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Phase-shift modelling for HTI media
R. K. Sharma and R. J. Ferguson
ABSTRACT

Fractures play an important role in hydrocarbon producéisthey determine the path-
ways and volume of crustal fluid movement. The horizontaldv&rse isotropic (HTI) is
the simplest effective model of a formation that containryls fracture system. By fol-
lowing the same theory as discussed in paper entit®33D modelling for VTI media”,
we present phase shift modelling in order to seek the dynamickinematic signature of
the seismic waves in HTI media as these analysis can be deefuhcture analysis. The
only difference in this case resides on the way of computieggolarization angle of the
incident body waves at each grid point of the interface. Cgueatly, a layer of infinites-
imal thickness above the HTI media is taken into account gond to define the initial
wavefield propagation direction. The incident wavefieldgargation direction is governed
by the cross product of the unit normal vector in the dirattid propagation with unit nor-
mal vector associated with rotation-symmetry axis. Thassfproduct yields the effective
ray parameter that is the prerequisite for obtaining vartstowness of the refracted wave
in the HTI media. On being acquainted with the effective rayameter and the vertical
slowness of the refracted wave in HTI media, the unit norneater in propagation direc-
tion in HTI media is computed and used in the cross-produdt with the unit normal
vector associated with &' geophone at a grid location. This cross-product leads to the
computation of polarization angle of propagating body veaweH Tl media at the interface
and nurture to the rotation matrix. Therefore, the rotatiwetrix, build on bases of the po-
larization angle and azimuth, is applied on the extrapdlatavefield in order to modeéiC’
data. It is observed that the amplitude and travel time &isi& waves are affected by HTI
medium. The presente®C-3D modelling will contribute to fracture detection from the
surface seismic data since the information about the fragystem can be extracted from
the three dimensional behavior of the shear wave splittligbsequently, this modelling
will be applicable for VSP and micro-seismicity modellingthe presence of anisotropy.

INTRODUCTION

For recent years, Geo-scientist are supposed to explordiffeeent kind of hydro-
carbon reservoirs in behalf of increasing demand of oil aaslig the world. Many of the
reservoirs, such as carbonates, tight clastic and baseesavoirs, contain a finite popula-
tion of natural fractures (Zheng, 2006). Further, fracsurentrol the fluid flow rate, which
depends on the permeability of the reservoir as it's highendirection of fractures strike
and low across it (Larry, 2004). Consequently, the knowlaexfgke distribution of the frac-
ture system to Geo scientist and reservoir engineers isrdrequisite for the successful
development of these reservoirs. According to geologyaettre is characterized by a pla-
nar discontinuity in rock due to deformation or physicalgaesis (Xiang-Yangi, 1997).
The pattern of the fractures depends on the present anahhidtthe stress and it is evident
that certain small-scale fractures may be stress alignddoahave as anisotropic media
for seismic waves with sufficiently long wavelengths (Peted Crampin, 1990). These
fractures, either having been initially open due to thesstrigeld within Earth at present
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time or subsequently closes due to mineralization, are rapofor fluid flow. Since open
fractures can provide storage space and passage for flowaridpas, they are of interest
for hydrocarbon exploration . There are two ways: directiadlirect, to measure fractures.
Direct measurement is based on the well-logging or core 8aghpnd has its limitation
as it's applicable around well bores. Thus, indirect measients are required to delineate
fractured reservoir and to optimize the development of @servoir. Since in most circum-
stances in depth in-situ fractures are more or less verticalsimplest effective model of
a formation containing a single fracture system is trarselgrisotropic with a horizontal
symmetry axis ( HTI) and is considered presently. Figuredwshthe HTI model induced
by vertical fractures where axis is the axis of symmetry. The plane which possesses the
axis of symmetry is known as symmetry axis plane and a plan@alao the symmetry
axis plane is characterized by the isotropy plane and thetbedbanes are shown in Figure
1. For present day geophysics, the crustal fracture condesttibution and possible align-
ment is the important subject in despite of the complexitgrofstal anisotropy and if we
are to comprehend the role of fractures and fluids to moniyairdcarbon reservoirs for
the presence or absence of major fluid pathways, we must staderhow seismic waves
interact with the fractures and how this interaction carvygte an opportunity to extract the
fracture information from seismic waves by considering kirematic and dynamic anal-
ysis. In order to accomplish this purpose it's worth to rewibe wavefield propagation in
the transverse isotropic media.

