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Porous medium – the fast P-wave case 

P.F. Daley  

ABSTRACT 

A subset of the general equations used to describe seismic wave propagation in a 
poroviscoelastic medium is investigated. Theoretically for an isotropic medium of this 
type there are four modes a propagation: a compressional � �P  wave, a shear � �VS  wave 

and a shear � �HS  wave as well as what in termed a slow compressional � �SP  whose 
actual existence has, until fairly recently, been questioned. The scaled down version of 
the full poroviscoelastic equation set is one which is viscoelastic and but does not contain 
any shear type propagation. It is the acoustic analogue of the elastic wave equation, being 
a set of two coupled equations in the fast and slow compressional � �P  wave modes, 

which may be further downgraded to to a single equation in the fast compressional � �P  

wave mode as the slow compressional � �P  wave mode is difficult to physically detect 
and as a consequence omitted, at least in this preliminary study.  The relatively simple 
equation remaining was chosen so that a comparison with the seismic response of the 
acoustic wave could be done to ascertain the possible usefulness of pursuing this topic 
further. Apart from hydrocarbon related seismic applications, the use of this theory for 
near surface seismic or Ground Penetrating Radar � �GPR  applications to locate toxic or 
hazardous waste sites and possibly be of assistance in delineating the extent of seepages 
either from actual dumping or deteriorating containers is a possibility. 

INTRODUCTION 
It is difficult to discuss the problem of seismic waves propagating in a porous 

viscoelastic medium without simultaneously introducing concepts, and thus equations 
related to the interaction between the fluid and the solid matrix, that is, without speaking 
to at least the basic concepts of Darcy’s Law. There are numerous works which 
concentrate on developing the theory of seismic wave propagation within the framework 
of what could loosely be termed either reservoir geophysics or reservoir engineering. To 
list some of the more prominent papers and texts that deal with this topic presents another 
problem, as the notations are not standardized nor are the coordinate systems, or possibly 
more accurately, the relative coordinate systems employed. Further, many of the 
theoretical developments are problem specific. As a consequence, only the basic 
equations will be presented here with little or no discussion of theory and referring only 
to the classic papers in this research area by Frankel (1944) and Biot (1956a, 1956b, 
1956c, 1962a, 1962b) and leaving the investigation of matters related to Darcy’s Law to 
the reader. For a marginally comprehensive knowledge of this area of study, topics, as 
mentioned in the previous sentence, must eventually be looked at in some depth.  

The motivation for considering this problem is, as an example, that for a conventional 
hydrocarbon (oil and gas) production reservoir at some depth within the earth, fluids flow 
within the interstitial cavities of a matrix solid, driven conventionally, by hydrostatic 
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pressure and is brought to the surface at specific locations (wells). To assume that the 
reservoir may be described by an acoustic or even elastic or anelastic medium could be 
considered presumptuous. Although history has shown that these are reasonable initial 
approximations, new technologies for monitoring the production history (time lapse 
seismology) and enhanced production, involving the injection of fluids, either of 
necessity or convenience, into the reservoir may indicate that a more relevant theory 
should be considered. Over the past few decades the technology associated with seismic 
data acquisition and primary and secondary recovery methods has increased enormously 
in complexity and utility. What has not kept pace, to the same extent, are fundamental 
seismic modeling capabilities. 

In a general isotropic poroviscoelastic medium there are four modes of propagation, 
the conventional longitudinal P wave and the two shear modes VS  and HS . As in the 
elastic case, the HS  propagates independently of the P and VS . The P wave is associated 
with wave propagation in the matrix. In addition, there is, at least theoretically, another P 
wave, associated with the liquid, propagating in the medium with a velocity that is 
usually less than the shear, VS , wave. There are a number of physical experiments where 
the slow compressional wave has been observed (for example, Coussy and Bourbie, 
1984). If the medium is anisotropic, it is deemed to be anisotropic in viscoelastic 
parameters as well as permeability. One of the basic premises of the governing theory is 
that there is an interaction between a wave propagating in the matrix and in the fluid. A 
problem of significance is determining the viscoelastic parameters that define the 
medium. It is for this reason only the fast longitudinal case will be considered here, a 
modified analogue of the acoustic case in elastodynamic problems. Further, it will be 
assumed that that the medium is dissipative, that is, the medium is viscoelastic. As a 
preliminary exercise, this was thought to be a reasonable starting point. 

