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ABSTRACT

In this paper we review our 2009 discussion of direct inversion of absorptive reflectivity,
discuss further the requirements for practical implementation, and extend the results to at-
tenuating incidence media and more general attenuation laws. It is the case that frequency-
dependent seismic field data anomalies, appearing in association with low-Q targets, have,
on occasion, been attributed to the presence of a strong absorptive reflection coefficient.
This “absorptive reflectivity” represents a potent, and largely untapped, source of infor-
mation for determining subsurface rock mechanical properties, and may be of particular
relevance to, e.g., reservoir characterization. It would most likely be encountered where a
predominantly elastic/non-attenuating overburden is suddenly interrupted by a highly atten-
uative target. Series expansions of absorptive reflection coefficients about small parameter
contrasts and incidence angles can expose these anomalies to analysis, either frequency-by-
frequency (AVF) or angle-by-angle (AVA). Within this framework, for instance, variations
in P-wave velocity andQ may be separately estimated through a range of direct formulas,
both linear and with nonlinear corrections. The latter cometo the fore when a contrast
from an incidence mediumQ ≈ ∞ (i.e., acoustic/elastic) to a target mediumQ ≈ 5 − 10
is encountered, in which case the linearized estimate may bein error by as much as 50%.
Algorithmically, it is a differencing of the reflection coefficient across frequencies that sep-
aratesQ variations from variations in other parameters. This holdsfor both two-parameter
(P-wave velocity andQ) problems and five-parameter anelastic problems, and wouldap-
pear to be a general feature of direct absorptive inversion.

INTRODUCTION

The geophysics literature contains numerous reports of frequency-dependent seismic
data anomalies associated with attenuating targets. Some researchers have attributed these
to the presence of a strong absorptive reflection coefficient, which, indeed, according to
wave theory, places a characteristic imprint on the data. This represents a potentially im-
portant source of information of direct relevance to, e.g.,reservoir characterization. The
objective of the work presented here is to develop theoretical insight into the problem of ex-
tracting this information. We know in advance that, at leastfor the case of constant density
an-acoustic media, the absorptive reflection coefficient (discussed in theory by, e.g., White,
1965; Borcherdt, 1977; Kjartansson, 1979; Krebes, 1984; Lam et al., 2004; de Hoop et al.,
2005; Borcherdt, 2009) can be used to determine, within a linear approximation, the param-
eter changes responsible for the reflection. This was established by reducing the general
absorptive inverse scattering problem to the case of inversion for the properties of a single
interface (Innanen and Weglein, 2007). Here we examine the single-interface problem in
its own right, and in significantly greater detail. We derivea range of formulas for the direct
estimation of target absorptive medium properties, both inlinearized forms and with non-
linear corrections, given the reflection coefficient associated with a specific primary event
as input. Practically, this corresponds to situations in which the primary reflection from a
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target of interest can be identified and isolated, and its angle- and frequency-dependence
analyzed. Examples of these formulas were presented at boththe EAGE and SEG annual
meetings in 2010 (Innanen, 2010b,a).

An absorptive reflection coefficient can be analyzed mathematically by considering
either its frequency variations (i.e., AVF), or its angle variations (i.e., AVA). Both have
been studied. Numerically, absorption-specific reflectioncoefficient variability has been
reported at large angles when synthetic viscoelastic data were examined at fixed frequen-
cies (Samec and Blangy, 1992). And more recently, field data variability associated with
low-Q, fluid filled reservoirs has been attributed to “strongly frequency dependent” reflec-
tion coefficients (Odebeatu et al., 2006). This latter observation appears to be supported by
other recent investigations and discussions (Chapman et al., 2006; Lines et al., 2008; Ren
et al., 2009; Quintal et al., 2009).

Therefore, and notwithstanding the variety of mechanisms that could explain a frequency-
dependent reflection (Castagna et al., 2003), there appearsto be sufficient evidence of ab-
sorptive reflectivity to warrant a theoretical study of the inverse problem. We will em-
phasize in particular the issue of separability — if, and how, it is possible to determine
variations in multiple an-acoustic or anelastic medium properties, includingQ, occurring
simultaneously at a reflecting boundary. The key features ofthe problem are captured by
examining the simple, absorptive reflection coefficient which arises due to contrasts in P-
wave velocity and a nearly constant quality factorQ. We express the reflection coefficient
in terms of a variety of different plane-wave variables, expand it about small parameter
contrasts and incidence angles, and directly invert these series to determine the properties
of the target.

The medium of incidence is here assumed to be acoustic/elastic, i.e., with Q → ∞.
This corresponds to problems in which attenuation is low or negligible in the overburden
above an absorptive target. The rationale for this choice isnot that an elastic or acous-
tic overburden transitioning to a highly attenuative target medium is the most common
configuration of attenuating geological structures. Rather, the rationale is that it is un-
der these circumstances that the absorptive signature of interest is strongest, and therefore
most likely to be measurable. Geophysically these conditions could be encountered when
characterizing a gas-saturated reservoir target, or a seafloor target. In a later section we
show parenthetically that, in the case in which attenuationis present above the target, the
inversion equations retain similar forms.

We also consider a set of other reasonable deviations from the two-parameter model,
examining each of (1) a general attenuation law (as opposed to the very specific nearly
constantQ model we use), (2) the effect of variations in further parameters, and (3) some
examples of and issues surrounding an extension of these results to the anelastic case. The
aim will be to distinguish the general insights brought by the two-parameter problem from
algorithmic niceties necessary for any specific (and likelymore sophisticated) implemen-
tations of these inverse ideas.

The inversion methodology we will use is, in essence, a simplified form of inverse
scattering. It represents a modification of a framework thathas led elsewhere to direct
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acoustic and elastic target identification (Zhang and Weglein, 2009a,b). In addition to the
added complication of absorbing media, in our approach rather than posing the full inverse
scattering problem, thereafter reducing to the case of a single interface, we begin with a
representation of the wave response of a single interface, i.e., the reflection coefficient. The
cost is a loss of generality and applicability to problems outside of the AVF/AVA framework
of interest in this paper, but we benefit in that the formulas are derived rapidly.

