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Converted wave processing in the EOM domain 

Thais A. Guirigay and John C. Bancroft 

ABSTRACT 

A new approach for converted wave prestack migration and velocity analysis has been 
developed.  That is based on the consideration of prestack migration by equivalent offset 
and common scatter points (CSP).  During the process, a converted wave velocity Vc was 
estimated from the hyperbolic moveout on a CSP gathers.  Moveout (MO) correction and 
stacking complete the prestack migration.  The intent of this paper is to see what 
additional uses can be made with Vc. 

Converted wave CSP gathers are formed by summing all input traces at the equivalent 
offset migration.  A limited converted wave CSP (LCCSP) gather can be formed if we 
assume Vc replace Vp and Vs.  Vc is valid only for zero offset data, however we can extend 
its application when there is an acceptable small error in the estimated traveltime. 

For a given trace with and acceptable time error, there may be still considerable trace 
energy to form a reasonable LCCSP. 

INTRODUCTION 

Reflection seismic exploration has been concerned predominately with P-wave energy 
for many reasons that include: compressional waves arrive first, they have high signal-to 
noise ratios, usually particle motion that is close to rectilinear, are easily generated by a 
variety of sources, and propagate in fluid. Because many basins are or will be soon in 
mature stage, we need the development of new technologies, and converted shear wave 
seismic exploration is one of them. Converted wave exploration refers to a downward-
propagating P-wave, converting on reflection at its deepest point of penetration to an 
upward-propagating S-wave.  

Multicomponent seismic recording (measurement with vertical- and horizontal-
component geophones and possibly a hydrophone or microphone) captures the seismic 
wavefield more completely than conventional single-element techniques.  

In this paper, we describe the principle of converted waves and the resulting seismic 
processing proceedures. Then, we explain the Kirchhoff prestack migration which is 
based on the equivalent offset migration (EOM). Then, we define EOM and the principle 
of P-S prestack migration by equivalent offset, and discuss the effect of using a single 
velocity Vc to create a gather with limited offset. 

CONVERTED WAVES 

Converted wave are usually data have a P-wave source, convert to S-wave at a 
reflector, and then recorded at the surface as a S-wave.  These P-S surveys use 
conventional sources, but require several times more recording channels per receiving 
location and some special processing. The data quality of modern P-S sections approach 
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and in some cases exceeds the quality of conventional P-P seismic data (Steward et al, 
2002).  

P-S surveys were proposed and tried in the late 1970’s and their processing 
fundamental in the 1980’s to early 1990’s. P-S surveys had not been implemented widely 
in hydrocarbon exploration in the past. Some reasons are: a) there were few 
multicomponent sensors available, b) challenging logistics in planting and cabling them, 
and c) the limitation in the recording equipment that requires three time the normal 
channels per station. Also, design and processing software were not commercially 
available and the data was difficult to interpret because few S-wave velocity logs had 
been acquired. All these limitations have now been overcome.  

P-S design and processing software exists, geophones and recording channels are 
available, there are less logistical difficulties, S-wave logging is more commonly 
acquired, interpretative software is available and there are impressively successful case 
histories. 

Converted waves have more applications than conventional P-wave, which includes 
structural imaging, lithologic estimation, anisotropy analysis, subsurface fluid description 
and reservoir monitoring. In addition, they are relatively inexpensive, broadly applicable, 
and an effective way to get S-wave information. (Stewart et al., 2002). 

Converted wave overview 

The reflection/refraction/transmition of acoustic waves has been visualized as a simple 
geometry problem following Shell’s law and a partitioning of energy between the 
reflected /transmitted energy across an interface between two media of contrasting 
acoustic properties. In an elastic medium, the problem is more complex, because it 
involves mode-conversion from P- to S wave, or S- to P-wave associated with both the 
reflection and refraction process. 

Figure 1 shows the simplest elastic case of a P-wave striking a horizontal interface 
between two elastic solids. Four different waves are generated as result of the interaction 
of a single P-wave with the interface: a reflected P-wave, a reflected mode-converted SV-
wave, a transmitted/refracted P-wave and a transmitted/refracted S-wave. 
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FIG. 1. Partitioning of energy into different waves types upon reflection and refraction. Reflected 
and refracted waves when a P-wave propagating in a solid and intersecting an interface to a 
different solid. Taken and modified from Tatham et al., 1998 

In the case when the initial medium is liquid, there is no reflected/mode-converted S-
wave, because liquid does not support S-wave propagation. Therefore, only three waves 
leave the interface: a reflected P-wave, a transmitted/refracted P-wave and a 
transmitted/refracted S-wave. This situation is common in marine acquisition. (Tatham et 
al., 1998) 

Figure 1 shows an incident ray as a P-wave at θ1 from the vertical and the reflected or 
mode-converted S-wave ray at an angle φ. The two angles are related by Shell’s Law: 

 
ୱ୧୬ ఏభ௏೛భ = ୱ୧୬ ఏమ௏೛మ = ୱ୧୬ ఝ௏ೞభ = 𝑝,  (1) 

where θ1 is the P-wave angle of incidence, φ is the S-wave angles of reflection, θ2 is the 
P-wave angle of refraction, Vp1 and Vs1 are the P- and S-wave velocities for the first 
medium, Vp2 is the P-wave velocity for the second medium,  and  p is the ray parameter. 