WAVE PROPAGATION IN THE TRANSVERSE ISOTROPIC MEDIA

Dealing with anisotropy in the oil and gas industry contdims two main objectives
at exploration and field development stages. In exploratie® would like to improve
velocity model by estimating anisotropy from availablessaic data and migrate the data
using this model in a hope to improve the image of target lbmszzompared to the image
obtained by using best isotropic velocity model (Grechk®9). As long as it happens our
job is done and we don’t care about the physical reason obtomy. While, we do want
to find out the physical reason for the measured anisotrofigldtdevelopment stage. In
consequence, a sound understanding of the basic princpsessmic wave propagation in
anisotropic media and the ability to model the main charasttes of propagating waves
are required. The equation of motion for transverse isatreplid can be represented as

82ui . 071-]-

p 8t2 N 6xj’

where theu; are the components of particle displacementthare the stresses apds the
density of the corresponding medium ang=1, 2, 3.

To solve the equation 1 in a unique fashion, the displacernetoru and the stress tensor
T are related to each other as given by Hooke’s law and can bbessqd as

(1)

Tij = Cijkl€kl, (2)

wherec is the fourth-rank stiffness tensor ang=3 ( Ou;/0x; + du;/0x;), andi, j=z, y, z
or 1, 2, 3. The substitution of the equation 2 into equatiomeldg the wave equation as

82ui 821,%
'OW = Cijklm- 3)
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Azimuthal Anisotropy (HTI)

Symmetry axis plane

FIG. 1: Schematic representation of HTI medium induced hyicad fractures where:
axis is the axis of symmetry. The plane which possesses thk@bgymmetry is known as
symmetry axis plane and a plane normal to the symmetry aaiseak characterized by the
isotropy plane (Nadri, 2009).
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Its standard solution is a harmonic plane wave of form
up = A[]}geiw(njacj/sz‘,)7 (4)

where U is the polarization vectory is the angular frequency is the unit wavefront
normal andV is the phase velocity. Substitution of the plane wave sotud into the
equation 3 leads to the Christoffel equation (Tsvankin, 2001

G — pV2 Gio G13 Uy
Ggl G22 - pV2 G23 UQ = 0. (5)
G Gso Gis3 — PV2 Us

with Gik=cijkmjnl .

The Christoffel equation 5 is the most important equatiorafwalysis of wave phenom-
ena in anisotropic media. In fact this equation is treategigenvalue-eigenvector problem
for the symmetric, positive definite matr. The positive definiteness of tensoensures
the positive definiteness @ while its symmetry is the consequences of the symmetry of
the stiffness tensor. Since the kinematic and dynamic sigeaaf body waves for HTI me-
dia can be obtained from known analysis of VTl media, we abgrsa transverse isotropic
medium and z axis coincide with the normal to the plane ofsvarse isotropy and can be
treated as axis of rotation-symmetry. However, it's knowattsuch a media can be char-
acterized by five elastic constant (Slawinski, 2003) andgiiese constants in equation 5,
the eigenvalues of the Christoffel equation can be obtaired f

which yields a cubic equation f@i/2. The Christoffel equation yields three possible values
of the phase velocity which belongs to P-wave and two sheaesvéor a given phase
directionn. Therefore, the S-wave is splitted into two modes with défe velocities and
polarizations. However, the three eigenvalue$sgh) are the squared phase velocities of
three body waves and can be expressed as

sz(é) = %[(011 + 644) sin2(9) + (633 + C44) COSQ(H) + DL (7)
Vﬁ)(g) = %[(CH -+ C44) SiH2(6> + (ng + C44) (3082(9) - D], (8)
and .
Vi (0) = ;[066 sin?(0) + cas cos(9)], ©)
where

D = ([(c11 — ca4) sin*(0) — (¢33 — c44) c05*(0)]> 4 4(c13 + ca4)? sin?(0) COS2(9))1/2. (10)

The complexity of these equation is a main problem to use igbmopic model for seismic
exploration but it can be reduced by using Thomson'’s parara¢tThomsen, 1986). These
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parameters play an important role for understanding seisignatures in anisotropic me-
dia and can be expressed as

ap = ]2, (11)
p
and
By = ]2, (12)
p

whereay, (5 are the P-wave and S-wave velocities along the rotatiomrsgtny axis and
anisotropy can be characterized by the dimensionless ciesifs

ez LG8 (13)
2¢33
Ce — C
7= (14)
Cs5

and

(c13+ ¢55)% — (c33 — €55)°
2c33(C33 — C55)

The instinctive application of coefficiendésand- is clear as they vanish in isotropic media.