ABSORPTIVE WAVE EQUATIONS

Consider a wavefieldP0, propagating in a two-dimensional, homogeneous, source-free,
non-absorptive medium (medium 0, the medium of incidence) according to

[

∇2 +
ω2

c2
0

]

P0(x, z, ω) = 0, (1)

and considerP1 propagating in an absorptive medium (medium 1, the target medium) ac-
cording to

[

∇2 +
ω2

c2

(

1 +
F (ω)

Q

)2
]

P1(x, z, ω) = 0, (2)

where

F (ω) =
i

2
−

1

π
log

(

ω

ωr

)

, (3)

andωr is a reference frequency. Equation (2) is consistent with the nearly-constantQ model
reviewed by Aki and Richards (2002). Physically, these equations describe acoustic and
an-acoustic waves propagating through media of constant density. Fourier transforming
equations (1)–(2) with respect tox andz, we have

k2
x + k2

z =
ω2

c2
0

, (4)

and

k2
x + k′2

z =
ω2

c2

(

1 +
F (ω)

Q

)2

, (5)

the first of which implies a range of possible relationships based on plane wave geometry,
e.g.:

kx =
ω

c0
sin θ,

kz =
ω

c0
cos θ,

(6)

whereθ represents the plane wave angle measured away from the direction of positivez,
andkx andkz are the Fourier conjugates ofx andz respectively.
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ABSORPTIVE REFLECTION COEFFICIENTS

If a plane waveP0 is incident upon a planar boundary, oriented perpendicularly to z
and separating medium 0 from medium 1, continuity of the field(e.g., pressure) and its
derivative across the interface requires that there be a reflection coefficient

R =
kz − k′

z

kz + k′

z

, (7)

which, because of equations (3)–(5), we anticipate to be complex, frequency-dependent,
and expressive of the an-acoustic properties of the target medium in some hopefully useful
ways.

We will examineR at both normal and oblique incidence. In the latter case there is
some room for choice in studying its behavior. For instance,if frequencyω is held fixed as
a parameter, we have one kind of angular behavior:

R(ω, θ) =
c cos θ − c0 [1 + Q−1F (ω)]

√

1 − c2

c2
0

[1 + Q−1F (ω)]−2 sin2 θ

c cos θ + c0 [1 + Q−1F (ω)]
√

1 − c2

c2
0

[1 + Q−1F (ω)]−2 sin2 θ
, (8)

whereas, ifkz is a parameter, theθ behavior is modified:

R(kz, θ) =
c cos θ − c0 [1 + Q−1Fkz(θ)]

√

1 − c2

c2
0

[1 + Q−1Fkz(θ)]
−2 sin2 θ

c cos θ + c0 [1 + Q−1Fkz(θ)]
√

1 − c2

c2
0

[1 + Q−1Fkz(θ)]
−2 sin2 θ

, (9)

where

Fkz(θ) =
i

2
−

1

π
log

(

kzc0

ωr cos θ

)

. (10)

We will not use it in this paper, but furthermore ifkx is a parameter, we again discern a
slightly alteredθ variability in R:

R(kx, θ) =
c cos θ − c0 [1 + Q−1Fkx(θ)]

√

1 − c2

c2
0

[1 + Q−1Fkx(θ)]
−2 sin2 θ

c cos θ + c0 [1 + Q−1Fkx(θ)]
√

1 − c2

c2
0

[1 + Q−1Fkx(θ)]
−2 sin2 θ

, (11)

where

Fkx(θ) =
i

2
−

1

π
log

(

kxc0

ωr sin θ

)

. (12)

The special caseθ = 0 in equation (8) corresponds toR at normal incidence.

The variation ofR with ω, θ, etc. above provides the information by which parameters
of interest will ultimately be determined. For this determination to be possible, every
realizable set of target medium properties must generate a uniqueR(ω, θ). Both qualitative
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evidence that this is the case, and a sense of how the variations in the reflection coefficient
might be used to determine target propertiesc andQ, may be derived from an examination
of plots ofR. In Figure 1 we focus on the frequency dependence ofR by settingθ = 0, and
plottingR(ω) for a range of targetQ values, with P-wave velocities fixed atc0 = 1500m/s
andc = 1600m/s. In the top left panel we observe that, especially at low values ofQ (5-
100), the frequency-dependence of the real part ofR exhibits clear variability with targetQ
value. This is an early indication that relative differences inR from frequency to frequency
might serve to distinguish one targetQ value from another. In contrast, in the top right
panel, we see that the distinction (at normal incidence) between one target P-wave velocity
and another must apparently derive from the absolute magnitudes of the real part ofR. In
both cases the imaginary part ofR (bottom panels) would appear to carry much less useful
information.

In Figure 2 the same variability is viewed in the form ofθ variations with a fixed depth
wavenumberkz, using equation (9). The top row involves akz at one-fifth of its maximum
value (i.e.,kz = 0.1 for kz normalized such that max(kz) = 0.5), and the bottom row
involves akz at one-half of its maximum value (i.e.,kz = 0.25 for kz normalized such
that max(kz) = 0.5). In the top left and bottom left panels,R(kz, θ) is plotted for a range
of targetQ values. We again observe that the variation ofR with θ changes as targetQ
changes, in particular at low values, and so we have the general expectation that relative
AVA variations may be adequate, as the AVF variations were, as means to determine a target
Q. In the right panels,R(kz, θ) is plotted for a range of target P-wave velocity values. The
expected AVA signature of the P-wave velocity contrast is visible.

SERIES EXPANSIONS AND APPROXIMATIONS OF R

We consider three quantities embedded inR that are, from a geophysical point of view,
sometimes small, but not always. They are (1) angle of incidence, (2) the relative change
in P-wave velocity (fromc0 to c), and (3) the relative change in the inverse quality factor
(from 0 to Q−1). As measures of the latter two we define

ac = 1 −
c2
0

c2
,

aQ =
1

Q
,

(13)

and as a measure of the first, we considerR as a function ofsin2 θ. The inversion scheme
used in the coming sections relies on series expansions of the reflection coefficients in
equations (8)–(9), in orders of these quantities.

In equations (8)–(11), we observe that, depending on the parametrization, the presence
of dispersion can bring an additional level of complexity intheθ dependence beyond the

CREWES Research Report — Volume 22 (2010) 5



Innanen

50
100

150
200

20
40

60
80

100

−0.02

0.00

0.02

0.04

Qf (Hz)

 R
e 

R

50
100

150
200

20
40

60
80

100

−0.02

0.00

0.02

Qf (Hz)

 Im
 R

1600
1800

2000
2200

20
40

60
80

100

−0.1

0.0

0.1

0.2

c (m/s)f (Hz)

 R
e 

R

1600
1800

2000
2200

20
40

60
80

100

0.00

0.01

0.02

c (m/s)f (Hz)

 Im
 R

FIG. 1. Absorptive reflection coefficient R at normal incidence, as expressed in equation (8) with
θ = 0, with c0 =1500m/s. Left column: R for a range of frequency and Q values (c fixed at 1600m/s).
Right column: R for a range of frequency and c values (Q fixed at 10). Each fixed Q value produces,
in the real part of R, a unique associated signature in the frequency domain (top left).

constant-density acoustic case. Ifω is fixed as a parameter, it does not, andR expands as

R(ω, θ) =

[(

1

4
ac −

1

2
F (ω)aQ

)

+

(

1

8
a2

c +
1

4
F 2(ω)a2

Q

)

+ ...

]

(

sin2 θ
)0

+

[(

1

4
ac −

1

2
F (ω)aQ

)

+

(

1

4
a2

c −
1

2
F (ω)acaQ +

3

4
F 2(ω)a2

Q

)

+ ...

]

(

sin2 θ
)1

+

[(

1

4
ac −

1

2
F (ω)aQ

)

+

(

3

8
a2

c − F (ω)acaQ +
5

4
F 2(ω)a2

Q

)

+ ...

