
Daley 

 CREWES Research Report — Volume 23 (2011) 1  

Finite difference methods for wave propagation in an elastic 
anisotropic plane layered medium with orthorhombic symmetry 

P.F. Daley 

ABSTRACT 
This report presents a simulation system for the solution of the forward problem of 

elastic wave propagation in a plane layered anisotropic (orthorhombic) elastic media. 
Forward modeling has become a useful tool for interpretation in exploration seismology. 
The method discussed here employs finite Fourier transforms to temporarily remove the 
x  and y coordinates resulting in a coupled system of three finite difference equations in 
the 3 Cartesian coordinate particle displacements in terms of depth ( )z   and time ( )t . 

The return to the ( ), , ,x y z t domain is done using a double summation over the two 

horizontal wave numbers ( ),x yk k .  At the present time, 3D  seismic modeling 
realistically requires a high-performance multiprocessor computer using efficient 3D  
algorithms. for the geological model mentioned above. Non-geometrical wave types are 
minimal in this model type, but the development of the method presented here may serve 
as a basis from which to pursue more complicated 3D  geometries. 

INTRODUCTION 
In both theory and in numerical methods of solution of the forward problem 

difficulties arising are not to a large extent connected with a type of the given equations 
but to a larger extent with media dimension and the complexity of the properties of 
coefficients defining the media. Different physical effects when simulating elastic wave 
fields in seismology and seismic prospecting, which are not described by the acoustic 
wave equation, are obtained in this modeling procedure. Such effects should in reality be 
taken into account. 

The finite difference method is a popular methodology for solving elastic wave 
equations. However, in seismic problems when we have to deal with very large 
computation domains, and essentially varying elastic parameters, the use of the 
conventional numerical methods is strongly limited by high computer costs and 
insufficient accuracy of these methods. This situation makes us focus on the creation of 
efficient numerical and analytical algorithms which allow the solution of 3D seismic 
problems. 

This report describes a numerical algorithm for the forward seismic problem, some 
aspects connected with theoretical numerical and analytical method are not included, as 
they have been treated in earlier reports. The main concept underlying the algorithm is 
the splitting of 3D problems to a series of coupled 1D  problems in the ( ), , ,x yk k z t  
domain and their solution one after another with the help of the finite difference 
technique. 
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Depending on the behavior of coefficient variation, the algorithm may take on 
numerous forms. The version of the algorithm used here is based on a combination of the 
analytical method of separation of variables (using the Fourier transforms) with the finite 
difference techniques for solving the resulting 1D  problems. The algorithm was 
suggested and developed in Mikhailenko (1985). 

In what follows, Lamb's problem for the anisotropic (orthorhombic) inhomogeneous 
half-space with the axis of symmetry parallel to the horizontal axes ( ),x y  is used.  
Elastic wave propagation in such a medium is described by equations given in the next 
section. 

THEORY 
In a plane layered orthorhombic medium with no lateral inhomogeneities the particle 

displacement may be specified in a Cartesian coordinate system, ( ), ,x y z , as 

( ), ,u v w=u , where the vector components of displacement ( ), ,u v w  are the solutions of 
the coupled equations 

 

( )

( )

2 2 2 2 2

11 13 66 12 662 2 2

55 55 , , ,x

u u w u vC C C C C
t x x z y x y

u wC C F x y z t
z z z x

ρ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂   + +   ∂ ∂ ∂ ∂     (1) 

 
( )

2 2 2 2 2 2

66 66 12 22 232 2 2

44 44 , , ,y

v u v u v wC C C C C
t x y x x y y y z

v wC C F x y z t
z z z y

ρ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂     (2) 

 
( )

2 2 2 2 2

55 55 44 442 2 2

13 23 33 , , ,z

w u w v wC C C C
t x z x y z y

u v wC C C F x y z t
z x z y z z

ρ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂   + + +    ∂ ∂ ∂ ∂ ∂ ∂      (3) 

In the above equations, the ijC  are the 9 stiffnesses which define an orthorhombic 
medium (Schoenberg and Helbig 1997). The volume density is ρ  and 

( ) ( ), , , , ,x y zx y z t F F F=F  is some source term. The related quantities ij ijA C ρ= have the 
dimensions of velocity squared.  

