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ABSTRACT

In this paper we review our 2009 discussion of direct inversif absorptive reflectivity,
discuss further the requirements for practical implem@&mnaand extend the results to at-
tenuating incidence media and more general attenuation lve the case that frequency-
dependent seismic field data anomalies, appearing in assocwith low-Q targets, have,
on occasion, been attributed to the presence of a strongpalveoreflection coefficient.
This “absorptive reflectivity” represents a potent, andyédy untapped, source of infor-
mation for determining subsurface rock mechanical proggrand may be of particular
relevance to, e.g., reservoir characterization. It woutttiikely be encountered where a
predominantly elastic/non-attenuating overburden islsaty interrupted by a highly atten-
uative target. Series expansions of absorptive reflectefficients about small parameter
contrasts and incidence angles can expose these anoroaieaysis, either frequency-by-
frequency (AVF) or angle-by-angle (AVA). Within this franverk, for instance, variations
in P-wave velocity and) may be separately estimated through a range of direct fasnul
both linear and with nonlinear corrections. The latter caméhe fore when a contrast
from an incidence mediurf) ~ oo (i.e., acoustic/elastic) to a target medidm~ 5 — 10
is encountered, in which case the linearized estimate may &eor by as much as 50%.
Algorithmically, it is a differencing of the reflection cdiglient across frequencies that sep-
arategy variations from variations in other parameters. This hédd$oth two-parameter
(P-wave velocity and)) problems and five-parameter anelastic problems, and wap#d
pear to be a general feature of direct absorptive inversion.

INTRODUCTION

The geophysics literature contains numerous reports glifrecy-dependent seismic
data anomalies associated with attenuating targets. Seseanchers have attributed these
to the presence of a strong absorptive reflection coefficighich, indeed, according to
wave theory, places a characteristic imprint on the datas fdpresents a potentially im-
portant source of information of direct relevance to, egservoir characterization. The
objective of the work presented here is to develop theaiatisight into the problem of ex-
tracting this information. We know in advance that, at Iéasthe case of constant density
an-acoustic media, the absorptive reflection coefficieist(gsed in theory by, e.g., White,
1965; Borcherdt, 1977; Kjartansson, 1979; Krebes, 198# &gal., 2004; de Hoop et al.,
2005; Borcherdt, 2009) can be used to determine, withinemtiapproximation, the param-
eter changes responsible for the reflection. This was esielol by reducing the general
absorptive inverse scattering problem to the case of iruefsr the properties of a single
interface (Innanen and Weglein, 2007). Here we examineitiggesinterface problem in
its own right, and in significantly greater detail. We dereange of formulas for the direct
estimation of target absorptive medium properties, botimgarized forms and with non-
linear corrections, given the reflection coefficient asst®d with a specific primary event
as input. Practically, this corresponds to situations imcWithe primary reflection from a
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target of interest can be identified and isolated, and it$earaind frequency-dependence
analyzed. Examples of these formulas were presented ath®mBAGE and SEG annual
meetings in 2010 (Innanen, 2010b,a).

An absorptive reflection coefficient can be analyzed mathieally by considering
either its frequency variations (i.e., AVF), or its anglaia#ions (i.e., AVA). Both have
been studied. Numerically, absorption-specific reflectioafficient variability has been
reported at large angles when synthetic viscoelastic data examined at fixed frequen-
cies (Samec and Blangy, 1992). And more recently, field datbility associated with
low-Q, fluid filled reservoirs has been attributed to “stronglygirency dependent” reflec-
tion coefficients (Odebeatu et al., 2006). This latter oletern appears to be supported by
other recent investigations and discussions (Chapman, &0&l6; Lines et al., 2008; Ren
et al., 2009; Quintal et al., 2009).

Therefore, and notwithstanding the variety of mechanisrasdould explain a frequency-
dependent reflection (Castagna et al., 2003), there apfmebessufficient evidence of ab-
sorptive reflectivity to warrant a theoretical study of timearse problem. We will em-
phasize in particular the issue of separability — if, and hitvis possible to determine
variations in multiple an-acoustic or anelastic mediumperties, including, occurring
simultaneously at a reflecting boundary. The key featureheproblem are captured by
examining the simple, absorptive reflection coefficientahhrises due to contrasts in P-
wave velocity and a nearly constant quality faatbrWe express the reflection coefficient
in terms of a variety of different plane-wave variables, axp it about small parameter
contrasts and incidence angles, and directly invert thesessto determine the properties
of the target.

The medium of incidence is here assumed to be acoustiatelast, with@ — oc.
This corresponds to problems in which attenuation is lowegligible in the overburden
above an absorptive target. The rationale for this choigetsthat an elastic or acous-
tic overburden transitioning to a highly attenuative tangedium is the most common
configuration of attenuating geological structures. Rattiee rationale is that it is un-
der these circumstances that the absorptive signatureéesést is strongest, and therefore
most likely to be measurable. Geophysically these conditmpuld be encountered when
characterizing a gas-saturated reservoir target, or aosedéirget. In a later section we
show parenthetically that, in the case in which attenuat@resent above the target, the
inversion equations retain similar forms.

We also consider a set of other reasonable deviations frenwb-parameter model,
examining each of (1) a general attenuation law (as oppasddet very specific nearly
constant) model we use), (2) the effect of variations in further partarse and (3) some
examples of and issues surrounding an extension of thesksrasthe anelastic case. The
aim will be to distinguish the general insights brought by tiwo-parameter problem from
algorithmic niceties necessary for any specific (and likatyre sophisticated) implemen-
tations of these inverse ideas.

The inversion methodology we will use is, in essence, a sfieglform of inverse
scattering. It represents a modification of a framework ties led elsewhere to direct
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acoustic and elastic target identification (Zhang and Wegk909a,b). In addition to the
added complication of absorbing media, in our approacterattan posing the full inverse
scattering problem, thereafter reducing to the case ofglesinterface, we begin with a
representation of the wave response of a single interfacethe reflection coefficient. The
costis a loss of generality and applicability to problemisimle of the AVF/AVA framework
of interest in this paper, but we benefit in that the formulasderived rapidly.

