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ABSTRACT

Fractures play an important role in hydrocarbon productionas they determine the path-
ways and volume of crustal fluid movement. The horizontal transverse isotropic (HTI) is
the simplest effective model of a formation that contain a single fracture system. By fol-
lowing the same theory as discussed in paper entitled “9C-3D modelling for VTI media”,
we present phase shift modelling in order to seek the dynamicand kinematic signature of
the seismic waves in HTI media as these analysis can be usefulfor fracture analysis. The
only difference in this case resides on the way of computing the polarization angle of the
incident body waves at each grid point of the interface. Consequently, a layer of infinites-
imal thickness above the HTI media is taken into account conducive to define the initial
wavefield propagation direction. The incident wavefield propagation direction is governed
by the cross product of the unit normal vector in the direction of propagation with unit nor-
mal vector associated with rotation-symmetry axis. This cross-product yields the effective
ray parameter that is the prerequisite for obtaining vertical slowness of the refracted wave
in the HTI media. On being acquainted with the effective ray parameter and the vertical
slowness of the refracted wave in HTI media, the unit normal vector in propagation direc-
tion in HTI media is computed and used in the cross-product ofit with the unit normal
vector associated with a3C geophone at a grid location. This cross-product leads to the
computation of polarization angle of propagating body waves in HTI media at the interface
and nurture to the rotation matrix. Therefore, the rotationmatrix, build on bases of the po-
larization angle and azimuth, is applied on the extrapolated wavefield in order to model9C
data. It is observed that the amplitude and travel time of seismic waves are affected by HTI
medium. The presented9C-3D modelling will contribute to fracture detection from the
surface seismic data since the information about the fracture system can be extracted from
the three dimensional behavior of the shear wave splitting.Subsequently, this modelling
will be applicable for VSP and micro-seismicity modelling in the presence of anisotropy.

INTRODUCTION

For recent years, Geo-scientist are supposed to explore thedifferent kind of hydro-
carbon reservoirs in behalf of increasing demand of oil and gas in the world. Many of the
reservoirs, such as carbonates, tight clastic and basementreservoirs, contain a finite popula-
tion of natural fractures (Zheng, 2006). Further, fractures control the fluid flow rate, which
depends on the permeability of the reservoir as it’s high in the direction of fractures strike
and low across it (Larry, 2004). Consequently, the knowledgeof the distribution of the frac-
ture system to Geo scientist and reservoir engineers is the prerequisite for the successful
development of these reservoirs. According to geology, a fracture is characterized by a pla-
nar discontinuity in rock due to deformation or physical diagenesis (Xiang-Yangi, 1997).
The pattern of the fractures depends on the present and history of the stress and it is evident
that certain small-scale fractures may be stress aligned and behave as anisotropic media
for seismic waves with sufficiently long wavelengths (Peterand Crampin, 1990). These
fractures, either having been initially open due to the stress field within Earth at present
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time or subsequently closes due to mineralization, are important for fluid flow. Since open
fractures can provide storage space and passage for flow of oil and gas, they are of interest
for hydrocarbon exploration . There are two ways: direct andindirect, to measure fractures.
Direct measurement is based on the well-logging or core sampling and has its limitation
as it’s applicable around well bores. Thus, indirect measurements are required to delineate
fractured reservoir and to optimize the development of the reservoir. Since in most circum-
stances in depth in-situ fractures are more or less vertical, the simplest effective model of
a formation containing a single fracture system is transversely isotropic with a horizontal
symmetry axis ( HTI) and is considered presently. Figure 1 shows the HTI model induced
by vertical fractures wherex axis is the axis of symmetry. The plane which possesses the
axis of symmetry is known as symmetry axis plane and a plane normal to the symmetry
axis plane is characterized by the isotropy plane and these both planes are shown in Figure
1. For present day geophysics, the crustal fracture content, distribution and possible align-
ment is the important subject in despite of the complexity ofcrustal anisotropy and if we
are to comprehend the role of fractures and fluids to monitor hydrocarbon reservoirs for
the presence or absence of major fluid pathways, we must understand how seismic waves
interact with the fractures and how this interaction can provide an opportunity to extract the
fracture information from seismic waves by considering thekinematic and dynamic anal-
ysis. In order to accomplish this purpose it’s worth to review the wavefield propagation in
the transverse isotropic media.