The (stress free)  boundary conditions at the free surface are specified by 
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13 23 110

0zz z

u v wC C C
x y z

τ
=

∂ ∂ ∂
= + + =

∂ ∂ ∂  (4) 

 
550

0xz z

w uC
x z

τ
=

∂ ∂ = + = ∂ ∂   (5) 

 
440

0yz z

v wC
z y

τ
=

 ∂ ∂
= + = ∂ ∂   (6) 

and the problem is solved with zero initial data: 

 
0 0 0

0 0 0

0
t t t

t t t

u v wu v w
t t t= = =

= = =

∂ ∂ ∂
= = = = = =
∂ ∂ ∂

 (7) 

As previously mentioned, the medium has been chosen such that it is composed of  
plane parallel layers where the elastic parameters, stiffnesses and density ( )andijC ρ , do 

not vary in the horizontal directions.  A consequence the ( )andx y  coordinates may be 
temporarily removed using finite Fourier transforms. The two dimensional finite Fourier 
transforms and inverses for the three components of displacement are defined as 
(Sneddon, 1995) 

 
( ) ( )

0 0

, , , , , , cos sin
a b m y n xS z n m t dx dy u z x y t

b a
π π   =    

   ∫ ∫
 (8) 

 
( ) ( )

0 0

4, , , , , , cos sin
n m

m y n xu z x y t S z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑
 (9) 

 
( ) ( )

0 0

, , , , , , sin cos
a b m y n xH z n m t dx dy v z x y t

b a
π π   =    

   ∫ ∫
 (10) 

 
( ) ( )

0 0

4, , , , , , sin cos
n m

m y n xv z x y t H z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑
 (11) 

 
( ) ( )

0 0

, , , , , , cos cos
a b m y n xR z n m t dx dy w z x y t

b a
π π   =    

   ∫ ∫
 (12) 

 
( ) ( )

0 0

4, , , , , , cos cos
n m

m y n xw z x y t R z n m t
ab b a

π π∞ ∞

= =

   =    
   

∑ ∑
 (13) 

After applying the finite forward transforms given above to equations (1) – (3) the 
following result 
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( )

( ) ( )

2
2 2

11 13 66 12 662

55 55 , , ,

x x y x y

x x x y

S Rk C S k C k C S k k C C H
t z

SC k C R F k k z t
z z z

ρ ∂ ∂
= − − − − + +

∂ ∂
∂ ∂ ∂  − + ∂ ∂ ∂ 

 (14) 

( )

( ) ( )

2
2 2

66 66 12 22 232

44 44 , , ,

x y x x y y y

y y x y

H Rk k C S k C H k k C S k C H k C
t z

HC k C R F k k z t
z z z

ρ ∂ ∂
= − − − − − +

∂ ∂
∂ ∂ ∂  − + ∂ ∂ ∂ 

 (15) 

:
( )

( ) ( ) ( )

2
2 2

55 44 44 552

13 23 33 , , ,

x y y x

x y z x y

R S Hk C k C k C k C R
t z z

Rk C S k C H C F k k z t
z z z z

ρ ∂ ∂ ∂
= + − + +

∂ ∂ ∂
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

 (16) 

where it is to be remembered that it has been assumed that the stiffnesses do not depend 
on the horizontal ( )andx y  coordinates. It will initially be assumed that the pseudo – 

boundaries introduced at ( ),x a y b= = are perfectly reflecting. 