Thus, the magnitude of the P and SH-wave anisotropy can bsurezhfrom the values of

e and~y. The intuitive appeal of coefficientis not as transparent as thosesand~ and

might seem unexpected. The significancé becomes apparent once it’s noticed that

5:

(15)

d*V,,
do?

Consequently) is not just an arbitrary combination of the elastic coeffitge Instead, the
curvature of the P-wave velocity function at the verticafjs/erned bys. It also governs

the P-wave normal moveout velocities from horizontal reélecand plays an key role for
seismic reflection data (Grechka, 2009). On being acquainith Thomson’s parameters,
the phase velocity expression of the body waves can be equies

|lo=0= 200x0. (16)

V2(6) = al[l + esin® 0 + D*(6))], a7
042 052
Viv(0) = G311 + —gesin® 0 — —2 — D*(0)], (18)
Ib5 o5
and
Vi (0) = G5[1 + 2y sin 6], (19)
where
52
1 2 46 4(1 - —3 + 6)6
D*(0) = 5(1— Z9){[1 + ———sin? g cos”  + ————sin* 6]'/* — 1)}. (20)

Ap Ay

Once the eigenvalues of the Christoffel equation are knowegastions 17, 18 and 19,
the corresponding eigenvectots can be computed from any two equation of the three
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equation of the Christoffel equation 5. Since the Christadtglation is real and symmetric,
the obtained polarization vectors of the body waves are atiytorthogonal for any given
phase directiom (Tsvankin, 2001). However, the polarization are generadigher parallel
nor orthogonal to the wavefront normal. Further, prior talgsis the dynamic signature of
body waves in the transverse isotropic media, it's convart@ understand the difference
between the group velocity and the phase velocity.

Group velocity

The group velocity-vector characterizes the direction apéed of energy associated
with the wave motion, therefore, is of primary importances@ismic travel modelling and
inversion methods. In contrast, the phase velocity is tkallgelocity with which wave-
front propagates in the normal direction to it. For transeeanisotropic, the difference
between the group and phase velocity vectors are causeddmjtyevariation with angle.
As depicted in Figure 2 the group angle represents the direof the group velocity vec-

source

wavefront

wave vector k

FIG. 2. Schematic representation of the phase and grougsndlhe angle is measured
with vertical axis. The group angle depicts the directioeérgy propagation while phase
angle determines the direction of wavefront propagatiasvéhkin:2001).

tor in a homogeneous medium and it is aligned with the soteceiver direction while the
phase angle is the angle between the wave véctord the vertical axis. These angles are
different just because of the lack of sphericity of wavefronthe presence of anisotropy.
In contrast to phase velocity which can be obtained from thes@lffel equation, group
velocity can be computed from the phase velocity functiomging this relationship

V =gumn, (21)

between the group and the phase velocities. Now to obtaigrinep velocity from the
equation 21, the spatial direction of the unit wavefrontmakn can be characterized by
two directional angleg;, andf,. These angles are knowns as the polar angle and the
azimuth ofn, respectively. So the wavefront normal can be computed as

n = [sin 6, cos 6, sin 6 sin 6, cos 01]. (22)
The differentiation of the equation 21 leads the expression

oV On n og
06, &0, " 8,

n(i=1,2). (23)
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By definition,n is the normal to the wavefront, whereas the derivatigsod; are tangent

to it. Hence, the second term on the right -hand side of abguaten vanishes. Thus
ovV.  0On
20, — 00,

(i=1,2). (24)

At this moment considering the equations 21 and 24, the commtaf the group velocity
vector can be obtained according to expression

oV on 1 0V On

&=Vt oo, sn? e, 96, 00, (25)
This equation leads to the following conclusions
e The magnitude of the group velocity can be defined as
ov 1 0V
= =4/ V2+ (=) + —(=)2 26

Therefore, the inequality” < g is satisfied by the phase and group velocities for any
wavefront normah.

e As it's known that ray is the unit vector, parallel to the group velocity so it can be
defined as

r—8 27)

9

e Following the equation 21 it can be demonstrated that

N (28)
g

If r # n, the ray deviates from the wavefront normal towards the @hasocity
increase in accordance with equation 25. Figure 3 illustrtitis geometrically. From
Figure 3, it's evident that

_ V) Ve
os0 =) = V) = gty (29)