From Figure 2 it is possible to observe some characteristics of P-S converted wave 
reflections that make them different and of particular interest compared to P-P wave 
reflections traditionally used in seismic exploration. Vs is lower than Vp, φ is lower than θ, 
therefore, S-wave leaves the interface closer to perpendicular than P-wave does. 

 Due to different P and S velocities, the ray path geometry of the two types of 
reflections are different. When dealing with converted waves, the same reflection point 
for different sources and receivers is known as the common conversion point (CCP), 
since this is where the P energy is converted into shear energy. This reflection point is no 
longer at the common midpoint (CMP) between the source and receiver that we use in P-
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P reflections. Furthermore, the CCP for P-S reflections is depth-dependent, even for 
horizontally layered media, such that, traditional processing techniques must be modified 
for this new geometry.  

Converted wave processing consideration 

Stacking is the sum data with the same reflection point. For P-P data, this point is 
midway between the source and the receivers.  Stacking technique for common reflection 
data is usually used in reflection seismology to attenuate multiples and random noise, and 
to estimate the subsurface velocity distribution. The application of this technique to 
converted waves of P-S type is not as simple as for P-P or S-S reflections, which have 
symmetrical ray paths. The path for a converted wave is asymmetrical (as shown in 
Figure 3), even for a simple, horizontal layered medium, and the conversion point is not 
midway between sources and receivers. (Tessmer, et al., 1988) 

Figure 3 shows some schematic raypaths, converting at various reflectors. The vertical 
dotted line at the left, is the midpoint, where all these rays reflect for P-P reflection. The 
dashed line at the right is the asymptotic approximation given by the conversion point at 
infinite depth. 

Converted waves staking requires a common conversion point to be computed. The 
sorting of traces with a CCP depends on the depth of the reflector and the ratio Vp/Vs. For 
a single, horizontal, homogeneous layer, if the source-receiver offset is small relative to 
the depth of the conversion point, a first-order approximation for the location k of a CCP 
from the source point can be computed from a simplified relation: 

 𝑘௔௦௬௠௣ =  ଶ௛ ଵା൬ೇೞೇ೛൰ , (2) 

where 2h is the source-receiver offset (Tessmer et al., 1988).  Binning base in equation 
(2) is called asymptotic CCP binning. This asymptotic CCP algorithm is simple and fast. 
It is only a first-order approximation of the true conversion point. 

 



EOM converted wave 

 CREWES Research Report — Volume 22 (2010) 5 

 

FIG. 2. A converted wave (P-S) reflection at its common conversion point (CCP) compared to a 
pure P-wave reflection at its common mid-point (CMP). Taken and modified from Stewart et al., 
2002 

  

FIG. 3. Schematic diagram for 2-D common conversion point (CCP) binning. Taken from Wang, 
1997 

To obtain focusing for a single reflector at an arbitrary depth, the conversion point 
coordinate k must vary with depth. The conversion point of a single horizontal reflector 
can be calculated as a function of the reflector depth z and the velocity ratio Vp/Vs for a 
given offset h. Tessmer et al., 1988 explain depth-variant CCP method binning more 
accurate but this method is very time consuming.   
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The ratio of compressional and shear-wave velocity Vp/Vs, defined as γ, is: 

 𝛾 = ௏೛௏ೞ . (3) 

Its value depends on physical assumptions, such as vertical homogeneity and/or 
isotropy. 

Because the angles of incident and reflected vary considerably with depth, we can 
simplify the case for deep and shallow reflectors. 

Case (1) Deep reflector: 

When we consider a deep reflector, the angle of incident is very small, and we can 
approximate sin θ~θ, as in Figure 4a. In this case, the equation (1) can be write as  

 
ఏ೔ఏೝ =  ௏೛௏ೞ =  𝛾. (4) 

From the geometry, 

 tan 𝜃௜ =  ௞௭ , (5) 

and 

 tan 𝜃௥ = (ଶ௛ି௞)௭  . (6) 

Using the approximation for small angles, tan θ~sin θ~ θ, we get: 

 𝑘 = ଶ ௛ ఊଵା ఊ  , (7) 

for γ=2,  

 𝑘 =  ସଷ  ℎ. (8) 

Case (2) Shallow reflector: 

For the shallow case, we can assume θi to be almost 90°, then from the equation (1) 
we can get:  

 
ଵୱ୧୬ ఏೝ =  γ, (9) 

or Sin θr =1/ γ.  