WAVE PROPAGATION IN THE TRANSVERSE ISOTROPIC MEDIA

Dealing with anisotropy in the oil and gas industry containsthe two main objectives
at exploration and field development stages. In exploration, we would like to improve
velocity model by estimating anisotropy from available seismic data and migrate the data
using this model in a hope to improve the image of target horizons compared to the image
obtained by using best isotropic velocity model (Grechka, 2009). As long as it happens our
job is done and we don’t care about the physical reason of anisotropy. While, we do want
to find out the physical reason for the measured anisotropy atfield development stage. In
consequence, a sound understanding of the basic principlesof seismic wave propagation in
anisotropic media and the ability to model the main characteristics of propagating waves
are required. The equation of motion for transverse isotropic solid can be represented as

ρ
∂2ui

∂t2
=
∂τij
∂xj

, (1)

where theui are the components of particle displacement,theτijare the stresses andρ is the
density of the corresponding medium andi, j=1, 2, 3.
To solve the equation 1 in a unique fashion, the displacementvectoru and the stress tensor
τ are related to each other as given by Hooke’s law and can be expressed as

τij = cijklǫkl, (2)

wherec is the fourth-rank stiffness tensor andǫij=1
2
( ∂ui/∂xj + ∂uj/∂xi), andi, j=x, y, z

or 1, 2, 3. The substitution of the equation 2 into equation 1 yields the wave equation as

ρ
∂2ui

∂t2
= cijkl

∂2uk

∂xl∂xj

. (3)
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FIG. 1: Schematic representation of HTI medium induced by vertical fractures wherex
axis is the axis of symmetry. The plane which possesses the axis of symmetry is known as
symmetry axis plane and a plane normal to the symmetry axis plane is characterized by the
isotropy plane (Nadri, 2009).
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Its standard solution is a harmonic plane wave of form

uk = AUke
iω(njxj/V −t), (4)

whereU is the polarization vector,ω is the angular frequency,n is the unit wavefront
normal andV is the phase velocity. Substitution of the plane wave solution 4 into the
equation 3 leads to the Christoffel equation (Tsvankin, 2001)


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
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


= 0. (5)

with Gik=cijklnjnl.

The Christoffel equation 5 is the most important equation foranalysis of wave phenom-
ena in anisotropic media. In fact this equation is treated aseigenvalue-eigenvector problem
for the symmetric, positive definite matrixG. The positive definiteness of tensorc ensures
the positive definiteness ofG while its symmetry is the consequences of the symmetry of
the stiffness tensor. Since the kinematic and dynamic signature of body waves for HTI me-
dia can be obtained from known analysis of VTI media, we consider a transverse isotropic
medium and z axis coincide with the normal to the plane of transverse isotropy and can be
treated as axis of rotation-symmetry. However, it’s known that such a media can be char-
acterized by five elastic constant (Slawinski, 2003) and using these constants in equation 5,
the eigenvalues of the Christoffel equation can be obtained from

det[Gij − ρV 2δik] = 0, (6)

which yields a cubic equation forρV 2. The Christoffel equation yields three possible values
of the phase velocity which belongs to P-wave and two shear waves for a given phase
directionn. Therefore, the S-wave is splitted into two modes with different velocities and
polarizations. However, the three eigenvalues ofG(n) are the squared phase velocities of
three body waves and can be expressed as

V 2
p (θ) =

1

2ρ
[(c11 + c44) sin2(θ) + (c33 + c44) cos2(θ) +D], (7)

V 2
sv(θ) =

1

2ρ
[(c11 + c44) sin2(θ) + (c33 + c44) cos2(θ) −D], (8)

and

V 2
sh(θ) =

1

ρ
[c66 sin2(θ) + c44 cos2(θ)], (9)

where

D = ([(c11 − c44) sin2(θ)− (c33 − c44) cos2(θ)]2 + 4(c13 + c44)
2 sin2(θ) cos2(θ))1/2. (10)

The complexity of these equation is a main problem to use of anisotropic model for seismic
exploration but it can be reduced by using Thomson’s parameters (Thomsen, 1986). These