]

(

sin2 θ
)2

+ ... .
(14)
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FIG. 2. Absorptive reflection coefficient Rkz(θ), as expressed in equation (9), with c0 =1500m/s,
plotted for a range of target Q values with fixed c = 1600m/s (left column), and c values with fixed
Q = 10 (right column) for two values of kz. Top row: fixed normalized kz = 0.1; bottom row: fixed
normalized kz = 0.25 (in both cases kzmax = 0.5).

If kz is a parameter, however, the coefficients of thesin2 θ expansion ofR take on a uniquely
dispersive character:

R̃(kz, θ) =

{[

1

4
ac −

1

2
F̃kzaQ

]

+

[

1

8
a2

c +
1

4
F̃ 2

kza
2
Q

]

+ ...

}

(

sin2 θ
)0

+

{[

1

4
ac −

(

1

2
F̃kz −

1

4π

)

aQ

]

+

[

1

4
a2

c −
1

2
F̃kzacaQ + ...

]

+ ...

}

(

sin2 θ
)1

+

{[

1

4
ac −

(

1

2
F̃kz −

3

8π

)

aQ

]

+

[

3

8
a2

c −

(

F̃kz −
1

4π

)

acaQ

+

(

5

4
F̃ 2

kz −
7

8π
F̃kz +

1

16π2

)

a2
Q

]

+ ...

}

(

sin2 θ
)2

+ ...,

(15)

where

F̃kz =
i

2
−

1

π
log

(

kzc0

ωr

)

. (16)

CREWES Research Report — Volume 22 (2010) 7



Innanen

Alternatively, if R(kz, θ) is expanded only in the angle variations that occur absent disper-
sion, we have instead the useful form

R(kz, θ) =

[(

1

4
ac −

1

2
Fkz(θ)aQ

)

+

(

1

8
a2

c +
1

4
F 2

kz(θ)a
2
Q

)

+ ...

]

(

sin2 θ
)0

+

[(

1

4
ac −

1

2
Fkz(θ)aQ

)

+

(

1

4
a2

c −
1

2
Fkz(θ)acaQ +

3

4
F 2

kz(θ)a
2
Q

)

+ ...

]

(

sin2 θ
)1

+

[(

1

4
ac −

1

2
Fkz(θ)aQ

)

+

(

3

8
a2

c − Fkz(θ)acaQ +
5

4
F 2

kz(θ)a
2
Q

)

+ ...

]

(

sin2 θ
)2

+ ... .
(17)

Equations (14) and (17) will be used to pose the main inverse AVF and AVA problems;
in a later section we will alter these expansions to incorporate, alternatively, generalized
attenuation laws, as well as density variations and anelastic phenomena. These are forward
modeling expressions: given incidence and target medium properties, we formac andaQ

using equation (13), and substitute them into the above formulas forR. Truncating any
of these series expansions at first or second order in the parameter perturbations, we ob-
tain simple and straightforward approximations of the reflection coefficients. For instance,
retaining terms in equation (17) that are linear in the parameter perturbations and insin2 θ
results in the approximation

R(kz, θ) ≈

[(

1

4
ac −

1

2
Fkz(θ)aQ

)]

(

1 + sin2 θ
)

. (18)

In Figure 3 the accuracy of first and second order approximations toR(kz, θ) is illustrated;
as one would expect, at large parameter perturbations and large angles, the approximation
error of the first order approximation grows. This is technically true of the second order
approximation also, but the error is reduced and does not grow significantly until compar-
atively large angles are considered. Based in particular onthe differences in accuracy
observable in transitioning from the middle row of Figure 3 (the linear approximation) to
the bottom row (truncation after second order), we might reasonably anticipate that second-
order effects will non-negligibly influence absorptive inversion for targets withQ < 50,
which is theQ range of interest in this paper. Hence, we will define as part of our inverse
objective the proper incorporation of the nonlinearity of the data-parameter relationship.

ABSORPTIVE AVF/AVA INVERSION

The forward problem we consider in this paper is the calculation of R over a range of
the variableskx andω (i.e., the Fourier conjugates of offset and time respectively, which
may subsequently be transformed tokz, θ as desired), givenac andaQ. The inverse problem
is the exact or approximate determination ofac andaQ from values ofR over a range of
one or more of these variables. The inversion is referred to as AVA or AVF, to correspond
to the respective use of angle or frequency as this variable.Any time in the following
examples there are two parameters to be solved for, at least two data will be required, and
they will be produced by varying the values of either frequency or angle and assuming that
R is available at these values. In any practical implementation of these formulas we would
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FIG. 3. Absorptive reflection coefficient R, in exact and approximate forms (using equation (9)
and truncated versions of equation (17) respectively), plotted over a range of oblique incidence
angles and target Q values, with c0 =1500m/s and c =1700m/s and fixed normalized kz = 0.3. Left
column, from top to bottom: surface plots of exact, linear, and nonlinear (second order) approxima-
tions. Right column: extractions from left column, for fixed target Q = 10, in which the exact R is
represented with a solid line, the linear R with a dashed line, and the nonlinear (second order) R
with a bold solid line.

naturally use as many data as we had, and fit the parameters with an appropriate regression.
Here, since the objective is to gain theoretical insight into the inverse problem, we will
assume exact data, in which case, since there are at most two parameters to solve for, we
will use at most two data. If the number of parameters becomeslarger, sayN , a minimum
of N data are of course required.

AVF inversion at normal incidence

We will begin to treat the AVF inverse problem by consideringa wave field impinging
at normal incidence on a plane contrast inc andQ. Settingθ = 0 in equation (14), the
requisiteR has the form

R(ω) =

(

1

4
ac −

1

2
F (ω)aQ

)

+

(

1

8
a2

c +
1

4
F 2(ω)a2

Q

)

+ ... . (19)
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This expression is inverted by forming inverse seriesac = ac1 + ac2 + ..., andaQ =
aQ1

+aQ2
+ ..., substituting them into equation (19), equating like orders, and summing the

sequentially-determined components ofac andaQ. UsingR at two angular frequencies,ω1

andω2, we obtain, at first order,

aQ1
(ω1, ω2) = −2

[

R(ω1) − R(ω2)

F (ω1) − F (ω2)

]

ac1(ω1, ω2) = −4

[

F (ω2)R(ω1) − F (ω1)R(ω2)

F (ω1) − F (ω2)

]

,

(20)

and at second order

aQ2
(ω1, ω2) = ∆Q1

aQ1
+ ∆Q2

ac1

ac2(ω1, ω2) = ∆c1aQ1
+ ∆c2ac1,

(21)

where

∆Q1
= 1

2
[F (ω1) + F (ω2)], ∆Q2

= 0,
∆c1 = F (ω1)F (ω2), ∆c2 = −1

2
,

(22)

etc. Because of the relatively simple forms, we may also substitute the explicit forms for
aQ1

etc. in equations (20) into the nonlinear corrections in equations (21) to see what these
solution series look like explicitly in terms of the data (wewill not do this for the remainder
of the paper):

aQ(ω1, ω2) = −2

[

R(ω1) − R(ω2)

F (ω1) − F (ω2)

]

+ 2[F (ω1) + F (ω2)]

[

R(ω1) − R(ω2)

F (ω1) − F (ω2)

]2

+ ...,

(23)

and

ac(ω1, ω2) = − 4
F (ω2)R(ω1) − F (ω1)R(ω2)

F (ω1) − F (ω2)
+ 4

F (ω1)F (ω2)[R(ω1) + R(ω2)]
2

[F (ω1) − F (ω2)]2

− 8
R2(ω2)F

2(ω1) + R2(ω1)F
2(ω2)

[F (ω1) − F (ω2)]2
+ ... .