From the geometry, 

 tan 𝜃௥ =  ଶ௛ି௞௭  , (10) 

or 
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 𝑘 = 2ℎ − 𝑧 tan 𝜃௥, (11) 

For γ=2, Sin θr ~1/2. Therefore, θr =30° and  

 k ~ 2 h . (12) 

 

 

FIG. 4 Case (a) for deep reflector. (b) for shallow reflector 

From equations (8) and (12) we get the solution for k, the distance for converted 
common point from the source.  This distance varies according with the depth of the 
interface.  

Kirchhoff Prestack Migration concepts 

The purpose of migration is to construct an image of the subsurface from seismic 
reflection data. Prestack migration is a direct process that moves each input sample into 
all the possible reflection positions, and invokes the principles of constructive and 
destructive interference to recreate the actual image. All traces are searched to find 
energy that contributes to the output sample.  

Kirchhoff prestack migration is based on a model of the subsurface as an organized set 
of scattered points. The model assumes that energy may come from a source located 
anywhere on the surface to all receivers. The location of energy on a recorded trace is the 
total travel time along the ray path from the source down to the scatter point and back up 
to the receiver. Kirchhoff prestack migration assumes an output location, and then sums 
the appropriate energy from all available input traces. 

The surface position of a vertical array of scatter points is referred to as the common 
scatter point (CSP) location. The collection of all input traces that record energy from a 
given scatter point is referred as the migration aperture. 

2h= x
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θi θr
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k
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From the raypaths showed in Figure 5, the traveltime t is estimated by the adding the 
time from the source to the scatter point ts and time from the scatter point to the receiver 
tr,  or 

 𝑡 = 𝑡௦ + 𝑡௥. (13) 

 

FIG. 5. Geometry for Kirchhoff prestack time migration with source S and receiver R. The total 
travel time is the sum of source to scatterpoint time ts and the scatterpoint to receiver time tr. 
Taken from Bancroft et al. 1998. 

From the geometry, the total or two-way, travel time can be computed from:  

 𝑡 = ൤ቀ௧బଶ ቁଶ + (௫ା௛)మ௏೘೔೒మ ൨ଵ/ଶ ା ൤ቀ௧బଶ ቁଶ +  (௫ି௛)మ௏೘೔೒మ ൨ଵ/ଶ
, (14) 

where x is the location of the source-receiver midpoint (MP) relative to the scatter point 
(SP) located at x=0, and Vmig is the RMS migration velocity evaluated at t0.  The time 
t0=t(x=0, h=0) is the two-way zero-offset time and to is defined from the data. We can 
defined  

 𝑧଴ = ௧೚௏ೌ ೡ೐ଶ  . (15) 

The equation (14) is known as the double square root (DSR) equation and defines the 
traveltime surface over which the Kirchhoff summation or integration takes places. 
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EQUIVALENT OFFSET MIGRATION 

The equivalent offset is defined by converting the DSR equation (14) into an 
equivalent single square root or hyperbolic form (Bancroft et al., 1998). This can be 
reformulated by defining a new source and receiver collocated at the equivalent offset 
position E as illustrates Figure 6. For convenience, the CSP gather is located at x=0. The 
equivalent offset he is chosen to maintain the same traveltime from equation (13): 

 t = 2tୣ =  tୱ +  t୰. (16) 

This travel times can be written as: 

  2 ൤ቀ௧బଶ ቁଶ +  ௛೐మ௏೘೔೒మ ൨ଵ/ଶ = ൤ቀ௧బଶ ቁଶ + (௫ା௛)మ௏೘೔೒మ ൨ଵ/ଶ ା  ൤ቀ௧బଶ ቁଶ +  (௫ି௛)మ௏೘೔೒మ ൨ଵ/ଶ
. (17) 

This equation may be solved for the equivalent offset he to get: 

 ℎ௘ଶ =  𝑥ଶ +  ℎଶ −  ൬ ଶ௫௛௧௏೘೔೒൰ଶ
. (18)  

The equivalent offset is a quadratic sum of the distance x between the CSP and the 
CMP, and h, the source-receiver half offset. 

 

 

FIG. 6. Equivalent offset he is defined as the offset from the surface to a collocated source-
receiver having he same traveltime as the original source-receiver. Scattered energy from all 
source pairs lies along the hyperbola at their equivalent offset. Taken from Bancroft et al., 1998. 
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Equivalent offset migration forms prestack migration gathers, called scatter points 
(CSP) gathers. Reflection energy in the gathers is hyperbolic with RMS type velocity. 
(Bancroft, 1995) 

After the CSP gathers have been formed, the filtering, scaling, and time shifting, 
collapse the energy on the CSP gather to zero offset to form a prestack migrated trace. 