4 CREWES Research Report — Volume 22 (2010)



HTI-Modelling

parameters play an important role for understanding seismic signatures in anisotropic me-
dia and can be expressed as

α0 =

√

c33
ρ
, (11)

and

β0 =

√

c55
ρ
, (12)

whereα0, β0 are the P-wave and S-wave velocities along the rotation-symmetry axis and
anisotropy can be characterized by the dimensionless coefficients

ǫ =
c11 − c33

2c33
, (13)

γ =
c66 − c55

2c55
, (14)

and

δ =
(c13 + c55)

2 − (c33 − c55)
2

2c33(c33 − c55)
. (15)

The instinctive application of coefficientsǫ andγ is clear as they vanish in isotropic media.
Thus, the magnitude of the P and SH-wave anisotropy can be measured from the values of
ǫ andγ. The intuitive appeal of coefficientδ is not as transparent as those ofǫ andγ and
might seem unexpected. The significance ofδ becomes apparent once it’s noticed that

d2Vp

dθ2
|θ=0= 2δα0. (16)

Consequently,δ is not just an arbitrary combination of the elastic coefficients. Instead, the
curvature of the P-wave velocity function at the vertical isgoverned byδ. It also governs
the P-wave normal moveout velocities from horizontal reflectors and plays an key role for
seismic reflection data (Grechka, 2009). On being acquainted with Thomson’s parameters,
the phase velocity expression of the body waves can be expressed as

V 2
p (θ) = α2

0[1 + ǫ sin2 θ +D∗(θ)], (17)

V 2
SV (θ) = β2

0 [1 +
α2

0

β2
0

ǫ sin2 θ −
α2

0

β2
0

−D∗(θ)], (18)

and
V 2

SH(θ) = β2
0 [1 + 2γ sin2 θ], (19)

where

D∗(θ) =
1

2
(1−

β2
0

α2
0

){[1 +
4δ

(1 −
β2

0

α2

0

)2
sin2 θ cos2 θ+

4(1 −
β2

0

α2

0

+ ǫ)ǫ

(1 −
β2

0

α2

0

)2
sin4 θ]1/2 − 1)}. (20)

Once the eigenvalues of the Christoffel equation are known asequations 17, 18 and 19,
the corresponding eigenvectorsU can be computed from any two equation of the three
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equation of the Christoffel equation 5. Since the Christoffelequation is real and symmetric,
the obtained polarization vectors of the body waves are mutually orthogonal for any given
phase directionn (Tsvankin, 2001). However, the polarization are generallyneither parallel
nor orthogonal to the wavefront normal. Further, prior to analysis the dynamic signature of
body waves in the transverse isotropic media, it’s convenient to understand the difference
between the group velocity and the phase velocity.

Group velocity

The group velocity-vector characterizes the direction andspeed of energy associated
with the wave motion, therefore, is of primary importance inseismic travel modelling and
inversion methods. In contrast, the phase velocity is the local velocity with which wave-
front propagates in the normal direction to it. For transverse anisotropic, the difference
between the group and phase velocity vectors are caused by velocity variation with angle.
As depicted in Figure 2 the group angle represents the direction of the group velocity vec-

FIG. 2: Schematic representation of the phase and group angles. The angle is measured
with vertical axis. The group angle depicts the direction ofenergy propagation while phase
angle determines the direction of wavefront propagation (Tsvankin:2001).

tor in a homogeneous medium and it is aligned with the source-receiver direction while the
phase angle is the angle between the wave vectork̃ and the vertical axis. These angles are
different just because of the lack of sphericity of wavefront in the presence of anisotropy.
In contrast to phase velocity which can be obtained from the Christoffel equation, group
velocity can be computed from the phase velocity function byusing this relationship

V = g.n, (21)

between the group and the phase velocities. Now to obtain thegroup velocity from the
equation 21, the spatial direction of the unit wavefront normal n can be characterized by
two directional anglesθ1 and θ2. These angles are knowns as the polar angle and the
azimuth ofn, respectively. So the wavefront normal can be computed as

n = [sin θ1 cos θ2, sin θ1 sin θ2, cos θ1]. (22)