(24)

Truncating these expressions at first order produces the (absorptive) inverse Born approx-
imation. We note that equations (20)–(24) use the contrast in dispersive properties at
the target to drive the inversion: evidently, only if the reflection coefficient varies with
frequency, doesaQ 6= 0.

In Figure 4 we illustrate the use of these formulas to invert for targetc andQ, using
as input synthetically derived, exact,R values at normal incidence for an acoustic medium
(c0 =1500m/s) overlying an absorptive medium (with inputc =1800m/s,Q =10). Target
medium properties are determined usingR values at pairs of frequenciesf1 = ω1/2π and
f2 = ω2/2π ranging from 2-120 Hz. In the top left panel, the targetQ value is recovered to
first order for each frequency pair; in the bottom left, to second order. In the top right panel,
the target P-wave velocity value is recovered to first order;in the bottom right, to second
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order. In addition to the significant increase in accuracy from first to second order, we note
that the spurious variation of the linearQ inversion result with experimental variables (in
this case frequency), a characteristic of the inverse Born approximation, diminishes as order
increases. However, the second-order recovery of the P-wave velocity becomes unstable
near the diagonal corresponding to equal frequenciesf1 = f2: proximal frequencies (f1 ≈
f2) evidently affect the conditioning of the second order recovery of c. The explanation
for this is evident in equations (23)–(24). None of these formulas should be expected to
operate correctly atf1 = f2, but, in the case of theQ perturbationaQ, at second-order
both the numerator and the denominator approach zero together asf1 → f2, which has a
stabilizing effect on the nearly-singular cases, whereas in the case of the P-wave velocity
perturbationac only the denominator does. This behavior reflects the tendency in direct
absorptive inversion for velocity to be determined throughabsolute values of the reflection
strengths, and the quality factor through differences inR across frequencies.
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FIG. 4. Target medium properties recovered over a range of frequency pairs, using exact synthetic
R values, generated using equation (8) with θ = 0, as input for the AVF inverse formulas in equa-
tions (23)–(24). Exact model values are Q = 10, c = 1800m/s. All c/Q values in rank deficient cases
(i.e., where f1 = f2) are interpolated over.
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AVF inversion at oblique incidence

The normal incidence formulas in equations (23)–(24) generalize to oblique incidence
straightforwardly. This may be demonstrated within the linear regime for simplicity. Trun-
cating equation (14) at first order inac, aQ, andsin2 θ, we have

R(ω, θ) ≈

(

1

4
ac −

1

2
F (ω)aQ

)

(

1 + sin2 θ
)

, (25)

which within this regime of approximation we may re-write as

R(ω, θ) cos2 θ ≈
1

4
ac −

1

2
F (ω)aQ. (26)

Hence, after correcting the reflection coefficient with an angle-dependent factorcos2 θ,
we recover essentially the same relationship leading to thelinear inversion formulas in
equation (20). Fixingθ at a desired valueθ0 available within the data, and again usingR at
two frequenciesω1 andω2, we obtain

aQ(ω1, ω2, θ0) ≈ −2

[

R(ω1, θ0) cos2 θ0 − R(ω2, θ0) cos2 θ0

F (ω1) − F (ω2)

]

ac(ω1, ω2, θ0) ≈ −4

[

F (ω2)R(ω1, θ0) cos2 θ0 − F (ω1)R(ω2, θ0) cos2 θ0

F (ω1) − F (ω2)

]

.

(27)

The second-order terms will have some differences at oblique incidence, but the procedure
for determining them is unchanged.

AVA inversion

Variations inac andaQ may also be determined by examining the angle dependence of
the reflection coefficient, although this simply makes implicit rather than explicit use of the
same frequency dependence. We begin with the expansion ofR in equation (17). Again
forming inverse series forac andaQ, substituting, and equating like orders, we obtain the
formulas

ac = ac1 + ac2 + ...,

aQ = aQ1
+ aQ2

+ ...,
(28)

in which

aQ1
(θ1, θ2) = −

2

Fkz(θ1) − Fkz(θ2)

[

R(kz, θ1)

1 + sin2 θ1

−
R(kz, θ2)

1 + sin2 θ2

]

,

ac1(θ1, θ2) = −
4

Fkz(θ1) − Fkz(θ2)

[

R(kz, θ1)Fkz(θ2)

1 + sin2 θ1

−
R(kz, θ2)Fkz(θ1)

1 + sin2 θ2

]

,

(29)

and

aQ2
(θ1, θ2) = ∆Q1

a2
c1 + ∆Q2

ac1aQ1
+ ∆Q3

a2
Q1

,

ac2(θ1, θ2) = ∆c1 a2
c1

+ ∆c2 ac1aQ1
+ ∆c3 a2

Q1
,

(30)
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etc., where

∆Q1
(θ1, θ2) =

1

4

1

Fkz(θ1) − Fkz(θ2)
(tan2 θ1 − tan2 θ2)

∆Q2
(θ1, θ2) =

1

Fkz(θ1) − Fkz(θ2)
[Fkz(θ2) tan2 θ2 − Fkz(θ1) tan2 θ1]

∆Q3
(θ1, θ2) =

1

2

1

Fkz(θ1) − Fkz(θ2)
[F 2

kz(θ1)(1 + 2 tan2 θ1) − F 2
kz(θ2)(1 + 2 tan2 θ2)]

(31)

and

∆c1(θ1, θ2) =
1

2

1

Fkz(θ1) − Fkz(θ2)
[Fkz(θ2)(1 + tan2 θ1) − Fkz(θ1)(1 + tan2 θ2)]

∆c2(θ1, θ2) =
1

Fkz(θ1) − Fkz(θ2)
[F 2

kz(θ1)Fkz(θ2)(1 + 2 tan2 θ1) − 2Fkz(θ1)F
2
kz(θ2)(1 + 2 tan2 θ2)]

∆c3(θ1, θ2) =
2

Fkz(θ1) − Fkz(θ2)
Fkz(θ1)Fkz(θ2)(tan2 θ2 − tan2 θ1).