The gathers have high fold and offsets that can be greater than the maximum source-
receiver offset. This high fold improves the resolution of velocity analysis over 
conventional CMP gathers. After velocity analysis, NMO and stacking completes the 
prestack migration. EOM result will be the same result as prestack Kirchhoff time 
migration, but with shorter run times. The method is easy to implement, and uses the 
current processing algorithm such as velocity analysis. (Bancroft, 1995) 

Converted wave migration using EO concept 

Converted wave processing assumes the downward propagating energy is a P wave 
and reflection energy a shear wave. This S-wave is recorded with 3 component receivers; 
proving additional information of the subsurface. The processing methods start with the 
DSR equation (14) or (17), with the appropriate P and S velocities for each leg of the ray 
path, as illustrate in Figure 7. 

From equation (13) and using the concepts of prestack time migration and RMS 
velocities for both, the P-wave and S-wave energy, the travel time is defined by: 

 t = ൤ቀ୲బ౦ଶ ቁଶ + ୦౩మV౦ష౨ౣ౩మ ൨ଵ/ଶ +  ൤ቀ୲బ౩ଶ ቁଶ +  ୦౨మV౩ష౨ౣ౩మ ൨ଵ/ଶ ,  (19) 

where Vp-rms and Vs-rms  are the respective RMS velocities for P and S waves. The vertical 
zero offset time are t0p and t0s. The distances hs, and hr are shown in Figure 7. We now 
replace t0p and t0s by z0, stating with the average velocities 

 𝑧଴ =  ௧బ೛    ௏೛షೌೡ೐ଶ =  ௧బೞ    ௏ೞషೌೡ೐ଶ  . (20) 

Replacing t0 by z0, we get:  

 𝑡 = ቈ൬ ௭బ ௏೛షೌೡ೐൰ଶ + ௛ೞమ௏೛షೝ೘ೞమ ቉ଵ/ଶ +  ൤ቀ ௭బ௏ೞషೌೡ೐ቁଶ + ௛ೝమ௏ೞషೝ೘ೞమ ൨ଵ/ଶ . (21) 

 𝑡 = ଵ௏೛షೝ೘ೞ ቈ൬௭బ ௏೛షೝ೘ೞ ௏೛షೌೡ೐ ൰ଶ + ℎ௦ଶ቉ଵ/ଶ + ଵ௏ೞషೝ೘ೞ  ൤ቀ௭బ  ௏ೞషೝ೘ೞ௏ೞషೌೡ೐ ቁଶ +  ℎ௥ଶ൨ଵ/ଶ
. (22) 

The same travel-time t for the equivalent offset he is given by: 

 𝑡 = ଵ௏೛షೝ೘ೞ ቈ൬௭బ ௏೛షೝ೘ೞ ௏೛షೌೡ೐ ൰ଶ + ℎ௘ଶ቉ଵ/ଶ + ଵ௏ೞషೝ೘ೞ  ൤ቀ௭బ  ௏ೞషೝ೘ೞ௏ೞషೌೡ೐ ቁଶ + ℎ௘ଶ൨ଵ/ଶ
. (23) 

We now assume 
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௏೛షೝ೘ೞ௏೛షೌೡ೐ ≈ ௏ೞషೝ೘ೞ௏ೞషೌೡ೐  ≈  ௏ೝ೘ೞ௏ೌ ೡ೐  , (24) 

 

 

FIG. 7. The raypaths and travel time for a scatter or conversion point. 

then 

 z଴ෝ =  z଴ V౨ౣ౩V౗౬౛  . (25) 

We can rewrite equation (23) as 

 𝑡 =  ଵ௏೛షೝ೘ೞ ට𝑧଴ෝ ଶ + ℎ௘ଶమ + ଵ௏ೞషೝ೘ೞ ට𝑧଴ෝ ଶ + ℎ௘ଶమ
 , (26) 

or 

 𝑡 = ൬ ଵ௏೛షೝ೘ೞ + ଵ௏ೞషೝ೘ೞ൰ ට𝑧଴ෝ ଶ + ℎ௘ଶమ
 . (27) 

This equation can also be written as 

  

 𝑡 = ଶ௏೎షೝ೘ೞ  (𝑧଴ଶ +  ℎ௘ଶ)ଵ/ଶ,   (28) 

where Vc-rms is defines as 
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 𝑉௖ି௥௠௦ =  ଶ௏೛షೝ೘ೞ௏ೞషೝ೘ೞ௏೛షೝ೘ೞ ା௏ೞషೝ೘ೞ =  ଶ௏೛షೝ೘ೞ(ଵା ఊ)  . (29) 

The equivalent offset he can then be defined as: 

 ℎ௘ଶ = ௧మ௩೎మଶ − 𝑧଴ෝ ଶ. (30) 

From the equation (30), the equivalent offset he is a function of travel time t, and is 
also velocity and depth-dependent.  