ABSORPTIVE WAVE EQUATIONS

Consider a wavefiel@,, propagating in a two-dimensional, homogeneous, souese-f
non-absorptive medium (medium 0, the medium of incidencediling to

, W
v _‘_? Po(flf,Z,uJ):O, (1)
0

and conside”; propagating in an absorptive medium (medium 1, the targelium® ac-
cording to

VQ—O—W—QQ (1—1-@) Pi(z,z,w) =0, (2)
c Q
where
Pl = - 2o (2], @

andw, is areference frequency. Equation (2) is consistent waintrarly-constan® model
reviewed by Aki and Richards (2002). Physically, these &gona describe acoustic and
an-acoustic waves propagating through media of constartitye Fourier transforming
equations (1)—(2) with respect toandz, we have

2
B4k = 4)
Co
and
2 F 2
k§+kf:i—2<1+$) , (5)

the first of which implies a range of possible relationshipsdad on plane wave geometry,
e.g.:

w

k, = —sin 4,
Co
(6)
k., = Y cos 0,
Co

wheref represents the plane wave angle measured away from théiairec positivez,
andk, andk, are the Fourier conjugates ofandz respectively.
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ABSORPTIVE REFLECTION COEFFICIENTS

If a plane wavePF, is incident upon a planar boundary, oriented perpendilyutarz
and separating medium O from medium 1, continuity of the fleld., pressure) and its
derivative across the interface requires that there beectifh coefficient

k. — k!

R:
k,+ k.’

(7)

which, because of equations (3)—(5), we anticipate to beptaxmn frequency-dependent,
and expressive of the an-acoustic properties of the targdtum in some hopefully useful
ways.

We will examineR at both normal and oblique incidence. In the latter caseetiwer
some room for choice in studying its behavior. For instaifdesquencyw is held fixed as
a parameter, we have one kind of angular behavior:

ccosh — [l +Q'F(w \/1—— + Q- 1F(w)] *sin? 6
R(w,@) — ) (8)
ccosl+co[l + Q1 F(w \/1——1—1—@ LF(w)]*sin® 0
whereas, i, is a parameter, thébehavior is modified:
ccos® —co[l + Q1 F.(0) \/1—— 1+ Q1F;.(0)] *sin?6
R(k.,0) = ——. O
ccosf+co[1 + Q1 Fi.(0) \/1—— + Q1F,.(0)] “sin? 0
where
1 1 ]{EZC()
Fi(0) = R log (wr cos@) - (10)

We will not use it in this paper, but furthermoreff is a parameter, we again discern a
slightly altered variability in R:

ccost — o [1 + Q1 Fr.(0)] \/ - ﬁ [1 + Q1 F,(0)] *sin®60

R(k,,0) = ;o (1)
ccost +co [l + Q1 Fy,(0) \/1 — S [14 Q 'Fy(0)] *sin®0
where
o 1 1 k‘xCO
Fial6) = 2 7 log (wT sin 9) ' (12)

The special cas¢ = 0 in equation (8) corresponds foat normal incidence.

The variation ofR with w, @, etc. above provides the information by which parameters
of interest will ultimately be determined. For this detemation to be possible, every
realizable set of target medium properties must generatgaeR(w, ). Both qualitative
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evidence that this is the case, and a sense of how the vasatidhe reflection coefficient
might be used to determine target propertiend(), may be derived from an examination
of plots of R. In Figure 1 we focus on the frequency dependende by settingd = 0, and
plotting R(w) for a range of targef) values, with P-wave velocities fixed at = 1500m/s
andc = 1600m/s. In the top left panel we observe that, especially at laes ofQ) (5-
100), the frequency-dependence of the real paft exhibits clear variability with targed
value. This is an early indication that relative differemaeR from frequency to frequency
might serve to distinguish one targ@tvalue from another. In contrast, in the top right
panel, we see that the distinction (at normal incidencey®enh one target P-wave velocity
and another must apparently derive from the absolute madgstof the real part ak. In
both cases the imaginary partBf(bottom panels) would appear to carry much less useful
information.

In Figure 2 the same variability is viewed in the forméofariations with a fixed depth
wavenumber:., using equation (9). The top row involvegaat one-fifth of its maximum
value (i.e.,k, = 0.1 for k, normalized such that mék,) = 0.5), and the bottom row
involves ak, at one-half of its maximum value (i.ek, = 0.25 for k., normalized such
that maxk,) = 0.5). In the top left and bottom left panel&(%., #) is plotted for a range
of target values. We again observe that the variationRowith 6 changes as targé}
changes, in particular at low values, and so we have the geegpectation that relative
AVA variations may be adequate, as the AVF variations wes@eans to determine a target
Q. In the right panelsR(k., 0) is plotted for a range of target P-wave velocity values. The
expected AVA signature of the P-wave velocity contrast sshle.

SERIES EXPANSIONS AND APPROXIMATIONSOF R

We consider three quantities embeddedithat are, from a geophysical point of view,
sometimes small, but not always. They are (1) angle of imade(2) the relative change
in P-wave velocity (from, to ¢), and (3) the relative change in the inverse quality factor
(from 0 to Q~'). As measures of the latter two we define

2

(13)

and as a measure of the first, we consifeas a function ofin? . The inversion scheme
used in the coming sections relies on series expansionseofeftection coefficients in
equations (8)—(9), in orders of these quantities.

In equations (8)—(11), we observe that, depending on thenpetrization, the presence
of dispersion can bring an additional level of complexitythie # dependence beyond the
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FIG. 1. Absorptive reflection coefficient R at normal incidence, as expressed in equation (8) with

6 =0, with Co

1500m/s. Left column: R for a range of frequency and @ values (c fixed at 1600m/s).