(32)

Figure 5 illustrates these formulas in use with synthetically derived, exact, reflection coef-
ficient values as input. The left column illustrates the linear targetQ value recovered over
a range of angle pairs (top) and the nonlinear correction (bottom). The right column is
the corresponding recovered P-wave velocity (actual value1800m/s). The actual targetQ
value is5. In general, the increase in accuracy from the first-order inversion result (top
row) to the result including the second-order correction (bottom row) serves to emphasize
the importance of incorporating the nonlinearity of the data-parameter relationship, in the
presence of lowQ values. In this case the linear estimate is in error by roughly 50%.

We also observe a greater variability in accuracy across therange of angle pairs than
was evident in the AVF results of the previous section (indeed it is not difficult to devise
pathological examples using this particular formulas which exhibit much more marked
instability). This is likely a reflection of the more difficult separation problem the AVA
approach poses. We are, in essence, forcing the frequency variations due toQ to express
themselves in the angle domain, in which there already exists the significant AVA signature
of a P-wave velocity contrast. The inverse problem is then obliged to undo this more
complicated mixture.

DEVIATIONS FROM THE TWO-PARAMETER VELOCITY/Q MODEL

All inversion procedures, regardless of how complete, facethe same problem, namely
that in a given situation the wrong parameters are likely being solved for: acoustic param-
eters as opposed to elastic; isotropic elastic parameters as opposed to anisotropic; etc. In
this paper we err on the side of simplicity, the aim being to set out the basic properties of a
perturbation-based, single-interface absorptive AVA/AVF modeling and inversion scheme,
and, to be sure, the Earth will rarely behave exactly as modeled by equations (1)–(2). As
a partial remedy for this, we will treat a representative setof deviations of the Earth away
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FIG. 5. Target medium properties recovered over a range of angle pairs, using exact synthetic R
values, generated using equation (9), as input for the AVA inverse formulas in equations (28)–(30).
Exact model values are Q = 5, c0 = 1500m/s and c = 1800m/s, with fixed normalized kz = 0.25,
roughly at the midpoint of the available wavenumber range. All c/Q values in rank deficient cases
(i.e., where θ1 = θ2) are interpolated over. First order (inverse Born) estimation of target c and Q
values (top) are compared against second order corrected values.

from the two-parameter model we have thus far considered. The point will be to provide
a sense of what is general about the formulas in the previous section versus what is spe-
cial, thereby pointing an interested researcher towards ways to adapt the basic ideas we are
espousing to fit with a variant absorptive problem that may beat hand.

General attenuation law

First we consider the possibility that a more general absorption law than that in equa-
tion (2) is required to adequately explain data variations.The problem remains tractable,
but barely so. To see this, let us begin as we have before, withthe reflection coefficient
associated with a plane contrast in absorptive medium properties, but this time assume that
the propagation constant in the target medium, rather thanK = ωc−1(1 + FQ−1), is

K =
ω

c
+ iν(ω) + H[ν(ω)], (33)

14 CREWES Research Report — Volume 22 (2010)



More absorptive AVF inversion

whereν is a general frequency dependent attenuation coefficient and H[·] is the Hilbert
transform (Aki and Richards, 2002). At normal incidence, the general attenuation case
leads to a reflection coefficient of the form

R(ω) =
1 − c0

c
− ω−1c0 {iν(ω) + H[ν(ω)]}

1 + c0
c

+ ω−1c0 {iν(ω) + H[ν(ω)]}
, (34)

which, upon substitution of the perturbation quantities

ac = 1 −
c2
0

c2
,

aν = iν(ω) + H[ν(ω)],
(35)

expands as

R(ω) =

[

1

4
ac −

c0

2ω
aν(ω)

]

+

[

1

8
a2

c −
1

4

c0

ω
acaν(ω) +

1

4

c2
0

ω2
a2

ν(ω)

]

+ ... . (36)

From an inverse point of view, the key difference between this general attenuation case
and the nearly-constantQ case (equation 2), is that the former has many more associated
unknowns (i.e., one coefficient for each frequency in a givenexperiment) than the latter
(i.e., oneQ value).

Let us proceed as before, by forming inverse seriesaν = aν1
+ aν2

+ ... andac =
ac1 + ac2 + ..., and substituting these into equation (36). When we attemptto separate out
at first order the variability inR due toaν , that is, by solving

R(ω) =
1

4
ac1 −

c0

2ω
aν1

(ω), (37)

for aα1
, the ill-posedness of the problem becomes apparent: a new unknown is produced at

every frequency. To solve the problem we must bring further information to it. In fact, the
nearly-constantQ case we have used in earlier sections is an example of doing just that, by
supplying a more complete initial specification of the modeltype. This renders the problem
well-posed. Prior information in the form of parameter values may also permit a solution,
a fact that is roughly in keeping with the conclusions of several studies on the more general
absorptive inverse scattering problem (Carrion and VerWest, 1987; Innanen and Weglein,
2007). For instance, suppose further that at a certain reference frequencyω0, for which
R(ω0) ≡ Rref is measured, we know the attenuation coefficient:aref ≡ aν1

(ω0). In this
circumstanceaν ≈ aν1

(ω) in equation (38) may be solved for at any arbitrary frequency
with

aν(ω) ≈
2ω

c0
[Rref − R(ω)] +

(

ω

ω0

)

aref. (38)

In summary, for the case of a general attenuation coefficient, with some prior information
the problem remains technically tractable, which broadensthe range of model types that
may be determined using absorptive reflectivity. However, some attractive features of the
two parameter law (or any absorption law with a specified frequency dependence), for
instance its overdetermined nature, are lost.
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Absorptive incidence medium

The incidence medium has thus far been modelled as non-attenuating. If the overburden
is also attenuative, the reflection coefficient is a functionof this altered type of contrast
across the boundary, to wit, from an incidenceQ0 to a targetQ. Let us briefly demonstrate
that the basic activity of the algorithm nevertheless remains intact if the overburden is
absorptive, with only one of its ingredients, and the interpretation of the computedaQ

perturbation, in the final step when a targetQ is being determined, needing change. If
absorption is included in the incidence medium throughQ0, and the reference frequency
ωr is constant, the reflection coefficient at normal incidence becomes

R(ω) =
1 − c0

c

[

1 + F (ω)
Q

] [

1 + F (ω)
Q0

]

−1

1 + c0
c

[

1 + F (ω)
Q

] [

1 + F (ω)
Q0

]

−1 . (39)

Defining

ac = 1 −
c2
0

c2
,

aQ = 1 −
Q0

Q
,

(40)

and proceeding as before,R(ω) expands about smallac andaQ as

R(ω) =

[

1

4
ac −

1

2

F (ω)

Q0

(

1 −
F (ω)

Q0

)

aQ

]

+

[

1

8
a2

c +
1

4

F 2(ω)

Q2
0

(

1 −
F (ω)

Q0

)2

a2
Q

]

+ ... .