An equivalent offset method of migrating converted wave migration has been 
developed and works successfully.  During this process we estimate a converted wave 
velocity Vc from the hyperbolic moveout on a CSP gather.  Moveout (MO) correction and 
stacking completes the prestack migration.  We obtain Vc from equating the zero offset 
traveltimes with the original offset traveltimes. 

 
ଵ௏೛   ට𝑧଴ෝ ଶ + ℎ௦ଶ +  ଵ௏ೞ   ට𝑧଴ෝ ଶ + ℎ௥ଶ  =  ൬ ଵ௏೛ + ଵ௏ೞ൰ ට𝑧଴ෝ ଶ + ℎ௘ଶ = ଶ௏೎   ට𝑧଴ෝ ଶ + ℎ௘ଶ, (31) 

where, he can also be redefined as  

 ℎ௘ଶ =  ௏೎మ ସ  ቆ ଵ௏೛   ට𝑧଴ෝ ଶ + ℎ௦ଶ + ଵ௏ೞ   ට𝑧଴ෝ ଶ + ℎ௥ଶ ቇଶ − 𝑧଴ෝ ଶ. (32) 

Extending the use of the converted wave velocity Vc 

The velocity Vc is used to apply moveout correction on the converted wave CSP 
gathers.  Is it possible to ignore Vp and Vs and simply use Vc as a velocity for the entire 
input data. We know that 

 𝑡௣ି௦ =  ଵ௏೛   ඥ𝑧଴ଶ + ℎ௦ଶ +  ଵ௏ೞ   ඥ𝑧଴ଶ + ℎ௥ଶ, (33) 

and now we define time tVc assuming constant velocity of the media Vc,  

 𝑡௏௖ =  ଵ௏೎   ඥ𝑧଴ଶ + ℎ௦ଶ +  ଵ௏೎   ඥ𝑧଴ଶ + ℎ௥ଶ. (34) 

How close is tVc to tps? Given sh x h= + and rh x h= − , and if we assume either x= 0 

or h= 0, then  or 0h x Vct t= = . For all other conditions,  

  or 0h x Vct t≠ ≠ . (35) 

However, can we tolerate a small error in tVc, say 5 ms or 10 ms that will allow us to 
collect near offset traces into a gather for velocity analysis. Note, the reflected energy of 
the converted wave is zero when the offset is zero.  If so, we may get enough traces into a 
limited converted wave CSP (LCCSP) gather to quickly and accurately estimate Vc.  If 
this is possible, our goal is to identify the range of h, hΔ , given an x value, and the range 
of x, xΔ  given an h value for an acceptable LCCSP gather.  
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Figure 8 was created to illustrate the error z that can be expected for offset ranges h, 
and depth z. This figure also illustrated the error as a function of depth and offset.  

 

FIG. 8. Error time for different source-receiver half offset h (from 0 to 200 m), in increment of 20 
m for constant velocities. Vp=4000 m/s, Vs=2000 m/s, distance between the CSP and CMP x=100 
m.  

From the equation (32), he varies with the trace geometry hs, and hr, but also varies 
with depth 𝒛𝟎ෞ𝟐 and the velocity Vc(zo), as Vp can also be a function of depth 𝒛𝟎ෞ𝟐. 

We now ask what are the limits on he for the two cases as the depth tends to zero or to 
infinity. 

The asymptotes of he at the first usable sample is heα. At large time, t tends to heω. 

We want to know the limiting behaviors of the curves at both limits (z0→0 and z0→∞) 
from equation (31), they are: 

Case z0→0: 

Substituting (29) in (32) he  can be defined as:  

 ℎ௘ఈ =  (௛ೞାఊ௛ೝ)ଵାఊ , (36) 

details are shown in Appendix A. 

Case z0→∞: 

Substituting (29) in (32): 
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 ℎ௘ఠଶ =  ଵ (ଵାஓ)మ  ቀ  ඥ𝑧଴ଶ + ℎ௦ଶ +  γ  ඥ𝑧଴ଶ + ℎ௥ଶ ቁଶ −  𝑧଴ଶ. (37) 

The expression (1+x)1/2 can be written as 

 (1 + 𝑥)ଵ/ଶ = 1 + ௫ଶ − ௫మ଼ + ௫యଵ଺+ …  (38) 

When x is very small,  

 (1 + 𝑥)ଵ/ଶ  ≈  ቀ1 + ௫ଶቁ.    (39) 

Substituting (39) in (37) allows he to be defined as: 

 ℎ௘ଶ =  ൫௛ೞమାఊ௛ೝమ൯ଵାఊ  , (40) 

details of definitions are shown in Appendix 2. 

These two asymptotes function define the range of offsets from the samples in the 
input trace. 