Right column: R for a range of frequency and c values (@ fixed at 10). Each fixed @ value produces,
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Innanen

Alternatively, if R(k., 0) is expanded only in the angle variations that occur absepedi
sion, we have instead the useful form

1 1 1 1
R(k..0) = Kiac - §sz(9)aQ) + (gai + Zng(mag) + ] (sin”6)”
1 1 1 1
* KZ“C B §sz<9>aQ) + (Zai — 5 Fie(0)acag + %Fﬁzw)aé) + ] (sin®6)"

" Ki - %szw)aQ) + (2 - Fie(®)acaq + ,fzw)aé) T } (sin? 0)°
_|_

17)
Equations (14) and (17) will be used to pose the main invekée &nd AVA problems;
in a later section we will alter these expansions to incaf®ralternatively, generalized
attenuation laws, as well as density variations and anelgisenomena. These are forward
modeling expressions: given incidence and target mediwpgpties, we fornu. andag
using equation (13), and substitute them into the aboveutasifor R. Truncating any
of these series expansions at first or second order in thengsea perturbations, we ob-
tain simple and straightforward approximations of the miten coefficients. For instance,

retaining terms in equation (17) that are linear in the patamperturbations and iin? ¢
results in the approximation

R(k,,0) ~ {(iac — %sz(ﬁ)aQ)] (1+ sin®9). (18)
In Figure 3 the accuracy of first and second order approxanatioR(%., ) is illustrated;
as one would expect, at large parameter perturbations agel damgles, the approximation
error of the first order approximation grows. This is techfictrue of the second order
approximation also, but the error is reduced and does net gignificantly until compar-
atively large angles are considered. Based in particulaherdifferences in accuracy
observable in transitioning from the middle row of Figurett3e(linear approximation) to
the bottom row (truncation after second order), we mighdoeably anticipate that second-
order effects will non-negligibly influence absorptive @ngion for targets witlf) < 50,
which is the@ range of interest in this paper. Hence, we will define as gastioinverse
objective the proper incorporation of the nonlinearitylod tlata-parameter relationship.

ABSORPTIVE AVF/AVA INVERSION

The forward problem we consider in this paper is the calautabf R over a range of
the variables:, andw (i.e., the Fourier conjugates of offset and time respelstivehich
may subsequently be transformed:tof as desired), given. andag. The inverse problem
is the exact or approximate determinatiorupfandag from values ofR over a range of
one or more of these variables. The inversion is referred @& or AVF, to correspond
to the respective use of angle or frequency as this variaBlgy time in the following
examples there are two parameters to be solved for, at lgastdata will be required, and
they will be produced by varying the values of either fregryeor angle and assuming that
R is available at these values. In any practical implemeontadf these formulas we would
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FIG. 3. Absorptive reflection coefficient R, in exact and approximate forms (using equation (9)
and truncated versions of equation (17) respectively), plotted over a range of oblique incidence
angles and target @ values, with ¢ =1500m/s and ¢ =1700m/s and fixed normalized &k, = 0.3. Left
column, from top to bottom: surface plots of exact, linear, and nonlinear (second order) approxima-
tions. Right column: extractions from left column, for fixed target @ = 10, in which the exact R is
represented with a solid line, the linear R with a dashed line, and the nonlinear (second order) R
with a bold solid line.

naturally use as many data as we had, and fit the parametéraméppropriate regression.
Here, since the objective is to gain theoretical insight ithte inverse problem, we will
assume exact data, in which case, since there are at mosarameters to solve for, we
will use at most two data. If the number of parameters becdangsr, sayV, a minimum
of N data are of course required.

AVF inversion at normal incidence

We will begin to treat the AVF inverse problem by considerangave field impinging
at normal incidence on a plane contrastiand@. Settingd = 0 in equation (14), the
requisiteR has the form

R(w) = (%ac - %F(w)aQ) + <%az + iF%w)aé) + ... . (19)

CREWES Research Report — Volume 22 (2010) 9
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This expression is inverted by forming inverse sengs= a., + a., + ..., andag =
ag, +aq, + ..., substituting them into equation (19), equating like osgand summing the
sequentially-determined components:;pfindag. Using R at two angular frequencies;
andw,, we obtain, at first order,

. R w1 R(WQ
toulnen) = =2 [F (w1) = Fws) ] (20)
B F(w) R(w1) — )R(w )
R B oy oy
and at second order
aQ, (wb w2) = AQlan + AQ2a’01 (21)
CLCQ (CUl, WQ> = Aclan + A02a017
where
Bg, = 3[F (@) + Fwn)]. Ag, =0, 22)

Acl = F(wl)F(wg), ACQ = —1

2

etc. Because of the relatively simple forms, we may alsotgubssthe explicit forms for
ag, etc. in equations (20) into the nonlinear corrections inadigus (21) to see what these
solution series look like explicitly in terms of the data (wil not do this for the remainder
of the paper):

ao(wr, ws) = —2 {F(wl) e } +2[F(wr) + Flws)] {R“‘“) - ﬁw)r ¥

(w2) Flwi) = F(ws)
(23)
and
_  Flw)R(wr) — F(wi)R(wa) |, Fw)F(ws)[R(wr) + R(ws)]”
ac(wr,ws) = — 4 Flay) — Flo) +4 [F(w1) — Fw)? (24)

R?(w)) F*(w1) + R*(w1) F?(w2)
[F(wi) — F(w2)]?

-8

Truncating these expressions at first order produces tlsoi(atove) inverse Born approx-
imation. We note that equations (20)—(24) use the contraglispersive properties at
the target to drive the inversion: evidently, only if the eetion coefficient varies with
frequency, does # 0.

In Figure 4 we illustrate the use of these formulas to inverttargetc and @), using
as input synthetically derived, exaét,values at normal incidence for an acoustic medium
(co =1500m/s) overlying an absorptive medium (with input1800m/s) =10). Target
medium properties are determined usigalues at pairs of frequencigs = w; /27 and
f2 = wy /27 ranging from 2-120 Hz. In the top left panel, the tar@etalue is recovered to
first order for each frequency pair; in the bottom left, tos®torder. In the top right panel,
the target P-wave velocity value is recovered to first ordethe bottom right, to second
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order. In addition to the significant increase in accuraoynffirst to second order, we note
that the spurious variation of the line@rinversion result with experimental variables (in
this case frequency), a characteristic of the inverse Bppnaximation, diminishes as order
increases. However, the second-order recovery of the R-walocity becomes unstable
near the diagonal corresponding to equal frequenfies f,: proximal frequenciesfi ~
f2) evidently affect the conditioning of the second order k&g of c. The explanation
for this is evident in equations (23)—(24). None of thesenigias should be expected to
operate correctly af; = f,, but, in the case of th€ perturbationa, at second-order
both the numerator and the denominator approach zero &gasif; — f,, which has a
stabilizing effect on the nearly-singular cases, wheradabe case of the P-wave velocity
perturbationa. only the denominator does. This behavior reflects the terydandirect
absorptive inversion for velocity to be determined throa@solute values of the reflection
strengths, and the quality factor through differenceg iacross frequencies.