Now by considering the right triangle whose hypotenusesasdl’, 9V /00 are the
sides, it can be illustrated that

tan(f — ) = ——~— =, (30)
and the trigonometric identity

tanx — tan
tan(z — y) Y

= 31
1 +tanztany’ (31)
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leads to the relationship between the group angle and theeragle as

tan @ + — av(o)
_ 1 V() db
1 = tan [1_ v, (32)
V(6)  db

According to equation 32, the equality=6 occurs only whenlV (6)/d0=0, that is,
at extrema ofl/(¢). At those extrema, the ray direction coincides with wavefro
normal’s direction and the group-and phase velocity sedaouch each other as
shown in Figure 3.

Ray (Group) and Wavefront (Phase) Velocities

Plane-wave wavefront

Wavefront velocity surface

Vertical Velocity

[ OV rwion:
)| — Tt
. de

|
J

Horizontal Velocity

FIG. 3: Schematic representation of the relationship betwghase velocity and group ve-
locity surfaces. The angles andé are the group and phase angles, respectively and are
measured with horizontal axis. It illustrates that the graelocity surface can be con-
structed from the known phase velocity surface. Plane-\itlargs are the normal drawn
from known points of the phase velocity surface to the groelpeity surface and governs
the energy distribution for a given direction (Nadri, 2009)

So far we have discussed about the crucial factors which earséd in order to analyze
the dynamic behavior of the body wave propagation, throbglahisotropic media. Travel
times in anisotropic media are accommodated through threephave transformation and
phase shift. For accomplishing phase shift modelling weshemyplemented same theory
as discussed by the author in another CREWES report (Sharmiaesigdson, 2010). The
only difference is that a layer of infiniteness thicknessvabthe HTI medium is taken
into account here in order to define the wavefield propagatimction initially. We have
implemented a constraint on this layer that the velocityspesed by it is the maximum
velocity of the lower HTI media. The incident wavefield prgp#on direction is governed
by the cross product of the unit vector normal to the planeefrawnt with unit vector in the
direction of axis of symmetry as

pr=1|p xa| \/pi +p3+ ¢ (33)
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wherep;, p, andq are the horizontal components 1, 2 and the vertical comgarfethe
slowness vector, respectively and these are evaluatee in¢ident medium. For HTI me-
dia presently, we take the interface characterizedisy)( Once the effective ray parameter
pr is computed, the vertical slownegg:; of the incident body wave in the lower HTI me-
dia can be computed in terms of the Thomson’s parameter anelffibictive ray parameter
and are known for all the body waves (Sharma and Ferguso®)2Q@h being acquainted
with the effective ray parameter and the vertical slowndgb@incident wavefield in the
HTI media, the unit vector normal to the plane wavefront ia flnopagation direction can
be determined as

N pli+ij+QHTIR
PHTI = 5 5 5 . (34)
\/ P+ D3+ Ay

Now, the cross product of this unit vector with the verticaiseof a3C' geophone

|PﬁT1 X él| ) (35)

yields the polarization angle at ea8G geophone located at the interface and nurture to the
rotation matrix as the knowledge of the polarization anglhe essential parameter for ob-
taining rotation matrix. Once rotation matrix is build, stimplemented on the extrapolated
wavefield in order to mod€IC-3D data.

EXAMPLE

We consider a homogeneous and anisotropic HTI medium of 7@Bickness for a
simple demonstration. The fact that the ratio of fracture $0 the seismic wavelength less
than 1 makes the medium to be effectively homogeneous asdtempic. Further, Thom-
son’s parameters are considered from Vernik’s paper fontedium characterization. Now
a known impulsive source is extrapolated through the mediuplane wave domain and
transformed back into the space and time domain at interfader to energy distribution
among the three components of 8@ geophones, we consider the in-line, cross-line and
time slices of the known extrapolated wavefield in order talgre the kinematic and dy-
namic behavior of the body waves in the HTI media. Presetitlyin-line and cross-line
directions are characterized by the fracture’s strikeaiom and normal to it, respectively.
Consequently, first a known P-wave source is considered atdht surface and is ex-
trapolated through the HTI medium. Figure 4a shows thena-tilice of the extrapolated
wavefield and the cross-line slice is shown in the Figure 4mekatically, these slices
lead to the following observations

e The arrival time of the extrapolated wavefield at zero ofisetame in the in-line
slice as well as in the cross-line slice.

e The travel time response of the in-line slice is hyperboliilevis non-hyperbolic of
the cross-line slice.