Using the values, Vp=4000 m/s, Vs=2000 m/s, the distance between the CSP and CMP 
x=100 m, and source-receiver half offset h= 50 m, the equivalent offset he is between 
83.33 m (case z0→0) and 95.74 m (case z0→∞). Figure 9 shows a CSP gather with one 
trace, with values specified above.  

 

FIG. 9. Equivalent offset for constant velocity Vp=4000 m/s, Vs=2000 m/s, x=100 m, h=50 m 

The Figure 10 shows he curves at different CSP surface locations, calculated using the 
equation (30). Using the values, Vp=4000 m/s, Vs=2000 m/s, the distance between the 
CSP and the CMP x= from 200 to 2000 m with increment of 200 meters, and source-

0 20 40 60 80 100 120 140 160 180 200
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

CSP location (m)

T
im

e
  t

(s
e

c.
)

CSP gather with one trace, x = 100, h = 50



EOM converted wave 

 CREWES Research Report — Volume 22 (2010) 15 

receiver half offset h= 200 meters. Note how the equivalent offset tends to the asymptotic 
values as t increases. Also, how he starts at different t with increment of x.  

 

FIG. 10. Equivalent offset for constant velocity Vp=4000 m/s, Vs=2000 m/s, x=200-2000m, 
h=200m. 

We now assume a vertical array of scatterpoints at depth z from 0 to 1000 m that are at 
a spatial location of x = 0.  A range of mid-point locations are located to the left and right 
of this vertical array, with distance x., i.e. x = -1000 to 1000 m.  We then assume a fixed 
value for a half-offset hcon.  Two-way traveltime were then computed to and from the 
scatterpoint as a function of x and z, i.e., ( ), , cont x z h h= .  This was repeated for tVc and 

the plots are shown in Figure 11, where hcon was chosen to be 50 m. 

 

 

a)                                                                     b)    

FIG. 11. Travel time for one vertical array of scatterpoints at x = 0, with a) the true traveltimes and 
b) the traveltimes computed assuming a constant converted wave velocity for h = 50m.  
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With a half-offset of 50 m, the difference in the two traveltimes is difficult to view, so 
the following plot shows the difference in traveltimes, and the magnitude of the 
difference in traveltimes.   

 

 

a)                                                                    b)    

FIG. 12. Travel time differences with a) the actual time and b) the magnitude value of the 
traveltime. 

We can see in Figure 12a that the traveltime error ranges from -15 ms to 
approximately +15 ms.  If we limit the absolute traveltime difference in Figure 12b to a 
maximum of 10 ms, then the data in traces that have geometry in the blue hue could be 
used.  Figure 12a illustrates there is an opposite polarity of the time error.  Stacking traces 
with an opposing time differences will lower the frequency content of these traces, but 
will not introduce a time shift bias in the data.  Consequently, a larger time difference, 
say 20 ms, may be usable. 

The absolute traveltime is plotted below in a plan view with the colour defining the 
absolute time difference, in Figure 13.  The dimensions of this plot are in space and depth 
(x, z) representing the location of the midpoint and the depth of the scatterpoint for a 
fixed source-receiver offset hcon.  These coordinates are not convenient for evaluating a 
LCCSP gather.  We remap the data first to two-way time to and scatterpoint in time in 
Figure 14, and then to time and equivalent offset in Figure 15.  Figure 15 now represents 
the location of energy on a CPS gather and we can see where the limited offset data will 
lie.   
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FIG. 13. Plan (or map view) of the absolute value of the traveltime difference. 

 

 

FIG 14.  Traveltime error plotted as two-way time and depth. 
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FIG. 15. Traveltime error plotted as two-way time and equivalent offset. 

The following Figure 16 shows the travel time errors on CSP gathers views of various 
offsets of h = 50, 100, 200, and 500. 

 

a)                                                                    b)    

 

c)                                                                    d)    

FIG. 16.  Traveltime difference on a CSP gather for various half offsets h equal to: a) 50 m, b) 
100 m, c) 2000 m, and d) 500 m.   Note that the values on the time scale vary for each figure. 
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The previous figures assume the source is on the left and the receiver is on the right.  
The converted wave ray-paths are asymmetrical and produces an image that is 
asymmetrical about x = 0.  Swapping the source-receiver locations will reverse the 
equivalent offsets.  A center spread acquisition system will produce LCCSP gathers with 
opposite polarities of the traveltime difference that will tend to sum to zero and remove 
any bias in the gather. 

A limiting value for the time difference could be equal to half the size of the positive 
part of the wavelet peak.  Equal half shifts in the opposite direction may tend to cancel 
the wavelets. 

Useable convert time 

Converted wave CSP gather are formed by summing all input traces (within the 
migration aperture) at the equivalent offset.  We now form a limited converted wave CSP 
(LCCSP) gather assuming a single velocity Vc define in equation (29).  This equation is 
only valid for zero offset data, however we desire to extend its application when there is 
an acceptable error τ in the estimated traveltime.   