12

¢ 1st order

Q 1st order

80

80
40 40
f, (Hz) f, (H2) f, (Hz) f, (H2)

Q 2nd order
¢ 2nd order

40
f, (Hz) f, (Hz) f, (Hz) f. (Hz)

FIG. 4. Target medium properties recovered over a range of frequency pairs, using exact synthetic
R values, generated using equation (8) with § = 0, as input for the AVF inverse formulas in equa-
tions (23)—(24). Exact model values are @@ = 10, ¢ = 1800m/s. All ¢/Q values in rank deficient cases
(i.e., where f; = f>) are interpolated over.

CREWES Research Report — Volume 22 (2010) 11



Innanen

AVF inversion at oblique incidence

The normal incidence formulas in equations (23)—(24) gaizer to oblique incidence
straightforwardly. This may be demonstrated within thedinregime for simplicity. Trun-
cating equation (14) at first order i, ag, andsin® §, we have

1 1
R(w,0) ~ (Zac — EF(w)aQ) (1+sin*6), (25)
which within this regime of approximation we may re-write as
1 1
R(w, ) cos® 0 = 7%~ §F(w)aQ. (26)

Hence, after correcting the reflection coefficient with aglardependent factatos? 6,
we recover essentially the same relationship leading tditiear inversion formulas in
equation (20). Fixing at a desired valué, available within the data, and again usiRat
two frequencies); andws,, we obtain

R(w1, 0y) cos? Oy — R(wy, B) cos? Oy
F(wi) — F(ws) }
F(wy)R(wy, 6y) cos® By — F(wy) R(ws, Bp) cos? by
Flwi) = F(w) } '

aq(wr,ws, ) ~ —2 [
(27)

ac(wy, wa, by) = —4 [

The second-order terms will have some differences at obligcidence, but the procedure
for determining them is unchanged.

AVA inversion

Variations ina. andag may also be determined by examining the angle dependence of
the reflection coefficient, although this simply makes imiptiather than explicit use of the
same frequency dependence. We begin with the expansiénioequation (17). Again
forming inverse series fat, andag, substituting, and equating like orders, we obtain the
formulas

Qe = Q¢y + Ay + ...,

(28)
ag = ag, + ag, + ...,
in which
2 R(k,,0,) R(k,,02)
0,,02) = — -
an( b 2) sz(él) — sz(eg) |i1 + SiIl2 91 1 + sin2 92 ’ (29)
a (9 9 ) _ 4 R<kzael)sz<62) N R(kmeQ)sz(el)
il Fio(61) — Fr(62) | 1 +sin?6; 1+sin%6, |’
and
aqQ, (917 92) = AQ1 azl + AQ2 (e, Q, + AQB a2Q17 (30)

ey (01, 02) = Ay a2 + A, acyag, + A, aél,

C1 “'cy

12 CREWES Research Report — Volume 22 (2010)
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etc., where
Ag, (0 9)—1 ! (tan? 0, — tan” 6,)
Q:1\V1, Y2 —4sz(91)_sz(92) an” vy an” o
1
AQ2(91, 92) = Fk (91) — Fk (92) [sz(eg) tan2 92 - sz(él) tan2 91]
1 1
AQ3(91792) = §Fk (91) —F, (92) [szz(el)(l + Qtan2 91) - szz(HQ)(l + Qtan2 92)]
(31)
and
1 1 9 9
Ac1 (91792) - 9 sz(el) — sz(92) [sz(eg)(]_ + tan 91) sz(el)(l + tan 92)]
1
A, (01,0;) = Fo0) — Folfs) [F2(01)Fr.(02) (1 + 2tan? 0)) — 2F.(61) F2.(62)(1 4 2 tan® 6,)]
2
Ay (01,0:) = F F tan® 0y — tan’6,).
03(917 2) sz(el) —sz(eg) kz(el) kz(92)( an 92 an 91)
(32)

Figure 5 illustrates these formulas in use with synthdiiaddrived, exact, reflection coef-
ficient values as input. The left column illustrates thedin@rget() value recovered over
a range of angle pairs (top) and the nonlinear correctiottgbg. The right column is
the corresponding recovered P-wave velocity (actual vadem/s). The actual targep
value is5. In general, the increase in accuracy from the first-ordegrsion result (top
row) to the result including the second-order correctioottiom row) serves to emphasize
the importance of incorporating the nonlinearity of theadparameter relationship, in the
presence of low) values. In this case the linear estimate is in error by rougabo.

We also observe a greater variability in accuracy acrossahge of angle pairs than
was evident in the AVF results of the previous section (indéés not difficult to devise
pathological examples using this particular formulas Whexhibit much more marked
instability). This is likely a reflection of the more diffiduseparation problem the AVA
approach poses. We are, in essence, forcing the frequeneyimas due ta) to express
themselves in the angle domain, in which there already®thstsignificant AVA signature
of a P-wave velocity contrast. The inverse problem is theligetl to undo this more
complicated mixture.

DEVIATIONSFROM THE TWO-PARAMETER VELOCITY/Q) MODEL

All inversion procedures, regardless of how complete, faeesame problem, namely
that in a given situation the wrong parameters are likelpdpasiolved for: acoustic param-
eters as opposed to elastic; isotropic elastic parameterp@osed to anisotropic; etc. In
this paper we err on the side of simplicity, the aim being taose the basic properties of a
perturbation-based, single-interface absorptive AVAFAViodeling and inversion scheme,
and, to be sure, the Earth will rarely behave exactly as neodey equations (1)—(2). As
a partial remedy for this, we will treat a representativecdeteviations of the Earth away
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FIG. 5. Target medium properties recovered over a range of angle pairs, using exact synthetic R
values, generated using equation (9), as input for the AVA inverse formulas in equations (28)—(30).
Exact model values are Q = 5, ¢g = 1500m/s and ¢ = 1800m/s, with fixed normalized k£, = 0.25,
roughly at the midpoint of the available wavenumber range. All ¢/Q values in rank deficient cases
(i.e., where 6, = 65) are interpolated over. First order (inverse Born) estimation of target ¢ and @
values (top) are compared against second order corrected values.

from the two-parameter model we have thus far considereé. pbint will be to provide

a sense of what is general about the formulas in the previectsos versus what is spe-
cial, thereby pointing an interested researcher towargs teaadapt the basic ideas we are
espousing to fit with a variant absorptive problem that magtideand.