(41)

If we define a new functionFQR
, where

FQR
(ω) ≡

F (ω)

Q0

(

1 −
F (ω)

Q0

)

, (42)

containing only experimental variables and parameters from the medium of incidence, as-
sumed known, we recover a mathematical framework indistinguishable from the AVF in-
version in the acoustic reference case. Specifically, by making this replacement in equation
(41) and comparing the result to equation (19), we surmise that the form of the inversion
equations (20)–(22) is in essence maintained, and, therefore, that AVF/AVA inversion with
non-attenuating incidence media contains most of what we need to know about the inverse
problem for both types of incidence media.

Notice, however, that because of the definition ofaQ in equation (40), the limitQ0 →
∞, which we might expect to reduce the equations to the previous (non-attenuating inci-
dence medium) case, is not permissible. The consequence of taking this illegitimate limit
to modeling and/or inversion with equation (41) is that the reflection coefficient will be
misinterpreted as being due to P-wave velocity contrasts alone. It is important to correctly
characterize the incidence medium at the outset of the analysis. It should also be empha-
sized that to estimate anR such as that in equation (39) from seismic data would require
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that the attenuation due to the overburden first be compensated for. In the discussion sec-
tion we include some additional comments on the reasons why we have chosen to focus on
a non-attenuating overburden.

Anelastic target medium

An extension of the current methods to the full multicomponent anelastic problem is
beyond the scope of this paper, but within a simplified anelastic environment we may get a
preliminary sense of that result. We begin with the Zoeppritz equations, and consider so-
lutions generated using Cramer’s rule (e.g., Keys, 1989). If we consider a plane P-wave (in
an elastic medium with P-wave velocityα0, S-wave velocityβ0, and densityρ0) obliquely
incident upon an anelastic boundary, the Zoeppritz equations, modified to incorporate a
compressional quality factorQP and a shear quality factorQS in addition to targetα, β,
ρ values, can be expressed in a simple matrix form and, ultimately, solved for P and S
reflection coefficients. We have:

A









RP

RS

TP

TS









= b, (43)

where

b =









X
(1 − X2)1/2

2BX(1 − X2)1/2

1 − 2B2X2









, (44)

A =









−X −(1 − B2X2)1/2 CX −(1 − D2X2)1/2

(1 − X2)1/2 −BX (1 − C2X2)1/2 DX
2B2X(1 − X2)1/2 B(1 − 2B2X2) 2AD2X(1 − C2X2)1/2 −AD(1 − 2D2X2)
−(1 − 2B2X2) 2B2X(1 − B2X2)1/2 AC(1 − 2D2X2) 2AD2X(1 − D2X2)1/2









,

(45)

X = sin θ, and where the constantsA throughD, nominally containing elastic parameter
ratios, are modified as follows:

A =
ρ

ρ0

, B =
β0

α0

, C =
α

α0

[

1 +
FP

QP

]

−1

, D = B
β

β0

[

1 +
FS

QS

]

−1

, (46)

where

FP (ω) =
i

2
−

1

π
log

(

ω

ωrP

)

, FS(ω) =
i

2
−

1

π
log

(

ω

ωrS

)

, (47)

and where the quantitiesωrP
andωrS

are, respectively, P- and S-wave reference frequen-
cies. We will assume these reference frequencies are known apriori when we come to
consider the inverse problem.
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Next, we expand the elements ofA in equation (43) aboutX = 0 (since both P and S
reflections are being considered, we expand aboutsin θ, notsin2 θ, as before). For instance,
A accurate to second order insin θ has the form:

A ≈









−X −(1 − 1
2
B2X2) CX −(1 − 1

2
D2X2)

1 − 1
2
X2 −BX 1 − 1

2
C2X2 DX

2B2X
(

1 − 1
2
X2

)

B(1 − 2B2X2) 2AD2X
(

1 − 1
2
C2X2

)

−AD(1 − 2D2X2)
−(1 − 2B2X2) 2B2X

(

1 − 1
2
B2X2

)

AC(1 − 2D2X2) 2AD2X
(

1 − 1
2
D2X2

)









.

(48)

With the final aim of solving forRP andRS in mind, we also form the auxiliary matrix
AP by replacing the first column ofA with b, and the auxiliary matrixAS by replacing
the second column ofA with b. Next, we express the factorsA, C, andD in terms of
perturbations measuring the relative change in the five parameters across the boundary,
which we give the form:

aα = 1 − α2
0/α

2, aβ = 1 − β2
0/β

2, aρ = 1 − ρ0/ρ, aQP
= 1/QP , aQS

= 1/QS, (49)

and substitute them into equations (46), to obtain:

A = 1 + aρ + a2
ρ + ...

C = 1 +
1

2
aα − FPaQP

+
3

8
a2

α −
FP

2
aαaQP

+ F 2
P a2

QP
+ ...

D = B

(

1 +
1

2
aβ − FSaQS

+
3

8
a2

β −
FS

2
aβaQS

+ F 2
Sa2

QS
+ ...

)

.

(50)

When the above quantities are further substituted intoA, AP , andAS, their determinants
may be organized in increasing order in the five perturbations:

detA = detA(0) + detA(1) + detA(2) + ...,

detAP = detA(1)
P + detA(2)

P + ...,

detAS = detA(1)
S + detA(2)

S + ...,

(51)

where superscript(i) indicatesi’th order in any combination of the perturbations in equa-
tion (49). We next use Cramer’s rule to generate series expressions forRP andRS, also in
increasing powers of the perturbations:

RP =
d̂etAP

d̂etA
= d̂etA(1)

P +
(

d̂etA(2)
P − d̂etA(1)

P d̂etA(1)
)

+ ..., (52)

and likewise

RS = d̂etA(1)
S +

(

d̂etA(2)
S − d̂etA(1)

S d̂etA(1)
)

+ ..., (53)

where for anyY , d̂etY ≡ detY/detA(0). Equations (52) and (53) are the anelastic ex-
tensions of equation (14), representing series formulas for the approximation of the two
reflection coefficients associated with a plane elastic P-wave incident upon an anelastic
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boundary. To evaluate the formulas we compute the necessarydeterminants and organize
the results in orders ofaα, aβ, aρ, aQp

andaQs
. An approximation accurate ton’th order in

these perturbations requires three truncations atn’th order: once in equations (50), again in
(51), and finally in (52)/(53) forRP /RS. Explicitly, and accurate to second order insin θ,
i.e., beginning with the approximation ofA in equation (48), we have

RP (ω, θ) = RP1
+ RP2

+ ..., (54)

where

RP1
(ω, θ) =ΓP

αaα + ΓP
β aβ + ΓP

ρ aρ + ΓP
QP

aQP
+ ΓP

QS
aQS

, (55)

RP2
(ω, θ) =ΓP

αα a2
α + ΓP

ββ a2
β + ΓP

ρρ a2
ρ + ΓP

QP QP
a2

QP
+ ΓP

QSQS
a2

QS

+ ΓP
αβ aαaβ + ΓP

αρ aαaρ + ΓP
αQP

aαaQP
+ ΓP

αQS
aαaQS

+ ΓP
βρ aβaρ + ΓP

βQP
aβaQP

+ ΓP
βQS

aβaQS
+ ΓP

ρQP
aρaQP

+ ΓP
ρQS

aρaQS
+ ΓP

QP QS
aQP

aQS
,

(56)

etc., and

RS(ω, θ) = RS1
+ RS2

+ ..., (57)

where

RS1
(ω, θ) =ΓS

αaα + ΓS
βaβ + ΓS

ρ aρ + ΓS
QP

aQP
+ ΓS

QS
aQS

, (58)