Assume that we are given the geometry of a trace, x, and h, relative to the location of a 
given LCCSP gather.  With an acceptable τ, we want to find the start time ts, at which we 
will start to copy the remainder of the trace into the gather. 

From equation (31), we derive the depth of a scatterpoint zf  that correspond to the 
time error τ. 

 𝑧௙ = ൤൫௛ೞమା௛ೝమି௞భమ൯మିସ ௛ೞమ  ௛ೝమସ௞భమ ൨ଵ/ଶ
, (41) 

where k1 is defined as  

 1

2

1
pV

k
τ
γ

=
−

, (42) 

details are shown in Appendix C. 

From the depth zf, we can then compute the true traveltime of tf using equation (31), 
then the equivalent offset using  

 

1
2 2 2

2

4
c f

ef f

V t
h z

 
= −  
 

. (43) 

The trace can then be summed into the LCCSP gather, starting at time tf with 
equivalent offset hef.  These traces do have a limited offset, and the range of the 
equivalent offsets in the following samples may be assumed to be the same of hef.  This 
remains to be evaluated. 

The following Figure (17) contains traveltime differences that were created for h = 
100 and at a higher resolution.  In addition, the first useable times tf  were computed as 



Guirigay and Bancroft 

20 CREWES Research Report — Volume 22 (2010)  

above and plotted as “+” signs for a limiting time of τ = 20 ms.  Note the correspondence 
with the colour contour for 0.02 s. 

The useable data in the traces appears to be quite large for a τ = 20 ms.  However, 
even for a smaller time difference, there may still be considerable trace energy to form a 
reasonable LCCSP gather. 

 

FIG. 17  Traveltime difference on a CSP gather for various half offsets  for h equal 100 m, 
overlain with symbols computed for  τ= 20 ms. 

CONCLUSION 

Converted wave prestack migration by equivalent offset is based on the principles of 
Kirchhoff migration and uses equivalent offset to form limited converted CSP (LCCSP) 
gathers. 

The DSR equation for prestack migration can be reformulated with an appropriate P 
and S velocities for each leg of the ray path. Using relation between these two velocities, 
a converted wave velocity can be estimated from the hyperbolic moveout on the CSP 
gathers. 

An acceptable time error may be defined to form a LCCSP gather by assuming a 
constant converted wave velocity.  The intended application is to rapidly form a LCCSP 
gather to provide an initial velocity model for converted wave prestack migration using 
the equivalent offset method. 

The range of acceptable data is dependent on the P-wave velocity and an assumed S-
wave velocity.  However, the gather formed is independent of those velocities, and a 
more accurate S-wave velocity (or γ) is estimated. 
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APPENDIX A 

Starting with the definition for the equivalent offset equation (32), we have 

 ℎ௘ଶ =  ௏೎మ ସ  ቆ ଵ௏೛   ට𝑧଴ෝ ଶ + ℎ௦ଶ + ଵ௏ೞ   ට𝑧଴ෝ ଶ + ℎ௥ଶ ቇଶ − 𝑧଴ෝ ଶ. (A-1) 

When z0→0 

 ℎ௘௭బ→బଶ =  ௏೎మ ସ  ൬௛ೞ௏೛   +  ௛ೝ௏ೞ   ൰ଶ
, (A-2) 

if Vc is defines as 

   

 𝑉௖ =  𝟐 𝑽𝒑𝟏ା𝜸, (A-3) 

and Vs is defined as 

 𝑉௦ =   𝑽𝒑𝜸 , (A-4) 

then 

 ℎ௘௭బ→బଶ =  ௏೛మ (ଵାఊ)మ  ൬௛ೞ௏೛   +  ఊ ௛ೝ௏ೞ   ൰ଶ
, (A-5) 

therefore 
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 ℎ௘௭బ→బଶ =  ଵ (ଵାఊ)మ  (ℎ௦ +  𝛾ℎ௥)ଶ, (A-6) 

and finally 

 ℎ௘೥బ→బ =  (௛ೞା ఊ௛ೝ)ଵାఊ . (A-7) 

 

APPENDIX B 

Starting with the definition for the equivalent offset equation (33), we have 

 ℎ௘ଶ =  ௏೎మ ସ  ቆ ଵ௏೛   ට𝑧଴ෝ ଶ + ℎ௦ଶ + ଵ௏ೞ   ට𝑧଴ෝ ଶ + ℎ௥ଶ ቇଶ − 𝑧଴ෝ ଶ . (B-1) 

When z0→∞ 

 ℎ௘௭బ→ಮଶ =  ସ ௏೛మସ(ଵାఊ)మ  ൬ ଵ௏೛ (𝑧଴ଶ + ℎ௦ଶ)ଵ/ଶ +  ఊ௏೛ (𝑧଴ଶ + ℎ௥ଶ)ଵ/ଶ൰ଶ − 𝑧଴ଶ, (B-2) 