General attenuation law

First we consider the possibility that a more general alisorgaw than that in equa-
tion (2) is required to adequately explain data variatiolise problem remains tractable,
but barely so. To see this, let us begin as we have before,thétiheflection coefficient
associated with a plane contrast in absorptive medium ptiepebut this time assume that
the propagation constant in the target medium, rather thanwc=1(1 + FQ™1), is

K = % +iv(w) + Hp ()], (33)
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wherev is a general frequency dependent attenuation coefficiah?#4r is the Hilbert
transform (Aki and Richards, 2002). At normal incidences tfeneral attenuation case
leads to a reflection coefficient of the form

1— 2@ —wile {iv(w) + Hlv(w)]}

M) = e o (i) + M@} 9

which, upon substitution of the perturbation quantities

_1_%
te=1-7 (35)
a, = w(w) + Hv(w)],
expands as
_ [, Lo la 1
R(w) = {4@0 2wa,,(w)} + [8% 1 u}acal,(cu) + 4w2ay(w) +.... (36)

From an inverse point of view, the key difference betweer gg@neral attenuation case
and the nearly-constail case (equation 2), is that the former has many more assdciate
unknowns (i.e., one coefficient for each frequency in a gigperiment) than the latter
(i.e., oneQ value).

Let us proceed as before, by forming inverse sefies= a,, + a,, + ... anda, =
a., + ac, + ..., and substituting these into equation (36). When we attéongeparate out
at first order the variability iR due toa,, that is, by solving
1 C
R(w) = Zaq - iam (w)v (37)
for a,,, the ill-posedness of the problem becomes apparent: a nkemoum is produced at
every frequency. To solve the problem we must bring furth@rmation to it. In fact, the
nearly-constant) case we have used in earlier sections is an example of dahthit, by
supplying a more complete initial specification of the madgipe. This renders the problem
well-posed. Prior information in the form of parameter \edumay also permit a solution,
a fact that is roughly in keeping with the conclusions of savstudies on the more general
absorptive inverse scattering problem (Carrion and VetWe&87; Innanen and Weglein,
2007). For instance, suppose further that at a certainameder frequencyy, for which
R(wy) = Ryret is measured, we know the attenuation coefficient;i = a,, (wo). In this
circumstance:, ~ a,,(w) in equation (38) may be solved for at any arbitrary frequency
with

(@) ~ 22 (Rt — R(w)] + (i) dref. (38)
Co Wo

In summary, for the case of a general attenuation coefficveittt some prior information
the problem remains technically tractable, which broadbasange of model types that
may be determined using absorptive reflectivity. Howeveme attractive features of the
two parameter law (or any absorption law with a specified feggy dependence), for
instance its overdetermined nature, are lost.
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Absor ptive incidence medium

The incidence medium has thus far been modelled as nonsatieg. If the overburden
is also attenuative, the reflection coefficient is a functwdnhis altered type of contrast
across the boundary, to wit, from an incideriggto a target). Let us briefly demonstrate
that the basic activity of the algorithm nevertheless remantact if the overburden is
absorptive, with only one of its ingredients, and the intet@tion of the computed,,
perturbation, in the final step when a targgtis being determined, needing change. If
absorption is included in the incidence medium throdggh and the reference frequency
w, is constant, the reflection coefficient at normal incidereeomes

-1
_ F(w) F(w)
1 g[1+ QHH QO}

R(CU) = 1 (39)
e Fw) Fw)
1+2 14 58] [14+ 5]
Defining
2
a. =1 %,
(40)
ap=1— @
Q Q )
and proceeding as beforB(w) expands about smaill. andag as
N 1 F(w) F(w) 1, 1F2(w) Fw)\* ,
R(w) = {Zac 5 00 (1 o ag| + gl +7 o 1 0 ag| + ... .
(41)
If we define a new functiod,,,, where
F(w) ( F(w))
E = 11— , 42
QR (UJ) QO QO ( )

containing only experimental variables and parameters ftte medium of incidence, as-
sumed known, we recover a mathematical framework indiatst@ble from the AVF in-
version in the acoustic reference case. Specifically, byimgehis replacement in equation
(41) and comparing the result to equation (19), we surmiagettie form of the inversion
equations (20)—(22) is in essence maintained, and, therdftat AVF/AVA inversion with
non-attenuating incidence media contains most of what ved teknow about the inverse
problem for both types of incidence media.

Notice, however, that because of the definitiomgfin equation (40), the limiQ, —
oo, which we might expect to reduce the equations to the previpan-attenuating inci-
dence medium) case, is not permissible. The consequena&ingtthis illegitimate limit
to modeling and/or inversion with equation (41) is that tef#lection coefficient will be
misinterpreted as being due to P-wave velocity contrastseallt is important to correctly
characterize the incidence medium at the outset of the sisalit should also be empha-
sized that to estimate aRl such as that in equation (39) from seismic data would require
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that the attenuation due to the overburden first be compeshéat In the discussion sec-
tion we include some additional comments on the reasons vellyave chosen to focus on
a non-attenuating overburden.