The boundary conditions at the free surface: 

1. Normal Stress: 

 
13 23 110

0zz z

u v wC C C
x y z

τ
=

∂ ∂ ∂
= + + =

∂ ∂ ∂  (17) 

 transformed 

 
13 23 110

0zz x yz

Rk C S k C H C
z

τ
=

∂
= + + =

∂  (18) 

 finite difference analogue at the free surface: 

 
13 23

1 1 0 0
11 11

m m m m
x y

C CR R zk S zk H
C C− = + ∆ + ∆

. (19) 

2. Shear Stress, xzτ : 

 
550

0xz z

w uC
x z

τ
=

∂ ∂ = + = ∂ ∂   (20) 

 transformed  

 
( )550

, , , 0xz xz

SC k R z n m t
z

τ
=

∂ = − = ∂   (21) 

 finite difference analogue at free surface: 
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 1 1 0
m m m

xS S zk R− = − ∆  (22) 

3. Shear Stress, yzτ : 

 
440

0yz z

v wC
z y

τ
=

 ∂ ∂
= + = ∂ ∂   (23) 

 transformed 

 
440

0yz yz

HC k R
z

τ
=

∂ = − = ∂   (25) 

 finite difference analogue at free surface: 

 1 1 0
m m m

yH H zk R− = − ∆  (26) 

The problem is solved with zero initial data so that 

 
0 0 0

0 0 0

0
t t t

t t t

S H RS H R
t t t= = =

= = =

∂ ∂ ∂
= = = = = =
∂ ∂ ∂

 (27) 

It will be assumed that at the first 3 grid points at the free surface the  ijC  and volume 

density ( )ρ  are independent of the z  spatial coordinate. Thus equations (14) – (16) may 

be written in this region as 

( ) ( )
2

2 2
11 13 55 66 12 662

2

55 2

x x y x y
S Rk C S k C C k C S k k C C H

t z
SC

z

ρ ∂ ∂
= − − + − − + +

∂ ∂
∂
∂

 (28) 

( )
2

2 2
66 66 12 22 23 442

2

44 2

x y x x y y y
H Rk k C S k C H k k C S k C H k C C
t z

HC
z

ρ ∂ ∂
= − − − − − + +

∂ ∂
∂
∂  (29) 

( ) ( ) ( )
2

2 2
13 55 23 44 55 442

2

33 2

x y x y
R S Hk C C k C C k C k C R

t z z
RC

z

ρ ∂ ∂ ∂
= + + + − + +

∂ ∂ ∂
∂

+
∂  (30) 
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Employing equations (19), (22) and (25) the finite difference analogues of the above 
equations have the form 

 

( )
( )

( )

1 1 2 2 2
0 0 0 11 66 0

2
13 55 2 13 23

0 0
11 11

2 2 21 0 0
12 66 0 55 552

2

2

2 2

m m m m
x y

m m
x x y

m m m
m x

x y

S S S k A k A S

A A A Ak S k k H
A A

S S k Rk k A A H A A
h h

δ

δ

δ δ δ

+ −= − − + +

+  
+ − 

 
   −

+ + −   
   

 (31) 

 
( ) ( )

( )

1 1 2 2 2 2
0 0 0 22 66 0 12 66 0

2
1 0 023 44 2 213 23

0 0 44 2
11 11

2

2 2
2

m m m m m
y x x y

m m m
ym m

x y y

H H H k A k A H k k A A S

H H hk RA A A Ak k S k H A
A A h

δ δ

δ
δ

+ −= − − + − + +

 − −+  
+ +        

(32) 

 

( ) ( )

( )

2 22 2
23 4413 551 1

0 0 0 0 0

232 2 2 2 0 13
55 44 0 33 0 02

11 11

2
2 2

yxm m m m m

m
ym m mx

x y

k A Ak A A
R R R R R

k AR k Ak A k A R A S H
h hA hA

δδ

δ δ

+ − ++
= − + − −

 
+ − + + 

 

 (33) 

At an interior point, where the stiffnesses and density may depend on the spatial 
coordinate z  the finite difference analogues have the more complex form 

( )
( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2211 661
55 552 1 2 1 2