RS2
(ω, θ) =ΓS

αα a2
α + ΓS

ββ a2
β + ΓS

ρρ a2
ρ + ΓS

QP QP
a2

QP
+ ΓS

QSQS
a2

QS

+ ΓS
αβ aαaβ + ΓS

αρ aαaρ + ΓS
αQP

aαaQP
+ ΓS

αQS
aαaQS

+ ΓS
βρ aβaρ + ΓS

βQP
aβaQP

+ ΓS
βQS

aβaQS
+ ΓS

ρQP
aρaQP

+ ΓS
ρQS

aρaQS
+ ΓS

QP QS
aQP

aQS
,

(59)

etc. The coefficientsΓ, which are generally functions ofθ, ω and incidence medium pa-
rameters, within the current approximation are provided inAppendix A.

In Figure 6, the coefficientsRP andRS are plotted as functions ofθ andf = ω/2π for
parametersρ0 = 2.1g/cm3, ρ = 2.1g/cm3, α0 = 3000m/s,α = 3500m/s,β0 = 1500m/s,
β = 1700m/s, QP = 5, andQS = 5. Exact coefficients are in the left column, linear
approximations (i.e.,RP ≈ RP1

and RS ≈ RS1
) are in the center, and nonlinear ap-

proximations accurate to second order in the perturbations(i.e., RP ≈ RP1
+ RP2

and
RS ≈ RS1

+ RS2
) are in the right column. In all cases, regimes of (small) angle are noted

where the approximations are accurate. In Figure 7, for instance, extractions of the same
RP andRS are plotted vs. angle (left column) for fixedf = 40Hz, and vs. frequency (right
column) for fixedθ0 = 11◦.

Let us treat the inverse problem in the linear approximation, i.e., assumingRP ≈ RP1

andRS ≈ RS1
, in which case we have

RP (ω, θ0) = ΓP
α (θ0)aα + ΓP

β (θ0)aβ + ΓP
ρ (θ0)aρ + ΓP

QP
(ω, θ0)aQP

+ ΓP
QS

(ω, θ0)aQS
,

RS(ω, θ0) = ΓS
β (θ0)aβ + ΓS

ρ (θ0)aρ + ΓS
QS

(ω, θ0)aQS
.

(60)
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Taking differences of these coefficients for pairs of frequenciesω1 andω2 permits theQP

andQS perturbations to be solved for. TheQS perturbation is solved for usingRS:

aQS
=

RS(ω1, θ0) − RS(ω2, θ0)

ΓS
QS

(ω1, θ0) − ΓS
QS

(ω2, θ0)
. (61)

TheQP perturbation may then be solved for through the difference

RP (ω1, θ0) − RP (ω2, θ0) =
[

ΓP
QP

(ω1, θ0) − ΓP
QP

(ω2, θ0)
]

aQP
+

[

ΓP
QS

(ω1, θ0) − ΓP
QS

(ω2, θ0)
]

aQS
,

(62)

from which, and using equation (61),

aQP
=

RP (ω1, θ0) − RP (ω2, θ0)

ΓP
QP

(ω1, θ0) − ΓP
QP

(ω2, θ0)
−

ΓP
QS

(ω1, θ0) − ΓP
QS

(ω2, θ0)

ΓP
QP

(ω1, θ0) − ΓP
QP

(ω2, θ0)
[RS(ω1, θ0) − RS(ω2, θ0)].

(63)

It is proper to think of these linear estimates ofaQP
andaQS

as being functions ofω1, ω2,
andθ0, since their accuracy in general depends on the specific partof the full data set (in
this case, the full data set isRP andRS over the full frequency and angle range) being used.
In Figure 8 we observe the results of applying these linearized formulas to synthetically de-
rived, exact, reflection coefficients. Some care is requiredin choosing angles. For instance,
our inverse formulas absent nonlinear correction rely on the RP ≈ RP1

, RS ≈ RS1
ap-

proximations being accurate, henceθ should not be chosen too large. However,RS = 0 at
θ = 0, hence ifθ is chosen too small, the signal with which the shear parameter estimations
are carried out will be too low (although, judging from equation (63), this may be a conve-
nient regime in which to more straightforwardly estimate the compressive parameters). The
angle used in Figure 7,θ = 11◦, is also used here. In Figure 8,QP andQS are recovered
for ranges of pairs of frequencies as before. Similar accuracies are noted in comparison to
the two-parameter AVF results produced in equations (20)–(21).

This may proceed for the other parameters by varyingθ, and for higher orders also, as
we have illustrated in earlier sections. The core activity in the estimation ofQ perturbations
remains the frequency differencing of the reflection coefficients. In spite of the increased
complexity in terms of parameters and physical phenomena, we again discern that the basic
data interrogation procedure seen in equation (20) is preserved.

DISCUSSION

The purpose of this paper is to discuss some of the principle theoretical features of the
direct inversion of a largely untapped type of seismic reflectivity information: that associ-
ated with a rapid change from a predominantly elastic overburden to a highly attenuative
target. The range of available formulas suggests that, given accurate estimates of the reflec-
tion coefficient at an anelastic boundary, simultaneous variations in multiple an-acoustic or
anelastic target parameters may be directly determined.

In spite of the theoretical nature of the development and results we present, we are,
ultimately, interested in the application of the formulas we derive in this paper to field data.
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FIG. 6. The real parts of RP and RS plotted for a range of angles and frequencies. Left column:
exact RP and RS , calculated using equation (43); middle column: RP and RS , accurate to first
order in the perturbations and sin2 θ, calculated using linearly truncated versions of equations (54)
and (57); right column: RP and RS accurate to second order in the perturbations and first order in
sin2 θ, calculated using second order truncations of equations (54) and (57).

This will require one of two steps beyond what we have presented in this paper: either (1)
an extension of these results to accommodate a much more complicated Earth, such that
the seismic response is modelled (at least) as being due to a stack of homogeneous layers,
or (2) the extraction and isolation of an individual event from a seismic data set, and an
estimation of its associated (absorptive) reflection coefficient. The first of these routes is,
of course, of interest and, if it is to be carried out using a perturbation approach, requires the
solution of a more complete inverse scattering problem. This has been, and continues to be,
studied by ourselves and others (e.g., Carrion and VerWest,1987; Ribodetti and Virieux,
1998; Innanen and Weglein, 2007; Mulder and Hak, 2009; Innanen and Lira, 2010; Hak
and Mulder, 2010).

