.91 445%  40.7% 0.84 0.87
Average 65.9% 85.3% 0.68 0.59 60.7% 61.4% 0.74 0.72

If this repeatability analysis is compared directly to the orientation angle analysis, it
might be logical to assume that the same trends would be evident; interestingly, however,
this is not quite the case. Two good examples of this are receivers 3 and 8. In both cases,
the repeatability metrics indicate that Line 2 has better repeatability over Line 3, while
the angle differencing indicates the opposite. Another contrast is between receivers 1 and
5 in Line 3: the repeatability metrics suggest that receiver 1 is more repeatable, but angle
differencing clearly contradicts this.
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FIG. 13.

(bottom).
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FIG. 14.

(bottom).
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Vertical component repeatability

Repeatability of the vertical component was overall better than either of the horizontal
components. Values in Table 4 show that Line 2 shows better repeatability for all but two
of the receivers (1 and 5). This is an improvement over both the x and the y-component
data, which each had three bad receivers. Line 3 repeatability is much more consistent
between all three components, providing differences within about 7% in nrms values and
within 0.05 in predictability values. Once again, the better consistency of Line 3 is more
evident when examining plots of the data (Figure 15). Ignoring receiver 2 changes
average nrms to 42.8% for Line 2 and 41.4% for Line 3, and improves average
predictability to 0.83 for Line 2 and 0.86 for Line 3.

Table 4. Average nrms repeatability (NRMS) and predictability (PRED) values for the vertical
component of each geophone.

Line 2 Line3

Receiver Average NRMS Average PRED Average NRMS Average PRED

1 49.5% 0.79 44.2% 0.86
2 151.9% 0.00 192.0% 0.00
3 24.5% 0.96 41.2% 0.87
4 39.9% 0.86 44.3% 0.84
5 108.4% 0.34 42.4% 0.86
6 25.4% 0.96 39.6% 0.88
7 26.0% 0.95 40.8% 0.87
8 24.5% 0.96 37.1% 0.90
Average 56.4% 0.73 60.3% 0.76

Trace overlaps

While nrms repeatability and predictability provide a useful and quantitative measure
of repeatability, seismic interpretation is visual in nature and as such a more visual,
qualitative approach is also useful. Code was developed in MATLAB to compare the two
phases of data by plotting the traces on top of each other; this allows for a direct visual
comparison between corresponding traces. Figure 16 shows recordings of all three
components at shotpoint 2191, taken in a time window from 450 — 900 ms. There are
many cases where the traces line up nearly perfectly, however subtle differences are
noticeable. For example, the first breaks in the z-component show generally higher
amplitudes in the Phase I data then they do in the Phase III data.
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FIG. 15.

(bottom).
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DISCUSSION

Overall, repeatability of the raw VSP data showed that there were some issues related
to noise. These problems were partially due to hardware problems with the receivers in
Phase III acquisition; these issues resulted in the complete loss of data for three out of
twenty-four possible traces. Furthermore, strong noise was introduced to two more traces
that were quiet in Phase I. However, even if the effects of these five traces are ignored, it
still results in somewhat low repeatability values for this survey. Studies, such as Cantillo
et al. (2010), show that the factor which most strongly affects repeatability metrics is the
difference in source positioning; since the geophones were cemented into the well (and
therefore receiver positions are constant) it can be inferred that the negative effects on the
repeatability metrics are almost completely due to small changes in source positioning,
source coupling, and changes in the subsurface. CO, movement in the subsurface is
expected to affect repeatability, although the extent of this is not clear at this time.

Due to the fact that only five of the geophones had useable data in all three
components, processing has only been done on the vertical data (Daniels, 2008);
however, despite the poorer data quality of the horizontal components, it would be
interesting to see what a full processing flow can obtain in terms of converted wave data.
In addition, once the data are processed, stacked and migrated, the repeatability is
expected to show improvement.

The results from the geophone orientation calculations are more encouraging. The
agreement here is quite good between surveys, especially in Line 3. While these results
agree with the other repeatability metrics in the better consistency of Line 3, they do
occasionally have opposite trends — the reasons for this are not clear at the moment, but it
does present a potentially interesting topic for future investigations. The relationship
between azimuth scatter, offset and receiver depth is interesting, and could have
implications regarding ideal acquisition geometry in the case of 3-component VSP
surveys.

CONCLUSIONS

e Repeatability of the Violet Grove VSP dataset was found to be of medium
quality when considering all the raw data.

e Receivers 2, 4 and 6 each had severe problems with one of their components
during Phase I1I, meaning that only five of eight geophones yielded good data
on all components in both surveys.

e Within surveys, angle calculations using offsets greater than 500 m were
shown to be much more consistent that those using near offsets. However,
when the full range of source locations were considered, the mean values
calculated for geophone azimuths did not significantly change when the near
offsets were excluded, suggesting that statistical analysis of this parameter is
fairly reliable across all offsets.
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e Repeatability in rotation, ignoring receivers 4 and 6, showed that 54.2% of
Line 2 shots and 85.9% of Line 3 shots were within 2° between surveys, and
that the mean azimuth values generally had less than a 1° difference.

e Nrms repeatability of working horizontal components averaged to 61.4% for
Line 2 and 45.3% for Line 3, while predictability was 0.72 and 0.83
respectively.

e For functioning vertical component data, the nrms for Line 2 and 3 averaged to
42.8% and 41.4% with predictability of 0.83 and 0.86, giving better and more
consistent results than the horizontal component data.

e Visual examination of traces showed subtle differences in all three
components, but overall showed close correlation between Phase I and Phase
III data.

e The strongest negative effect on the repeatability was interpreted to be
differences in source locations and differences in noise, since receiver
positions were held constant between surveys.

FUTURE WORK

Only the raw data were examined in this study. For future studies, the data will be
taken through a full processing flow, ideally making use of all three components, and
repeatability re-examined. In addition, the relationship between receiver depth and angle
consistency will be examined, and differences in the data will be used to try and image
movement of CO; in the subsurface.
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