The differentiation of the equation 21 leads the expression

∂V

∂θi

= g.
∂n

∂θi

+
∂g

∂θi

.n(i = 1, 2). (23)
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By definition,n is the normal to the wavefront, whereas the derivatives∂g/∂θi are tangent
to it. Hence, the second term on the right -hand side of above equation vanishes. Thus

∂V

∂θi

= g.
∂n

∂θi

(i = 1, 2). (24)

At this moment considering the equations 21 and 24, the component of the group velocity
vector can be obtained according to expression

g = V n +
∂V

∂θ1

∂n

∂θi

+
1

sin2 θ1

∂V

∂θ2

∂n

∂θ2

. (25)

This equation leads to the following conclusions

• The magnitude of the group velocity can be defined as

g ≡ ||g|| =

√

V 2 + (
∂V

∂θ1

)2 +
1

sin2 θ1

(
∂V

∂θ2

)2. (26)

Therefore, the inequalityV ≤ g is satisfied by the phase and group velocities for any
wavefront normaln.

• As it’s known that ray is the unit vector,r, parallel to the group velocity so it can be
defined as

r =
g

g
. (27)

• Following the equation 21 it can be demonstrated that

r.n =
V

g
. (28)

If r 6= n, the ray deviates from the wavefront normal towards the phase velocity
increase in accordance with equation 25. Figure 3 illustrates this geometrically. From
Figure 3, it’s evident that

cos(θ − ψ) =
V (θ)

V (ψ)
=
V (θ)

g(ψ)
, (29)

Now by considering the right triangle whose hypotenuses isg andV , ∂V/∂θ are the
sides, it can be illustrated that

tan(θ − ψ) =
1

V (θ)

dV (θ)

dθ
, (30)

and the trigonometric identity

tan(x− y) =
tanx− tan y

1 + tanx tan y
, (31)
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leads to the relationship between the group angle and the phase angle as

ψ = tan−1

[

tan θ + 1
V (θ)

dV (θ)
dθ

1 − 1
V (θ)

dV (θ)
dθ

θ

]

. (32)

According to equation 32, the equalityψ=θ occurs only whendV (θ)/dθ=0, that is,
at extrema ofV (θ). At those extrema, the ray direction coincides with wavefront
normal’s direction and the group-and phase velocity surfaces touch each other as
shown in Figure 3.

FIG. 3: Schematic representation of the relationship between phase velocity and group ve-
locity surfaces. The anglesψ andθ are the group and phase angles, respectively and are
measured with horizontal axis. It illustrates that the group velocity surface can be con-
structed from the known phase velocity surface. Plane-wavefronts are the normal drawn
from known points of the phase velocity surface to the group velocity surface and governs
the energy distribution for a given direction (Nadri, 2009).

So far we have discussed about the crucial factors which can be used in order to analyze
the dynamic behavior of the body wave propagation, through the anisotropic media. Travel
times in anisotropic media are accommodated through the plane wave transformation and
phase shift. For accomplishing phase shift modelling we have implemented same theory
as discussed by the author in another CREWES report (Sharma andFerguson, 2010). The
only difference is that a layer of infiniteness thickness above the HTI medium is taken
into account here in order to define the wavefield propagationdirection initially. We have
implemented a constraint on this layer that the velocity possessed by it is the maximum
velocity of the lower HTI media. The incident wavefield propagation direction is governed
by the cross product of the unit vector normal to the plane wavefront with unit vector in the
direction of axis of symmetry as

pI = |p̂ × â|
√

p2
1 + p2

2 + q2, (33)
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wherep1, p2 andq are the horizontal components 1, 2 and the vertical component of the
slowness vector, respectively and these are evaluated in the incident medium. For HTI me-
dia presently, we take the interface characterized by (â=̂j). Once the effective ray parameter
pI is computed, the vertical slownessqHTI of the incident body wave in the lower HTI me-
dia can be computed in terms of the Thomson’s parameter and the effective ray parameter
and are known for all the body waves (Sharma and Ferguson, 2010). On being acquainted
with the effective ray parameter and the vertical slowness of the incident wavefield in the
HTI media, the unit vector normal to the plane wavefront in the propagation direction can
be determined as

p̂HTI =
p1 î + p2 ĵ + qHTI k̂
√

p2
1 + p2

2 + q2
HTI

. (34)

Now, the cross product of this unit vector with the vertical axis of a3C geophone

| ˆpHTI × â| , (35)

yields the polarization angle at each3C geophone located at the interface and nurture to the
rotation matrix as the knowledge of the polarization angle is the essential parameter for ob-
taining rotation matrix. Once rotation matrix is build, it is implemented on the extrapolated
wavefield in order to model9C-3D data.