e The arrival time of the extrapolated wavefield at far offsethe in-line slice is less
than register in the cross-line slice. It is a manifestatbthe well known fact that
the P-wave travel fast in the direction of fracture strikel atow in the direction
normal to it.
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Figure 5a and b show the time slices of the extrapolated weddefiithout and with analytic
curve. The obtained ellipse in the— y plane manifests the azimuthal anisotropy of the
medium as expected. The overlapping of the analytic ellipdethe obtained one ensures
the accuracy of the proposed phase shift modelling, kineadt

In-line slice Cross-line slice
Ao ‘ ‘ ‘ : ‘ ‘ ‘ ‘ ‘ g ‘ : : :
0.1F 1 0.1F
0.2} e — 1 0.2 o —
[} Q
£ £
= -
0.3F 5 0.3F
0.4F 1 0.4%

05 . . . . . . . . . 0.5 . . . . . . . . .
—1000-800 -600 -400 -200 0O 200 400 600 800 1000 -1000-800 -600 -400 -200 O 200 400 600 800 1000
X(m) y(m)

(@) (b)

FIG. 4: (a) In-line (b) Cross-line slices of the extrapolatedwavefield through an
anisotropic medium characterized by Thomson’s paramstes#n in appendix. The con-
siderable difference between these slices is observedigteally as well as dynamically.
Both slices manifest well known fact that P-wave travel faghe direction of fracture’s

strike with high amplitude.

Dynamically, it is noticed that P-wave amplitude increafsem the slow direction to
the fast direction. This observation correlates well with €quation 28 and Figure 3 where
it is mentioned that ray deviates towards the high phasecitgldirection from the low
velocity direction in the presence of anisotropy. In adufitio this, if we draw a normal
from a known point of the phase velocity surface to the groelogity surface, the point
where it makes a contact with the group velocity surfaceasgonds to the plane wave
drawn tangentially at that point. Then the energy distrdoutiepends on how close these
points are at the group velocity surface and it can be obddreen the Figure 3 that these
points are dense in and near the fast velocity directionevhflarse in the low velocity
direction and hence the observed amplitude pattern in calysis. Now, in order to seek
the influence of the anisotropy on the kinematic and dynaminakior of the P-wave we are
repeating the same procedure as outlined above after indhogl the different anisotropy
in the same model as taken previously. Figure 6a and b showiiee and the cross-
line slices of the extrapolated wavefield for the same medisrbefore but for a positive
value ofé. The time slices of the extrapolated wavefield with and withenalytic curve
are shown in Figure 7a and b.  In continuation of this analybis in-line and the cross
line slices for negativeé are shown in the Figure 8a and b and the time slices are shown in
the Figure 9a and b. A close examination of these figures madassible to illustrate the
following observations

¢ Kinematically, the different values of the do not have any effect on the in-line
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Time slice Time slice

x(m)
Xx(m)

-1200 -800  -400 0 400 800 1200 -1200 -800  -400 0 400 800 1200
y(m) y(m)

(@) (b)

FIG. 5: Time slices of extrapolated P wavefield (a) withoyt\ith analytic curve. Ob-
tained ellipse is a manifestation of azimuthal anisotropyxpected. More energy is ob-
served in fast direction. The overlapping of the analytiozey(shown in red color) with the
obtained ellipse illustrates authentication of proposeaise shift modelling.

In-line slice Cross-line slice
a), b)

Time(s)
Time(s)

0.5 0.5
-1000-800 -600 -400 -200 0 200 400 600 800 1000  -1000-800 -600 -400-200 O 200 400 600 800 1000
x(m) y(m)

(@) (b)

FIG. 6: (a) In-line (b) Cross-line slices of the extrapolaRed/avefield for same model as
before but for a larger magnitude of anisotropy (highe0.29) in the medium. The large
value ofé does have effect on the cross-line slice while the in-lingegk not influenced.
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a) Time slice b) Time slice

x(m)
x(m)

400

800

1200 1200
-1200 -800 -400 0 400 800 1200 -1200 -800 -400 0 400 800 1200

y(m) y(m)

(@) (b)

FIG. 7: Time slices of the extrapolated P wavefield (a) witi{bliwith analytic curve. The
large value ob does have influence on the kinematic and dynamic behavid?svadve.