Anelastic target medium

An extension of the current methods to the full multicompdrenelastic problem is
beyond the scope of this paper, but within a simplified atielasvironment we may get a
preliminary sense of that result. We begin with the Zoegmguations, and consider so-
lutions generated using Cramer’s rule (e.g., Keys, 198®elconsider a plane P-wave (in
an elastic medium with P-wave velocity;,, S-wave velocitys,, and density,) obliquely
incident upon an anelastic boundary, the Zoeppritz egogtionodified to incorporate a
compressional quality factdp» and a shear quality fact@ps in addition to targety, 3,

p values, can be expressed in a simple matrix form and, uléipasolved for P and S
reflection coefficients. We have:

Rp
Rs |
A T | = b, (43)
Ts
where
X
|-y
b = 2BX(1 _ X2)1/2 ) (44)
1 —-2B%X?
-X —(1 — B2X?)1/2 CX —(1 — D2X?)1/2
A (1—X2)2 —BX (1—C2x2)2 DX

2B2X (1 - X%)Y2  B(1-2B*X?%  24D?X(1-C?X?)Y2  —AD(1-2D?*X?)
—(1-2B%X?% 2B2X(1 - B*X*»)Y2  AC(1-2D?X?)  2AD%*X(1— D?X?)'/?
(45)

X = sinf, and where the constantsthroughD, nominally containing elastic parameter
ratios, are modified as follows:

-1 —1
AL B:@,CZE{HE] ,D:BE{HE} . (@8)
Lo (%)) Qo Qp Bo Qs
where
Fo(w) = & — Liog [~ Fow) = & = Liog [ (47)
Pw—2 Wog ) sw—2 Wog W)

and where the quantities., andw,, are, respectively, P- and S-wave reference frequen-
cies. We will assume these reference frequencies are kngwio@ when we come to
consider the inverse problem.
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Next, we expand the elements.dfin equation (43) abouk = 0 (since both P and S
reflections are being considered, we expand akiau, notsin? #, as before). For instance,
A accurate to second orderdim § has the form:

-X —(1—3B*X?) CX —(1-3D°X?)
1—1X? -BX 1—1C?X? DX
2B’X (1-1X?)  B(1-2B2X?) 2AD?X (1-3C*X?) —AD(1-2D*X?)
—(1-2B°X?%) 2B°X (1—-iB?°X?)  AC(1—-2D°X?) 2AD?X (1-—3D?X?)
(48)

A ~

With the final aim of solving forRp and Rs in mind, we also form the auxiliary matrix
Ap by replacing the first column ofl with b, and the auxiliary matrix4ds by replacing
the second column aofl with b. Next, we express the factors C, and D in terms of
perturbations measuring the relative change in the fivenpaters across the boundary,
which we give the form:

Ao = 1— 04(2)/0427 ag = 1— 53/627 a, = 1-— pO/pa aQp = 1/QP7 aQgs = 1/@57 (49)
and substitute them into equations (46), to obtain:

A=1+a,+a+..

1 3 Fp
C=1+ Eaa — Fpag, + gai — 7aaaQP + Fﬁaép + ... (50)
1 3 F,
D=BRB (1 + 508~ Fsagg + ga% — ;aﬁaQs + Fgaés + ) .

When the above quantities are further substituted itol», and.Ag, their determinants
may be organized in increasing order in the five perturbation

detd = detd©® + detd® + detd® + ...,
detdp = detd)) +detd? + ..., (51)
detds = detdy) + detd? + ...,

where superscript;) indicatesi’th order in any combination of the perturbations in equa-
tion (49). We next use Cramer’s rule to generate series sgjones forRp and Rg, also in
increasing powers of the perturbations:

detdp

Rp = =L = detal}) + (detdl? — detAVdetd V) + . (52)
det4
and likewise
Ry = detd)) + (detdl — detddetd V) + ... (53)

where for any), dety = dety/detd®. Equations (52) and (53) are the anelastic ex-
tensions of equation (14), representing series formulaghi® approximation of the two
reflection coefficients associated with a plane elastic Pewacident upon an anelastic
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boundary. To evaluate the formulas we compute the necedstgyminants and organize
the results in orders of,, ag, a,, ag, andag,. An approximation accurate tdth order in
these perturbations requires three truncatiomstatorder: once in equations (50), again in
(51), and finally in (52)/(53) foiR o/ Rs. Explicitly, and accurate to second ordersin 6,
i.e., beginning with the approximation gf in equation (48), we have

RP(U), 9) = RP1 + RPQ + o (54)
where
Rp(w,0) =I'Saq +Thag +Ta, + T, a0, + I'haqs, (55)
RP2 <w’ 9) :Fga ai + Fgﬁ CL% + Ffp ai + FSPQP azQP + FSSQS aés
+ Fgﬁ anag + ng (a0, + FEQP a0 0Q, + FEQS Aa0Q (56)
P P P P
P P
+ FPQS ApaQs + FQPQS aQpaQs,
etc., and
Rs(w, (9) = Rsl + R52 + ..., (57)
where
Rs,(w,0) =T5aq + Tias + Ta, + T3 a0, + [ aqs, (58)
RS2 (w’ 0> :Fga ai + Fgﬁ CL% + Fip a?) + F%PQP aép + ngQs azQs
+ Fiﬁ anag + ng aaa, + FiQP Aa0Q, + FiQS 0 aQ (59)

S S s s

+ 13, aga, + '3, apaq, + g, asags + 10, apaq,
S S

+ FPQS apaQs + FQPQS AQpAQs,

etc. The coefficient§', which are generally functions &f w and incidence medium pa-
rameters, within the current approximation are providedppendix A.

In Figure 6, the coefficient® and Rs are plotted as functions éfand f = w /27 for
parameterg, = 2.1g/cn?, p = 2.1g/cm?, oy = 3000m/s, 0 = 3500m/s, B, = 1500m/s,
G = 1700m/s,Qp = 5, andQs = 5. Exact coefficients are in the left column, linear
approximations (i.e.Rp ~ Rp, and Rs ~ Rg,) are in the center, and nonlinear ap-
proximations accurate to second order in the perturbatjoes R ~ Rp, + Rp, and
Rs =~ Rg, + Rg,) are in the right column. In all cases, regimes of (small)l@@ge noted
where the approximations are accurate. In Figure 7, foants, extractions of the same
Rp andRg are plotted vs. angle (left column) for fixgd= 40Hz, and vs. frequency (right
column) for fixedd, = 11°.