EXAMPLE

We consider a homogeneous and anisotropic HTI medium of 700 mthickness for a
simple demonstration. The fact that the ratio of fracture size to the seismic wavelength less
than 1 makes the medium to be effectively homogeneous and anisotropic. Further, Thom-
son’s parameters are considered from Vernik’s paper for themedium characterization. Now
a known impulsive source is extrapolated through the mediumin plane wave domain and
transformed back into the space and time domain at interface. Prior to energy distribution
among the three components of the3C geophones, we consider the in-line, cross-line and
time slices of the known extrapolated wavefield in order to analyze the kinematic and dy-
namic behavior of the body waves in the HTI media. Presently,the in-line and cross-line
directions are characterized by the fracture’s strike direction and normal to it, respectively.
Consequently, first a known P-wave source is considered at theearth surface and is ex-
trapolated through the HTI medium. Figure 4a shows the in-line slice of the extrapolated
wavefield and the cross-line slice is shown in the Figure 4b. Kinematically, these slices
lead to the following observations

• The arrival time of the extrapolated wavefield at zero offsetis same in the in-line
slice as well as in the cross-line slice.

• The travel time response of the in-line slice is hyperbolic while is non-hyperbolic of
the cross-line slice.

• The arrival time of the extrapolated wavefield at far offset in the in-line slice is less
than register in the cross-line slice. It is a manifestationof the well known fact that
the P-wave travel fast in the direction of fracture strike and slow in the direction
normal to it.
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Figure 5a and b show the time slices of the extrapolated wavefield without and with analytic
curve. The obtained ellipse in thex − y plane manifests the azimuthal anisotropy of the
medium as expected. The overlapping of the analytic ellipsewith the obtained one ensures
the accuracy of the proposed phase shift modelling, kinematically.
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FIG. 4: (a) In-line (b) Cross-line slices of the extrapolatedP wavefield through an
anisotropic medium characterized by Thomson’s parametersshown in appendix. The con-
siderable difference between these slices is observed kinematically as well as dynamically.
Both slices manifest well known fact that P-wave travel fastin the direction of fracture’s
strike with high amplitude.

Dynamically, it is noticed that P-wave amplitude increasesfrom the slow direction to
the fast direction. This observation correlates well with the equation 28 and Figure 3 where
it is mentioned that ray deviates towards the high phase velocity direction from the low
velocity direction in the presence of anisotropy. In addition to this, if we draw a normal
from a known point of the phase velocity surface to the group velocity surface, the point
where it makes a contact with the group velocity surface corresponds to the plane wave
drawn tangentially at that point. Then the energy distribution depends on how close these
points are at the group velocity surface and it can be observed from the Figure 3 that these
points are dense in and near the fast velocity direction while sparse in the low velocity
direction and hence the observed amplitude pattern in our analysis. Now, in order to seek
the influence of the anisotropy on the kinematic and dynamic behavior of the P-wave we are
repeating the same procedure as outlined above after introducing the different anisotropy
in the same model as taken previously. Figure 6a and b show thein-line and the cross-
line slices of the extrapolated wavefield for the same mediumas before but for a positive
value ofδ. The time slices of the extrapolated wavefield with and without analytic curve
are shown in Figure 7a and b. In continuation of this analysis, the in-line and the cross
line slices for negativeδ are shown in the Figure 8a and b and the time slices are shown in
the Figure 9a and b. A close examination of these figures make it possible to illustrate the
following observations

• Kinematically, the different values of theδ do not have any effect on the in-line