In-line slice Cross-line slice
a) g b) 4

Time(s)
Time(s)

0.5 0.5
-1000-800 -600 -400 -200 0 200 400 600 800 1000 -1000-800 -600 -400 -200 0 200 400 600 800 1000
x(m) y(m)

(@) (b)

FIG. 8: (a) In-line (b) Cross-line slices of the extrapolakedavefield for the same model
as considered for above Figure but for large negative value(6=-0.2). A considerable
effect, kinematically as well as dynamically, of anisoyap observed on the cross-line
slice.
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a) Time slice b) Time slice

x(m)
x(m)

0 1200
-1200 -800  -400 0 400 800 1200 -1200 -800  -400 0 400 800 1200
y(m) y(m)

(@) (b)

FIG. 9: Time slices of the extrapolated P wavefield (a) with@) with analytic curve for
the same medium as considered in Figure 8. The authenticaitibbe proposed modelling
is demonstrated here as analytic curve is analogous to théel one.

a) Time slice b) Time slice

400

800

1200, 1200,
-1200 -800  -400 0 400 800 1200 -1200 -800  -400 0 400 800 1200

y(m) y(m)

@) (b)

FIG. 10: Time slices of the extrapolated P wavefield (a) withwithout analytic curve
through the medium characterized by Thomson’s parametersen randomly. The un-
expected behavior, kinematically and dynamically, iltatts that choice of Thomson’s
parameters for a medium characterization can not be random.
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slice’s response while do have the noticeable effect ondahéte cross-line slice.
The authentication of the proposed phase shift modellisgasvn in these figures as
analytic ellipse coincides with the obtained ellipse.

e Dynamically, at a given time the energy distribution in the- y plane depends on
the magnitude of the anisotropic parameteFurther, it's noticed that for negative
the contrast in the in-line and cross-line’s energy is mbantthat for the positivé.

Moreover, the choice of thé for the figures shown above was limited on the behalf of
the relationship between elastic stiffness constants dminson’s parameters as shown
in appendix. Thus, the adopted value joghould make physical sense and can not be
taken randomly and it can be verified in reference of Figure Higure 10a and b show
the time slice of the extrapolated wavefield for the deltasemorandomly. It is observed
here that the maximum amplitude of P-wave occurs in the sloection and decreases
towards the fast direction and there is no overlapping ofydiicaand the obtained ellipses.
Thus, the demonstrated dynamic behavior of the propagateave is just opposite what
we expected and make it necessary that the selectiancah not be random. Figure

In-line slice

Cross-line slice

0.2

0.2

0.3p . 1 0.3

0.4F

Time(s)
Time(s)

0.4p

o5F e 0.5}

0.6 . . . . . . . . . 0.6 . . . . . . . . .
—-1000-800 -600 -400 -200 O 200 400 600 800 1000 —1000-800 -600 -400 -200 O 200 400 600 800 1000
x(m) y(m)

(@) (b)

FIG. 11: (a) In-line (b) Cross-line slices of the extrapotb®H wavefield for same model as
considered in Figure 4 with low resolution. The differenkieematically or dynamically,
can be examined precisely on behalf of these slices.

11a and b show in-line and cross-line slices of the extrapdl&H-wave through the same
model as considered in Figure 4. Both of these slices aréeplatith with a high clipped
display, otherwise, the difference in between these slitésrms of amplitude and travel
time would not be noticeable. Although, Itis observed froguife 12a that SH-wave travel
fast in direction of fracture’s strike and energy decredsas the fast direction to the slow
direction and follow the same behavior as of P-wave. Kinéraly, the authentication
of the proposed modelling for SH-wave in anisotropic medismemonstrated as analytic
curve (shown in magenta color) matches with obtained oneyur€ 12b. Again, to observe
the influence of anisotropy on the kinematic and dynamic iemaof SH-wave, the same
model as considered for Figure 11, is taken into account effleoducing large anisotropy

14 CREWES Research Report — Volume 22 (2010)



HTI-Modelling

a) Time slice b) Time slice
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FIG. 12: Time slices of the extrapolated SH wavefield (a) ath(b) with analytic curve
for same medium as ones shown in Figure 11 and demonstrdtSkhavave travel fast
in direction of fracture’s strike with high amplitude antudtrate the authentication of the
proposed modelling.