 ℎ௘௭బ→ಮଶ =  ଵ(ଵାఊ)మ  ൫(𝑧଴ଶ + ℎ௦ଶ)ଵ/ଶ + 𝛾 (𝑧଴ଶ + ℎ௥ଶ)ଵ/ଶ൯ଶ − 𝑧଴ଶ. (B-3) 

The expression (1+x)1/2 can be written in this way: 

 (1 + 𝑥)ଵ/ଶ = 1 + ௫ଶ − ௫మ଼ + ௫యଵ଺+ …  (B-4) 

when x is very small,  

 (1 + 𝑥)ଵ/ଶ  ≈  ቀ1 + ௫ଶቁ,    (B-5) 

therefore 

 ℎ௘௭బ→ಮଶ =  ଵ(ଵାఊ)మ  ൬𝑧଴ ቀ1 + ௛ೞమ௭బమቁଵ/ଶ + 𝛾 𝑧଴ ቀ1 + ௛ೝమ௭బమቁଵ/ଶ൰ଶ − 𝑧଴ଶ, (B-6) 

 ℎ௘௭బ→ಮଶ =  ଵ(ଵାఊ)మ  ቆ𝑧଴ ቀ1 + ௛ೞమଶ௭బమቁ + 𝛾 𝑧଴ ቀ1 + ௛ೝమଶ௭బమቁቇଶ − 𝑧଴ଶ, (B-7) 

 ℎ௘௭బ→ಮଶ =  ଵ(ଵାఊ)మ  ቆ𝑧଴(1 + 𝛾) +  ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁቇଶ − 𝑧଴ଶ, (B-8) 

ℎ௘௭బ→ಮଶ =  ଵ(ଵାఊ)మ  ൬𝑧଴ଶ(1 + 𝛾)ଶ +  2𝑧଴(1 + 𝛾) ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁ + ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁଶ൰ − 𝑧଴ଶ, (B-9) 
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 ℎ௘௭బ→ಮଶ =  ௭బమ(ଵାఊ)మ(ଵାఊ)మ + 2𝑧଴ (ଵାఊ)(ଵାఊ)మ ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁ + ଵ(ଵାఊ)మ ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁଶ − 𝑧଴ଶ, (B-10) 

   

  

 ℎ௘௭బ→ಮଶ =  𝑧଴ଶ +  ଵ(ଵାఊ) (ℎ௦ଶ + 𝛾ℎ௥ଶ)  + ଵ(ଵାఊ)మ ቀ ௛ೞమଶ௭బ + ఊ௛ೝమଶ௭బ ቁଶ − 𝑧଴ଶ , (B-11) 

and finally 

 ℎ௘௭బ→ಮଶ =  ൫௛ೞమାఊ௛ೝమ൯(ଵାఊ) . (B-12) 

  
APPENDIX C 

We desire to find the depth zf  for a given traveltime error τ.  Starting with equations 
(33) and (34), τ 

 2 2 2 2 2 2 2 2
0 0 0 0

11 11
s s

p
r

c
r

cs

z h z h z h
V

h
VV

z
V

τ = + + + − + − + , (C-1) 

then 

 2 2 2 2 2 2 2 2
0 0 0 0

1 1

2 2p s r s rV z h z h z h z hγ γτ γ += + + + +− + − + , (C-2) 

this is simplified to 

 2 2 2 2
0 0

2

1
p

s r

V
z h z h

τ
γ

+ − + =
−

. (C-3) 

Let 

 1

2

1
pV

k
τ
γ

=
−

, (C-4) 

then squaring equation (C-3) we get 

 2 2 2 2 2 2 2 2 2
0 0 0 0 12s r s rz h z h z h z h k+ + + − + + = , (C-5) 

then 

 2 2 2 2 2 2 2 2
0 0 0 12 2s r s rz h z h z h h k+ + = + + − . (C-6) 

Let 

 2 2 2
2 s rk h h= + , (C-7) 

 2 2 2
3 2 1k k k= − , (C-8) 

giving 
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 ( )( )2 2 2 2 4 4 2 2
0 0 0 3 0 34 4 4s rz h z h z k z k+ + = + + , (C-9) 

 ( )2 2 2 2 2 4 2 2
0 3 0 34 4 4s r s rz h h h h k z k+ + = + , (C-10) 

and finally 

 
4 2 2

2 3
0 2 2

2 3

4

4 4
s rk h hz

k k
−=

−
. (C-11) 

Using only k1 we have 

 
( )22 2 2 2 2

12
0 2

1

4

4
s r s rh h k h h

z
k

+ − −
= . (C-12) 

 
 

 

 