In this paper we are concerned with the second, more specialized problem, of analyz-
ing an isolated event which, through an interpretive step, has been identified as a primary
reflecting from a likely attenuative target. Because variations of R with frequency drive
the procedures, the local spectrum of an identified event will need to be estimated. This is
not a straightforward task, but fortunately, a wide array ofmethods for determining these
spectra has been developed in recent years (e.g., Margrave,1997; Margrave et al., 2003;
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FIG. 7. Real parts of RP and RS values extracted from Figure 6. Left column: RP and RS plotted
as functions of angle for fixed f = ω/2π = 40Hz. Right column: RP and RS plotted as functions of
frequency f for fixed θ = 11◦. Exact coefficients are plotted as solid lines, first order approximations
as dashed lines, and second order approximations as bold solid lines.

Odebeatu et al., 2006), usually to facilitate nonstationary seismic processing. One such
approach which shows promise to this end has recently been implemented in multiple di-
mensions and used as a tool for seismic interpolation (Naghizadeh and Innanen, 2010). It
is currently being studied for its ability to extract local reflection coefficient spectra from a
seismic trace and/or section, thereby acting as a front-endpreprocessing tool for inversion
of the type we have described here.

Absorptive AVF/AVA inverse procedures are possible only because of the dispersive
component of absorptive wave propagation, in particular, for the purposes of this paper,
as it manifests in reflection coefficients. The role of dispersion in direct absorptive in-
version, both linear and nonlinear, in simplified environments such as these, and in more
complete inverse scattering formulations, is critical. Neglecting it when beginning to pose
the absorptive seismic scattering problem can lead to, amongst other things, intrinsically
ambiguous inverse algorithms for reflection data (as pointed out by Mulder and Hak, 2009;
Hak and Mulder, 2010).

22 CREWES Research Report — Volume 22 (2010)



More absorptive AVF inversion

0
50

100

0

50

100

−10

0

10

20

f (Hz)f (Hz)

Q
P
 1

st
 o

rd
er

0
50

100

0

50

100

−10

0

10

20

f (Hz)f (Hz)

Q
S
 1

st
 o

rd
er

0
50

100

0

50

100

4

5

6

7

f (Hz)f (Hz)

Q
P
 1

st
 o

rd
er

0
50

100

0

50

100

4

5

6

7

f (Hz)f (Hz)

Q
S
 1

st
 o

rd
er

FIG. 8. Recovered QP and QS values accurate to first order (actual values QP = QS = 5) using
exact synthetic RP , RS values, calculated using equation (43), as input for the AVF inverse formulas
in equations (61) and (63), over a range of frequency pairs and with θ = 11◦. Left column: recovered
QP , QS values; right column: detail of same.

Procedures with AVF and AVA flavors, as well as mixtures of thetwo, have been ex-
amined. AVF is used in this paper to refer to any formula in which Q, QP , or QS are
determined with values ofR, RP , or RS at different frequencies. The anelastic formulas
are considered to be in the AVF category, for instance, even though they were by necessity
carried out at oblique incidence. Indeed, if we had gone on touse these expressions to
further estimate the P-wave and S-wave velocity and densityof the target, different angles
would certainly have to have been used. We nevertheless consider these to be AVF for-
mulas; the term AVA is here reserved for problems in which thedispersion of the target
medium was expressed explicitly in terms of an angle variation.

SinceQ dominates in prescribing the AVF variability of the reflection strength, whereas
it co-determines the AVA variability alongside the much more influential P-wave velocity
(and other parameters in the anelastic case), thus leading to a more sensitive separation
problem, it would appear that in posing an absorptive AVA inverse problem we are unnec-
essarily complicating matters. The main reason we have included AVA methods in this
paper is because they form a bridge between the theory in thispaper and the more general
theories for absorptive inverse scattering. It has, at least in the past, been convenient to
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adopt angleθ andkz as variables in linear and nonlinear inversion forQ profiles and for
posingQ compensation: variation of data withθ is used to separate out the influences of
multiple parameters, andkz, the Fourier dual of depth, is varied to construct the spectrum
of the profile and/or the operator for inverseQ filtering (Innanen and Lira, 2010). Our
auxiliary interest in the separability of absorptive parameters with a specifiedkz, coupled
with a wish to survey as many different approaches to the problem as possible, has led us
to pose the inversion both ways.

CONCLUSIONS

We have carried out a theoretical examination of a potentially valuable inverse proce-
dure, i.e., the direct estimation of absorptive medium properties from absorptive reflectivity
information. We are buoyed by the wave-theoretic prediction that low-Q targets do indeed
imprint themselves in their corresponding reflection coefficients, and further by the earlier-
referenced field studies and discussions suggesting that these imprints appear at detectable
levels in our data. The result is a framework, analogous to AVO/AVA based estimation of
acoustic or elastic target medium properties, in which the output are targetQ (or QP and
QS) values, as well as P- and S-wave velocities, density, etc.

All linear and nonlinear absorptive AVF/AVA problems we have studied have proven
tractable, provided the dispersion was given a functional form a priori (e.g., thelog(ω/ωr)
term in the nearly-constantQ model). If the frequency dependence of the attenuation pa-
rameter is left as a freely-varying unknown, prior information in other forms must be uti-
lized.

The AVF/AVA modes we have examined are: varyingR(ω, θ) with ω both at fixed
θ = 0 andθ 6= 0, varyingR(kz, θ) with θ at fixedkz, and varyingRP (ω, θ), RS(ω, θ) with
ω for fixed θ 6= 0. The relative numerical stability of the results suggests that using the
AVF signature ofR explicitly, i.e., varyingω, is more robust than the AVA parametrization.

Nonlinear corrections would appear to be a key element of theinversion in the presence
of low-Q targets. For instance, if the targetQ value is in the range5-10, the linearized
estimate, depending on which data type and formula are used,could be in error by anywhere
from 10-50%. In addition to reducing the bulk error, the second order correction “flattens”
the estimate when it is plotted over all pairs of frequency orangle, meaning, the variation
in accuracy of the results is lowered considerably. Nevertheless, the linearized estimates
may often be more than sufficient to detect and roughly characterize a fluid target.

As with the more general problem of absorptive inverse scattering, the final aim is
to cast the problem in a suitably complete anelastic environment, possibly coupled with
anisotropy. This step, and the problem of extracting with sufficiently high fidelity the
spectrum of an identified reflection, remain what we considerthe primary issues requiring
further analysis. Here we have lain some of the groundwork for development towards this
end. In doing so we have demonstrated that certain properties of absorptive AVF/AVA
inversion are apparently independent of the complexity of the model type. In particular,
differencing of reflection strengths across frequency (or its proxy in the angle domain)
evidently drives the procedure, whether in a two-parameteracoustic/absorptive physical
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setting or a five-parameter anelastic setting, and also regardless of whether the incidence
medium is attenuating or non-attenuating. We expect such generalities to remain as more
complete versions of these methods are developed.
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APPENDIX A: COEFFICIENTS OF EXPANSION OF ANELASTIC RP AND RS

The coefficients in the expansions in equation (56) are
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and the coefficients in equation (59) are
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