(higher~) into the medium through which SH-wave propagates= 0.34). The in-line
and the cross-line slices are shown in Figure 13a and b. Tdsendliarity between these
two slices is observed here in terms of travel time and annbdéit However, these analysis
can be emphasized in reference to Figure 14a where it is demaded that more energy
travel in fast direction. As this Figure differs from the Eig 12a it is possible to make a
conclusion that anisotropy does have effect on kinematicdgnamic behaviors of the SH-
wave. So far, we have discussed about the effect of anisotopvavefield propagation
of seismic waves. Now following the same theory as outlingalva through equation 33 to
35 we have obtaine8C data for known P-wave source at surface after applying ttaiom
matrix on the extrapolated wavefield and have taken slicgitir the in-line direction and
shown in Figure 15. The red dashed line highlighted in theleiat the top right corner of
Figure 15c indicates the direction along which a verticaksbf the modelled data is taken.
The in-line and cross-line directions are indicated by l@nd magenta color, respectively.
Figure 15a, b and c show the registered energy versus oREYQ) analysis of P-wave
on Hy, H, andV components while registered energy versus azimuth (REYia)yais is
shown in Figure 16a, b and c, respectively. Moreover, thegads follow the expected
pattern of registered energy on the different componernits @ffset and azimuth.

SV-case

Now the same theory as discussed above has been implement&d-vave. In order
to analysis the kinematic and dynamic behavior of the SVena\HTI medium, the same
model as used for P and SH-wave is considered. Figure 17a ahdvbthe in-line and
cross-line slices of the extrapolated SV wavefield. It isepbaed that both of these slices
are very close to each other in terms of travel time respofsgure 18a and b illustrate
time slices of the extrapolated wavefield. The obtainedeiraicates that anisotropy does
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a) In-line slice Cross-line slice
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FIG. 13: (a) In-line (b) Cross-line slices of the extrapoth&H wavefield for the same
model as considered above but of large anisotropy=( 0.34) and show the effect of
anisotropy on propagation of the SH wavefield.

a) Time slice b) Time slice
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FIG. 14: Time slices of the extrapolated SH wavefield throtigh same model as ones
shown in Figure 13. The authentication of the proposed nliadek shown in (a) and (b)
kinematically and dynamically, respectively.
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a) P-H1 component 4
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FIG. 15: (a) Registered energy versus offset (REVO) analysP-wave on H1 component
illustrate that HL component is more favorable for energyisteation as offset increases.
Polarity reversal appear on the either side of zero off$8t(REVO) analysis of P-wave on
H2 component illustrate that H2 component is more favor&dni@nergy registration near
to zero offset. Polarity remains stationary on the eithde $f zero offset. (c) Recorded
P-wave energy on vertical component demonstrate that gneggstration on vertical com-

ponent decreases with offset. Polarity follow the statigrieehavior on either side of zero
offset.
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a) P-H1 component
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FIG. 16: (a) Registered energy versus azimuth( REVA) amalysP-wave at H1 compo-

nent indicates that energy registration increases as #dzimereases from 0 to 90. Polarity
reversal occur on the either side of a line that bisects ttedecalong cross-line direction.

(b) REVA analysis of P-wave at H2 component indicates thatgnregistration decreases
as azimuth increases from 0 to 90. Polarity reversal occtinerither side of a line that bi-

sects the circle along in-line direction. (c) REVA analysi$® wave on vertical component
reveal the variation of recorded energy and polarity wittmagh.
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not have a such considerable effect on SV-wave propagatidmd on P and SV-wave
propagations for this case. Further, the effect of aniggtran the SV-wave propagation
has been examined on behalf of considered model shown imédppe Figure 19a and b

In-line slice Cross-line slice

a) g b) o

0.6 0.6
—1000-800 -600 -400 -200 0 200 400 600 800 1000 —-1000-800 -600 -400 -200 0 200 400 600 800 1000
x(m) y(m)

(@) (b)

FIG. 17: (a) In-line (b) Cross-line slices of the extrapotafV wavefield for the same
model as considered above for P- and SH-waves. The in-line & analogous to the
cross-line slice

a) Time slice b) Time slice
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x(m)

-800 -400 0 400 800 -800 -400 0 400 800
y(m) y(m)

(@) (b)

FIG. 18: Time slices of the extrapolated SV wavefield throtiglh same model as ones
shown in Figure 17. The authentication of the proposed nliadek shown in (a) and (b)
dynamically and kinematically, respectively. The obtaimécle illustrate that anisotropy
does not have a considerable effect on SV wave propagation.