2 2

13 55 1 13 55 11 2 1 2 1 2 1 2

2 2

12 66 55 1 55 12 1 2 1 2

2

2 2

x yj jm m
j jj j

j j j

m mx x
j jj j j j

j j

x y m m m
j j jj j j

j j

k C k C
S C C S

h

k kC C R C C R
h h

k k
C C H C S C S

h

k

δ δδ
ρ ρ ρ

δ δ
ρ ρ

δ δ
ρ ρ

+

+ −

+ −+ + − −

+ −+ −

 
  = − − + − −   

 

   + + + −      

 + + + +  

( ) ( )
2

1
55 551 2 1 22

m mx
j jj j

j

C C R S
h
δ
ρ

−

+ −
  − −    

 (34) 
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( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2 2
1

66 44 44 222 1 2 1 2

22

44 1 44 1 12 662 1 2 1 2

2 2

23 44 1 23 44 11 2 1 2 1 2 1 2

2

2 2

ym mx
j jj j j j

j j j

x ym m m
j j jj j j j

j j

y ym m
j jj j j j

j j

y

kkH C C C C H
h

k k
C H C H C C S

h

k k
C C R C C R

h h

k

δδ δ
ρ ρ ρ

δδ
ρ ρ

δ δ
ρ ρ

+

+ −

+ −+ −

+ −+ + − −

 
= − − + − + 
  

   + − − −    

   + + + +      

( ) ( )
2

1
44 441 2 1 22

m m
j jj j

j

C C R H
h
δ
ρ

−

+ −
 − −  

(35) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 2 2

44 55 33 332 1 2 1 2

2 2

13 55 1 13 55 11 21 2 1 2 1 2

2 2

23 44 1 23 44 1 21 2 1 2 1 2

2

2 2

2 2

m m
j y x jj j j j

j j

m mx x
j jjj j j

j j

y ym
j jj j j

j j

R k C k C C C R
h

k kC C S C C S
h h

k k
C C H C C

h h

δ δ
ρ ρ

δ δ
ρ ρ

δ δ
ρ ρ

+

+ −

+ −−+ + −

+ −+ + −

   = − + − + +       

   + − + +      

  + − +  

( ) ( ) ( ) ( )

( ) ( )

1

22

13 13 23 231 2 1 2 1 2 1 2

2
1

33 1 33 12 1 2 1 2

2 2

m
j

ym mx
j jj j j j

j j

m m m
j j jj j

j

H

kk C C S C C H
h h

C R C R R
h

δδ
ρ ρ

δ
ρ

−

+ − + −

−
+ −+ −

 −  

   − − − +      

 + −  

 (36) 

In the above, an over scored quantity indicates the harmonic average, δ  is the time step, 
while h z= ∆  is the spatial depth step. The source term has not been included, however, 
once a source type has been decided upon the vector components of it may be added to 
equations (34) – (36). 

DISCUSSION AND CONCLUSIONS 
Finite difference analogues, accurate to second order in space and time, for a 

plane parallel orthorhombic ( )3D  media in which dependence on the horizontal 
Cartesian coordinates have been removed by finite Fourier transforms have been 
presented. For the type of elastic medium discussed here, the simplest source type to 
incorporate is a vertical point source located the origin of the Cartesian system so that 
( ) ( ) ( ), , , zF z x y t z f tδ= e  where ze  is a unit vector in the z  direction and ( )f t  is the 

time dependence of the source wavelet. This wavelet is most often assumed to be band 
limited, as the range of its power spectrum in the frequency domain is linearly related to 
the number of terms required to approximate the two infinite Fourier series summations. 
The particle displacement may be recovered by applying inverse series summations, also 
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specified above. In the early 1980 ' s programs of this type were written in cooperation 
with Professor Boris G. Mikhailenko during his working visit at the University of Alberta 
in Edmonton, Alberta. At that time "supercomputers" of the Cray-1 and CDC205 type 
were required to produce numerical results. At the end of Professor Mikhailenko’s stay, 
all source code and program listings were destroyed for unknown reasons. The formulae 
presented here are an accurate reproduction (the final equations being checked several 
times) and could be introduced into some modeling package if there was any interest. At 
this time, a Linux cluster would probably be the optimal operating platform, due to the 
parallel nature of the problem presented in the text. 
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