10 CREWES Research Report — Volume 22 (2010)



HTI-Modelling

y(m)

x(
m

)
Time slice

−1200 −800 −400 0 400 800 1200

−1200

−800

−400

0

400

800

1200

(a)
y(m)

x(
m

)

Time slice

−1200 −800 −400 0 400 800 1200

−1200

−800

−400

0

400

800

1200

(b)

FIG. 5: Time slices of extrapolated P wavefield (a) without (b) with analytic curve. Ob-
tained ellipse is a manifestation of azimuthal anisotropy as expected. More energy is ob-
served in fast direction. The overlapping of the analytic curve (shown in red color) with the
obtained ellipse illustrates authentication of proposed phase shift modelling.
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FIG. 6: (a) In-line (b) Cross-line slices of the extrapolatedP wavefield for same model as
before but for a larger magnitude of anisotropy (higherδ=0.29) in the medium. The large
value ofδ does have effect on the cross-line slice while the in-line slice is not influenced.
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FIG. 7: Time slices of the extrapolated P wavefield (a) without (b) with analytic curve. The
large value ofδ does have influence on the kinematic and dynamic behaviors ofP-wave.
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FIG. 8: (a) In-line (b) Cross-line slices of the extrapolatedP wavefield for the same model
as considered for above Figure but for large negative value of δ (δ=-0.2). A considerable
effect, kinematically as well as dynamically, of anisotropy is observed on the cross-line
slice.
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FIG. 9: Time slices of the extrapolated P wavefield (a) without (b) with analytic curve for
the same medium as considered in Figure 8. The authentication of the proposed modelling
is demonstrated here as analytic curve is analogous to the obtained one.
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FIG. 10: Time slices of the extrapolated P wavefield (a) with (b) without analytic curve
through the medium characterized by Thomson’s parameters chosen randomly. The un-
expected behavior, kinematically and dynamically, illustrates that choice of Thomson’s
parameters for a medium characterization can not be random.
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slice’s response while do have the noticeable effect on thatof the cross-line slice.
The authentication of the proposed phase shift modelling isshown in these figures as
analytic ellipse coincides with the obtained ellipse.

• Dynamically, at a given time the energy distribution in thex − y plane depends on
the magnitude of the anisotropic parameterδ. Further, it’s noticed that for negativeδ
the contrast in the in-line and cross-line’s energy is more than that for the positiveδ.

Moreover, the choice of theδ for the figures shown above was limited on the behalf of
the relationship between elastic stiffness constants and Thomson’s parameters as shown
in appendix. Thus, the adopted value ofδ should make physical sense and can not be
taken randomly and it can be verified in reference of Figure 10. Figure 10a and b show
the time slice of the extrapolated wavefield for the delta chosen randomly. It is observed
here that the maximum amplitude of P-wave occurs in the slow direction and decreases
towards the fast direction and there is no overlapping of analytic and the obtained ellipses.
Thus, the demonstrated dynamic behavior of the propagated P-wave is just opposite what
we expected and make it necessary that the selection ofδ can not be random. Figure
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FIG. 11: (a) In-line (b) Cross-line slices of the extrapolated SH wavefield for same model as
considered in Figure 4 with low resolution. The difference,kinematically or dynamically,
can be examined precisely on behalf of these slices.

11a and b show in-line and cross-line slices of the extrapolated SH-wave through the same
model as considered in Figure 4. Both of these slices are plotted with with a high clipped
display, otherwise, the difference in between these slicesin terms of amplitude and travel
time would not be noticeable. Although, It is observed from Figure 12a that SH-wave travel
fast in direction of fracture’s strike and energy decreasesfrom the fast direction to the slow
direction and follow the same behavior as of P-wave. Kinematically, the authentication
of the proposed modelling for SH-wave in anisotropic mediumis demonstrated as analytic
curve (shown in magenta color) matches with obtained one in Figure 12b. Again, to observe
the influence of anisotropy on the kinematic and dynamic behaviors of SH-wave, the same
model as considered for Figure 11, is taken into account after introducing large anisotropy
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FIG. 12: Time slices of the extrapolated SH wavefield (a) without (b) with analytic curve
for same medium as ones shown in Figure 11 and demonstrate that SH-wave travel fast
in direction of fracture’s strike with high amplitude and illustrate the authentication of the
proposed modelling.