Let us treat the inverse problem in the linear approximati@en, assumindg?p ~ Rp,
andRgs =~ Rg,, in which case we have
RP(W, 90) = Fg(@o)aa + Fg(@o)ag + Ff(@o)ap + ng (w, GQ)CLQP + ng (w, eo)CLQS,

Rs(w, 90) = Fg(eo)ﬁg + Ff(@o)ap + ng (w, QO)QQS.
(60)
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Taking differences of these coefficients for pairs of fragtiesw,; andw, permits thel) p
and(Qs perturbations to be solved for. Tlig; perturbation is solved for usings:

S Rg(wy,00) — Rg(wa, 6)
s I3, (w1,60) = T2 (ws, 600)

(61)

The @ p perturbation may then be solved for through the difference

Rp(wl, 60) — RP(WQ, 60) = [ng(wl, 90) — ng(u)g, ‘90):| aQp + [ng(wl, 60) — FSS(WQ, 60)] aQg,
(62)

from which, and using equation (61),

a _ RP(Wl, 60) - RP(M27 80) . FSS (CUl, 90) - FSS (CUQ, 60)
or TH, (w1, 00) = TE, (w2,00)  T§, (wi,60) — T, (w2, 0)

[Rs(wi,00) — Rs(ws, b))
(63)

It is proper to think of these linear estimatesugf, andag, as being functions ab;, w,,
anddy, since their accuracy in general depends on the specifiop#re full data set (in
this case, the full data seti&> andRs over the full frequency and angle range) being used.
In Figure 8 we observe the results of applying these linedriarmulas to synthetically de-
rived, exact, reflection coefficients. Some care is requir@thoosing angles. For instance,
our inverse formulas absent nonlinear correction rely enRh ~ Rp,, Rs =~ Rg, ap-
proximations being accurate, herttehould not be chosen too large. Howeves, = 0 at
0 = 0, hence ifY is chosen too small, the signal with which the shear paramsstanations
are carried out will be too low (although, judging from eqaat(63), this may be a conve-
nient regime in which to more straightforwardly estimate tbompressive parameters). The
angle used in Figure 8, = 11°, is also used here. In Figure @, and()s are recovered
for ranges of pairs of frequencies as before. Similar aciesaare noted in comparison to
the two-parameter AVF results produced in equations (2Q)-(

This may proceed for the other parameters by varyirgnd for higher orders also, as
we have illustrated in earlier sections. The core activitthie estimation of) perturbations
remains the frequency differencing of the reflection coigffits. In spite of the increased
complexity in terms of parameters and physical phenomeeaagain discern that the basic
data interrogation procedure seen in equation (20) is prede

DISCUSSION

The purpose of this paper is to discuss some of the prindigleretical features of the
direct inversion of a largely untapped type of seismic réiflég information: that associ-
ated with a rapid change from a predominantly elastic oweldruto a highly attenuative
target. The range of available formulas suggests thatngieeurate estimates of the reflec-
tion coefficient at an anelastic boundary, simultaneousitrans in multiple an-acoustic or
anelastic target parameters may be directly determined.

In spite of the theoretical nature of the development andlt®sve present, we are,
ultimately, interested in the application of the formulasaerive in this paper to field data.
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FIG. 6. The real parts of Rp and Rgs plotted for a range of angles and frequencies. Left column:
exact Rp and Rg, calculated using equation (43); middle column: Rp and Rg, accurate to first
order in the perturbations and sin? 6, calculated using linearly truncated versions of equations (54)
and (57); right column: Rp and Rg accurate to second order in the perturbations and first order in
sin? 6, calculated using second order truncations of equations (54) and (57).

This will require one of two steps beyond what we have preskimt this paper: either (1)
an extension of these results to accommodate a much mordicated Earth, such that
the seismic response is modelled (at least) as being duetdalasf homogeneous layers,
or (2) the extraction and isolation of an individual evemnfr a seismic data set, and an
estimation of its associated (absorptive) reflection coefiit. The first of these routes is,
of course, of interest and, if itis to be carried out usingpbation approach, requires the
solution of a more complete inverse scattering problems s been, and continues to be,
studied by ourselves and others (e.g., Carrion and Ver\¥88{; Ribodetti and Virieux,
1998; Innanen and Weglein, 2007; Mulder and Hak, 2009; lanaand Lira, 2010; Hak
and Mulder, 2010).

In this paper we are concerned with the second, more spaaiatiroblem, of analyz-
ing an isolated event which, through an interpretive stag, leen identified as a primary
reflecting from a likely attenuative target. Because vaones of R with frequency drive
the procedures, the local spectrum of an identified evehtneéd to be estimated. This is
not a straightforward task, but fortunately, a wide arraynatthods for determining these
spectra has been developed in recent years (e.g., Mardra9&; Margrave et al., 2003;
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FIG. 7. Real parts of Rp and Rg values extracted from Figure 6. Left column: Rp and Rgs plotted
as functions of angle for fixed f = w/27 = 40H z. Right column: Rp and Rg plotted as functions of
frequency f for fixed 8 = 11°. Exact coefficients are plotted as solid lines, first order approximations
as dashed lines, and second order approximations as bold solid lines.

Odebeatu et al., 2006), usually to facilitate nonstatiprsmismic processing. One such
approach which shows promise to this end has recently begiemented in multiple di-
mensions and used as a tool for seismic interpolation (Nagleh and Innanen, 2010). It
is currently being studied for its ability to extract locaflection coefficient spectra from a
seismic trace and/or section, thereby acting as a fronjpeggrocessing tool for inversion
of the type we have described here.

Absorptive AVF/AVA inverse procedures are possible onlgdaese of the dispersive
component of absorptive wave propagation, in particularttie purposes of this paper,
as it manifests in reflection coefficients. The role of dispmr in direct absorptive in-
version, both linear and nonlinear, in simplified enviromtsesuch as these, and in more
complete inverse scattering formulations, is criticalgheting it when beginning to pose
the absorptive seismic scattering problem can lead to, gstasther things, intrinsically
ambiguous inverse algorithms for reflection data (as pdiote by Mulder and Hak, 2009;
Hak and Mulder, 2010).
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FIG. 8. Recovered Qp and Qg values accurate to first order (actual values Qp = Qs = 5) using
exact synthetic Rp, Rgs values, calculated using equation (43), as input for the AVF inverse formulas
in equations (61) and (63), over a range of frequency pairs and with § = 11°. Left column: recovered
Qp, Qs values; right column: detail of same.