A question posed by a number of authors (Mikhailenko, 1985) is “What media can be 
well described using Biot-Frankel theory?” This problem requires further investigation, 
both in theory and in practice. The primary problem is the necessity of determining by 
some means Biot’s coefficients for different geological rock types, especially those in 
which hydrocarbon deposits are situated.  

Since many reservoir environments are partially saturated with one or more fluids, 
incorporation of partial saturation as well as multi-fluid interaction and dissipation due to 
absolute movements of the fluid is necessary. Development of a more realistic physical 
and mathematical model is essential in understanding the propagation of seismic waves in 
the real environment 

BIOT-FRANKEL’S EQUATIONS 

The Biot – Frankel equations governing compressional � �P  wave propagation may be 
found in Mikhailenko (1985) where 

1. in a porous viscoelastic both the fast and slow P waves in a medium are 
described by 
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 � � � � � �2 2 2
11 12 1 ,t tP U V b U V f tU Q V � �� � � � �� � � 	 � x  (1) 

 � � � � � �2 2 2
12 22 2 ,t tQ U V b U V f tU R V � �� � � � �� � � 	 � x  (2) 

2. or in a single (fast) P type porous viscoacoustic medium by 

 � �2 2 ,t tP U b U f tU � � � �� 	 � x . (3) 

The damping coefficient b  in equations (1-2) is related to Darcy’s coefficient of 
permeability k  and porosity 
  by 2b k�
	  with �  being the fluid viscosity. The 
quantity � �,U tx  is the dilation ( � � � �, ,U t t	 ��x u x ) in the solid and � �,V tx  is the 

dilation ( � � � �, ,V t t	 ��x v x ) in the liquid and it has been assumed that the source is 
located in some region or inclusion of convenience of the medium. Biot’s coefficients, 
P , Q  and R  � �2P  �	 � , which may be functions of position, must satisfy the 

inequality 2 0PR Q� � . In the limit, 12 22, , , 0R Q � � � , a scalar compressional wave 
equation (3) is all that remains.  

To not include the “slow” waveP �  in the derivation has been judged by a number of 
authors to produce a questionable synthetic seismic response. This topic is summarized 
quite well by Hassanzadeh. (1991) “Synthetic seismograms computed using this method 
indicate that in the presence of heterogeneities the Biot mechanism (namely, the 
macroscopic differential fluid-solid movement, controlled primarily by hydraulic 
permeability) contributes considerably to the dispersion and dissipation of compressional 
waves. The dispersion and dissipation of the fast wave is due to the conversion of a 
small amount of its energy into the slow wave each time it crosses an interface between 
two dissimilar materials. In cases involving several layers and multiple reflections, as in 
the crosswell geometry, the cumulative effect of this kind of conversion is significant. The 
amount of energy lost as a result of this kind of conversion is influenced by the 
permeability of the medium. No equivalent single-phase model can adequately describe 
these effects on seismic waves propagating through fluid filled porous media.” 

In the “viscous” case, 2b k�
	  where viscosity� � , porosity
 �  and 
permeabilityk � . Equations (1), (2) and (3) for b  are valid for the low-frequency range 

where the flow in the porous medium is of the Poiseuille type1

22 B ff k� �
 �	
. (The upper limit of 

frequency for this flow type is called Biot’s frequency, defined as ) 
Most studies have indicated that normal seismic frequencies lie within this range and 
provide a reasonably good approximation (Dutta and Ode, 1979, 1983 and Bourbie et al., 
1987). 

The coefficients, 11� , 12�  and 22� , which have the dimensions of density and 
may also be spatially dependent, satisfy the inequalities 

                                                 
1  Non – turbulent flow. 
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 11 12 220, 0, 0� � �� � �  (4) 

 2
11 22 12 0� � �� �  (5) 

In the limit of the non-porous case, 11� �� , where �  is the density of an elastic 
medium.  