(higherγ) into the medium through which SH-wave propagates(γ = 0.34). The in-line
and the cross-line slices are shown in Figure 13a and b. The dissimilarity between these
two slices is observed here in terms of travel time and amplitude. However, these analysis
can be emphasized in reference to Figure 14a where it is demonstrated that more energy
travel in fast direction. As this Figure differs from the Figure 12a it is possible to make a
conclusion that anisotropy does have effect on kinematic and dynamic behaviors of the SH-
wave. So far, we have discussed about the effect of anisotropy on wavefield propagation
of seismic waves. Now following the same theory as outlined above through equation 33 to
35 we have obtained3C data for known P-wave source at surface after applying the rotation
matrix on the extrapolated wavefield and have taken slice through the in-line direction and
shown in Figure 15. The red dashed line highlighted in the circle at the top right corner of
Figure 15c indicates the direction along which a vertical slice of the modelled data is taken.
The in-line and cross-line directions are indicated by blueand magenta color, respectively.
Figure 15a, b and c show the registered energy versus offset (REVO) analysis of P-wave
onH1, H2 andV components while registered energy versus azimuth (REVA) analysis is
shown in Figure 16a, b and c, respectively. Moreover, these figures follow the expected
pattern of registered energy on the different components with offset and azimuth.

SV-case

Now the same theory as discussed above has been implemented for SV-wave. In order
to analysis the kinematic and dynamic behavior of the SV-wave in HTI medium, the same
model as used for P and SH-wave is considered. Figure 17a and bshow the in-line and
cross-line slices of the extrapolated SV wavefield. It is observed that both of these slices
are very close to each other in terms of travel time response.Figure 18a and b illustrate
time slices of the extrapolated wavefield. The obtained circle indicates that anisotropy does
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FIG. 13: (a) In-line (b) Cross-line slices of the extrapolated SH wavefield for the same
model as considered above but of large anisotropy (γ = 0.34) and show the effect of
anisotropy on propagation of the SH wavefield.
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FIG. 14: Time slices of the extrapolated SH wavefield throughthe same model as ones
shown in Figure 13. The authentication of the proposed modelling is shown in (a) and (b)
kinematically and dynamically, respectively.
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FIG. 15: (a) Registered energy versus offset (REVO) analysis of P-wave on H1 component
illustrate that H1 component is more favorable for energy registration as offset increases.
Polarity reversal appear on the either side of zero offset. (b) (REVO) analysis of P-wave on
H2 component illustrate that H2 component is more favorablefor energy registration near
to zero offset. Polarity remains stationary on the either side of zero offset. (c) Recorded
P-wave energy on vertical component demonstrate that energy registration on vertical com-
ponent decreases with offset. Polarity follow the stationary behavior on either side of zero
offset.
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FIG. 16: (a) Registered energy versus azimuth( REVA) analysis of P-wave at H1 compo-
nent indicates that energy registration increases as azimuth increases from 0 to 90. Polarity
reversal occur on the either side of a line that bisects the circle along cross-line direction.
(b) REVA analysis of P-wave at H2 component indicates that energy registration decreases
as azimuth increases from 0 to 90. Polarity reversal occur onthe either side of a line that bi-
sects the circle along in-line direction. (c) REVA analysisof P wave on vertical component
reveal the variation of recorded energy and polarity with azimuth.
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not have a such considerable effect on SV-wave propagation as had on P and SV-wave
propagations for this case. Further, the effect of anisotropy on the SV-wave propagation
has been examined on behalf of considered model shown in appendix. Figure 19a and b
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FIG. 17: (a) In-line (b) Cross-line slices of the extrapolated SV wavefield for the same
model as considered above for P- and SH-waves. The in-line slice is analogous to the
cross-line slice
.
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FIG. 18: Time slices of the extrapolated SV wavefield throughthe same model as ones
shown in Figure 17. The authentication of the proposed modelling is shown in (a) and (b)
dynamically and kinematically, respectively. The obtained circle illustrate that anisotropy
does not have a considerable effect on SV wave propagation.