Procedures with AVF and AVA flavors, as well as mixtures of tlwve, have been ex-
amined. AVF is used in this paper to refer to any formula inckh®), Qp, or Qs are
determined with values aR, Rp, or Rs at different frequencies. The anelastic formulas
are considered to be in the AVF category, for instance, dveagh they were by necessity
carried out at oblique incidence. Indeed, if we had gone oastthese expressions to
further estimate the P-wave and S-wave velocity and depsitye target, different angles
would certainly have to have been used. We neverthelessdewsribese to be AVF for-
mulas; the term AVA is here reserved for problems in whichdispersion of the target
medium was expressed explicitly in terms of an angle vanati

Since( dominates in prescribing the AVF variability of the reflectistrength, whereas
it co-determines the AVA variability alongside the much marfluential P-wave velocity
(and other parameters in the anelastic case), thus leagliagrore sensitive separation
problem, it would appear that in posing an absorptive AVAerse problem we are unnec-
essarily complicating matters. The main reason we haveided AVA methods in this
paper is because they form a bridge between the theory ipdpsr and the more general
theories for absorptive inverse scattering. It has, att leathe past, been convenient to
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adopt angle) andk, as variables in linear and nonlinear inversion §pprofiles and for
posing(@ compensation: variation of data withis used to separate out the influences of
multiple parameters, and, the Fourier dual of depth, is varied to construct the spectr
of the profile and/or the operator for invergefiltering (Innanen and Lira, 2010). Our
auxiliary interest in the separability of absorptive paesens with a specified., coupled
with a wish to survey as many different approaches to thelpmolas possible, has led us
to pose the inversion both ways.

CONCLUSIONS

We have carried out a theoretical examination of a potdntialuable inverse proce-
dure, i.e., the direct estimation of absorptive medium progs from absorptive reflectivity
information. We are buoyed by the wave-theoretic predictiwmt low<) targets do indeed
imprint themselves in their corresponding reflection cogdfits, and further by the earlier-
referenced field studies and discussions suggesting s imprints appear at detectable
levels in our data. The result is a framework, analogous tOAYA based estimation of
acoustic or elastic target medium properties, in which tipuat are targef) (or ) and
Q) values, as well as P- and S-wave velocities, density, etc.

All linear and nonlinear absorptive AVF/AVA problems we leastudied have proven
tractable, provided the dispersion was given a functiomahfa priori (e.g., théog(w/w,)
term in the nearly-constai model). If the frequency dependence of the attenuation pa-
rameter is left as a freely-varying unknown, prior inforioatin other forms must be uti-
lized.

The AVF/AVA modes we have examined are: varyifRgw, 6) with w both at fixed
6 = 0 andd # 0, varying R(k., 0) with 6 at fixedk., and varyingRp(w, 0), Rs(w, §) with
w for fixed # # 0. The relative numerical stability of the results suggelséd tising the
AVF signature ofR explicitly, i.e., varyingw, is more robust than the AVA parametrization.

Nonlinear corrections would appear to be a key element ahtrexsion in the presence
of low-Q) targets. For instance, if the targ@tvalue is in the rangé-10, the linearized
estimate, depending on which data type and formula are uasatt] be in error by anywhere
from 10-50%. In addition to reducing the bulk error, the setorder correction “flattens”
the estimate when it is plotted over all pairs of frequencgrmgle, meaning, the variation
in accuracy of the results is lowered considerably. Needess, the linearized estimates
may often be more than sufficient to detect and roughly cheniae a fluid target.

As with the more general problem of absorptive inverse sdaty, the final aim is
to cast the problem in a suitably complete anelastic enwent, possibly coupled with
anisotropy. This step, and the problem of extracting witfiicgantly high fidelity the
spectrum of an identified reflection, remain what we condideprimary issues requiring
further analysis. Here we have lain some of the groundwarklévelopment towards this
end. In doing so we have demonstrated that certain propesfi@bsorptive AVF/AVA
inversion are apparently independent of the complexityhefrhodel type. In particular,
differencing of reflection strengths across frequency {(®mproxy in the angle domain)
evidently drives the procedure, whether in a two-paramateustic/absorptive physical
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setting or a five-parameter anelastic setting, and alsadbggs of whether the incidence
medium is attenuating or non-attenuating. We expect suokrgéties to remain as more
complete versions of these methods are developed.
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APPENDIX A: COEFFICIENTS OF EXPANSION OF ANELASTIC Rp AND Rg

The coefficients in the expansions in equation (56) are

«

1 , 1 , 1 .
e — Z(1+sin? 0), Tj =—-2B*sin’0, T} = 5(1—432 sin® ), ', = —§Fp(1+sm2 0),

1,1 1 1
Ihe =4FsB*sin®0, Th = —+-sin*0, 'y = B*(B-2)sin’0, I') =-—B <—

D2 . 2
st 1 1 B+B)sm8,

1 3
P FZ 22 P 22 102 P _ P _
FQPQP — P (1 1 SIII 9) 9 FQSQS — 2FsB (QB - 3) Sln 9, Faﬁ — 0, FOép — 0,

1
P .2 P p 2 .2 P _
FO(QP == _§FP Sin 6, FOCQS == O7 Fﬁp - B <2B - 1) S 6, FBQP - 0,
Ifos = 4B°Fs(1— B)sin®0, T, =0, 'Y, =2BFs(1—2B)sin*0, T'f . =0,
and the coefficients in equation (59) are

67

1
Iy =0, I'; = —Bsin6, rﬁ:—<3+5) sinf, Tg, =0,

3
'Y, =2BFgsinf, I'>, =0, I'j; = _ZB sinf, TS = —_sino,

1 1 1
S S 2 . S : S :
FQPQP — 0, FQSQS — _2BFS Sln@, Fa,@ — —4BSIH9, Fap — _4 (B 2) Slne?

1 1 1 1
s s . s _ . s .
Lo, =0, Togs = —§BF5 sing, '3, = 1 (B — 5) sint, 'z, = —QBFP sin 0,

. 1 . 1 '
['os = BFssing, T, = 1Fp(1—2B)sind, IS0s = 1 Fs(1=2B)sin, 9,0 =0.
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