show the time slices of the SV wavefield extrapolated throaghedium characterized by
Thomson’s parameters shown in appendix and possessesg@esandd with condition
(e > §). In continuation of this, another model possesses the samdition as outlined
previously but with large magnitude of Thomson’s paranseitgetaken into account too for
observing the effect of anisotropy. By inspecting Figuréshd 20, it can be revealed that
as long as Thomson’s parameters follow the condifiorr §) anisotropy does not have a
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considerable effect on SV wave propagation either kinesallyi or dynamically. However,
the effect of anisotropy on SV wave propagation can be seéiigires 21, 22 and 23.
a) b)

Time slice Time slice
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FIG. 19: Time slices of the extrapolated SV wavefield throngbdel 2(¢ > §) as ones
shown in Table 2. The authentication of the proposed matgit shown as analytic curve
overlays with obtained one as shown in (a) and (b). There &ffieat of anisotropy for this
model.
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FIG. 20: Time slices (a) and (b) of the extrapolated SV walefierough model 3 with
large magnitude ofe > ¢) shown in Table 2. The authentication of the proposed matglli
is shown in (b),kinematically. Still no effect of anisotsojs observed.

Although, the authentication of the proposed modellingeknatically, is not demonstrated
in these cases as obtained results are not matching wittenalirves, it is possible to
make some remarkable conclusion as follows

e if (¢ — 9 < 0), the cusps occur in the in-line direction and can be observéiure
21a and be authenticate by Figure 21b.
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e if 0 is negative ande — § > 0) , the cusps occur near to 48ngle from the axis of
symmetry. This phenomena is noticed in Figures 22 and 23.

a) ) ) b) ) .
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FIG. 21: Time slices of the extrapolated SV wavefield throtlghmodel 4¢ < §) shown
in Table 2. The cusps phenomena is occurred in the in-lirection. The occurrence of
cusps is endorsed by the analytic curve but no overlappiragalytic curve with obtained
one is noticed.

a) . X b) " .
Time slice Time slice
T

-1000 T T T T T -1000

-500F -500

x(m)
o

o B
A e
SN Sl

o e

500 500

1000 1000

-1000 -500 0 500 1000 -1000 -500 0 500 1000
y(m) y(m)

(@) (b)

FIG. 22: Time slices of the extrapolated SV wavefield throngbdel 5(—9) shown in
Table 2. The cusps is observed near t6.45

CONCLUSIONS

We have presented multicomponent modelling of P-wave ing¥eave domain for HTI
media. The authentication of the proposed phase shift rfiogdias been demonstrated
kinematically and dynamically. Further, the kinematic aydamic effect of anisotropy on
the seismic waves propagation has been demonstrated addgbedency of this analysis
on the magnitude of Thomson’s parameters is also illustra&nce the fractures have an
impact on the amplitude and travel time of seismic waves ggation, the careful investi-
gation of this impact can be used for fracture detection.
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Time slice

x(m)

-500 0 500
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FIG. 23: Time slices of the extrapolated SV wavefield throtlgfvmodel possesses large
negative value of (model 6) as shown in Table 2.
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APPENDIX

Using the Thomson’s parameters, the following relatiopdietween elastic stiffness
constant and Thomson’s parameters can be established as

e = pag (1 + 2e), (A-1)

C33 = pOég, (A_Z)

Cqq = Pﬁg ) (A-3)

C55 = pﬁg, (A-4)

e = p /(02 = 30%) ((20+ 1) a0 = Bo®) — p ® (A-5)

For given Thomson'’s parameters, the elastic stiffnesstaahsan be obtained using above
equations. As it's known that the elastic stiffness cortstamains real for all physical
situations, the obtained value of the elastic stiffnessstaonic;; is complex and violates
the physical behavior of the elastic stiffness constantgife large negative value @t
Thus, this condition leads to the unexpected behavior ofatheefield kinematically as
well as dynamically.

Qo Bo € 0 Y
2950| 1990| 0.17| 0.09| .14

Table 1. Thomson’'s Parameters of a medium considered fodFSBhwaves propagation.

Model | «y o € ) y

1 2950| 1990 0.17 | 0.09 | .14
2 3600 2000| 0.14 | 0.08 | 0.16
3 3340 1860| 0.49 | 0.30 | 0.59
4 3300 2300| 0.58 | 0.84 | 0.39
5 3600 2100| 0.36 | -0.08 | 0.38
6 3377| 1490| 0.200| -0.282]| 0.510

Table 2: Thomson’s Parameters of models considered for S¥ weopagation.

24 CREWES Research Report — Volume 22 (2010)