show the time slices of the SV wavefield extrapolated througha medium characterized by
Thomson’s parameters shown in appendix and possesses positive ǫ andδ with condition
(ǫ > δ). In continuation of this, another model possesses the same condition as outlined
previously but with large magnitude of Thomson’s parameters is taken into account too for
observing the effect of anisotropy. By inspecting Figures 19 and 20, it can be revealed that
as long as Thomson’s parameters follow the condition(ǫ > δ) anisotropy does not have a
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considerable effect on SV wave propagation either kinematically or dynamically. However,
the effect of anisotropy on SV wave propagation can be seen inFigures 21, 22 and 23.
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FIG. 19: Time slices of the extrapolated SV wavefield throughmodel 2(ǫ > δ) as ones
shown in Table 2. The authentication of the proposed modelling is shown as analytic curve
overlays with obtained one as shown in (a) and (b). There is noeffect of anisotropy for this
model.
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FIG. 20: Time slices (a) and (b) of the extrapolated SV wavefield through model 3 with
large magnitude of(ǫ > δ) shown in Table 2. The authentication of the proposed modelling
is shown in (b),kinematically. Still no effect of anisotropy is observed.

Although, the authentication of the proposed modelling, kinematically, is not demonstrated
in these cases as obtained results are not matching with analytic curves, it is possible to
make some remarkable conclusion as follows

• if (ǫ− δ < 0), the cusps occur in the in-line direction and can be observedin Figure
21a and be authenticate by Figure 21b.
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• if δ is negative and(ǫ− δ > 0) , the cusps occur near to 45◦ angle from the axis of
symmetry. This phenomena is noticed in Figures 22 and 23.
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FIG. 21: Time slices of the extrapolated SV wavefield throughthe model 4(ǫ < δ) shown
in Table 2. The cusps phenomena is occurred in the in-line direction. The occurrence of
cusps is endorsed by the analytic curve but no overlapping ofanalytic curve with obtained
one is noticed.
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FIG. 22: Time slices of the extrapolated SV wavefield throughmodel 5(−δ) shown in
Table 2. The cusps is observed near to 45◦.

CONCLUSIONS

We have presented multicomponent modelling of P-wave in plane wave domain for HTI
media. The authentication of the proposed phase shift modelling has been demonstrated
kinematically and dynamically. Further, the kinematic anddynamic effect of anisotropy on
the seismic waves propagation has been demonstrated and thedependency of this analysis
on the magnitude of Thomson’s parameters is also illustrated. Since the fractures have an
impact on the amplitude and travel time of seismic waves propagation, the careful investi-
gation of this impact can be used for fracture detection.
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FIG. 23: Time slices of the extrapolated SV wavefield throughthe model possesses large
negative value ofδ (model 6) as shown in Table 2.
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APPENDIX

Using the Thomson’s parameters, the following relationship between elastic stiffness
constant and Thomson’s parameters can be established as

c11 = ρα2
0(1 + 2ǫ), (A-1)

c33 = ρα2
0, (A-2)

c44 = ρβ2
0 , (A-3)

c55 = ρβ2
0 , (A-4)

c13 = ρ
√

(

α0
2 − β0

2
) (

(2 δ + 1)α0
2 − β0

2
)

− ρ β0
2. (A-5)

For given Thomson’s parameters, the elastic stiffness constant can be obtained using above
equations. As it’s known that the elastic stiffness constant remains real for all physical
situations, the obtained value of the elastic stiffness constantc13 is complex and violates
the physical behavior of the elastic stiffness constants for the large negative value ofδ.
Thus, this condition leads to the unexpected behavior of thewavefield kinematically as
well as dynamically.

α0 β0 ǫ δ γ

2950 1990 0.17 0.09 .14

Table 1: Thomson’s Parameters of a medium considered for P and SH waves propagation.

Model α0 β0 ǫ δ γ

1 2950 1990 0.17 0.09 .14
2 3600 2000 0.14 0.08 0.16
3 3340 1860 0.49 0.30 0.59
4 3300 2300 0.58 0.84 0.39
5 3600 2100 0.36 -0.08 0.38
6 3377 1490 0.200 -0.282 0.510

Table 2: Thomson’s Parameters of models considered for SV wave propagation.
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