In an infinite medium, apart from source excitation, the problem may be fully 
specified by the initial conditions 

 0 0 0 0
0t tt t t t

U U V V
	 	 	 	
	 	 	 	� �  (6) 

and assuming that the solution is such that radiation conditions are physically realizable. 
The source, which will be chosen as a point source of P waves, is located within 

the medium (now taken to be a vertically inhomogeneous half space) or at the interface, 
0z 	 . In the latter case, the free surface boundary (stress continuity) conditions are of the 

form 

 � � � �0z Sz
x f tU � �

	
	�  (7) 

 � � � �0z fz
x f tV � �

	
	�  (8) 

where S�  and f�  are constants are specified in terms of the porosity � �
 and effective 

density of the matrix solid, together with factors inherent to the fluid; � �1S� 
	 �  and 

f� 
	  with 1S f� �� 	 . The above equations would be applicable to a layer at the 
earth’s surface that is fully or partially fluid saturated. The reason for continuing to refer 
to this last type of problem is that it is familiar, and as the equations for wave propagation 
in this medium type are the same as for a hydrocarbon reservoir at depth, may serve as a 
point of reference. 

The wave propagation will initially be assumed to be confined to a spatial plane 
defined as � �0 ;0x a z b� � � �  and all of these four boundaries are initially assumed to 
be perfectly reflecting. These conditions require that some measures such as absorbing 
boundaries (Clayton and Enquist, 1977 and Reynolds, 1978) or attenuating boundaries 
(for example, Cerjan et al., 1985) be incorporated in the solution method so that spurious 
reflections from them will not contaminate the wavefield propagating within the spatial 
plane. 

At the surface, 0z 	 , the stress free boundary conditions are  

 ,0 ,0 0m m
z i z iU V	 	� �  (9) 

 0 0 0z zz zU V
	 	
	 	� � . (10) 

At the free surface, equation (3) is taken to be satisfied by a perfectly reflecting boundary 
condition. 

PLANE WAVE SOLUTION 
Before investigating equation (3) in a finite difference context, it may be useful to 

introduce a plane wave solution and see what evolves. Rewriting this equation  
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 � �2 2 ,t tP U b U f tU � � � �� 	 � x . (11) 

and assuming a plane wave solution of the form  

 � � � �, expU x t A i t i px� �	 � . (12) 

results in (neglecting the source term) 

 � �2 2
01 0 whereP V i b V P� � �	 � 	 	 . (13) 

Rewriting (11) has 

 2 2 2 2
0 0 0

1 1 1 1ib ib i
V P P V V V b

� �
�� �� ��

� �
	 � 	 � 	 �� �

� �
. (14) 

Comparing (14) with the formula for complex velocity in an anelastic medium (Aki and 
Richards, 1980) which is given by  

 2 2

1 1 1 i Anelastic case
v V Q

� �
	 �  ! "

# $
. (15) 

Here V  is some real phase velocity and v  is the complex anelastic velocity 
characterizing the medium, results in the value of PQ  for the scalar poroviscoelastic fast 

waveP �  case being given by 

 � �f
PQ b��	 . (16) 

if the approximate single waveP �  acoustic case being considered here is assumed a 
valid initial strategy. The expression obtained for PQ  above is closely related to Biot’s 
frequency defined earlier, with the exception that f�  is replaced by � �1S f� 
 � 
 �	 � �  
in equation (16) – the weighted average of the fluid and solid or the bulk density. 

VISCOACOUTIC MEDIUM  
Two different 2.5D  finite integral transform – finite difference solution methods 

for the poroacoustic wave equation will be presented here. The first involves assuming 
radial symmetry; that is, there are no lateral inhomogeneities and any quantities defining 
may vary only in the depth � �z  coordinate. The result is a finite difference problem in 

depth and time. Apply a finite Hankel transform w.r.t. the radial coordinate of � �, ,U r z t  
in equation (3) with a source term given by � � � � � � � �, , 2Sf r z t r z z f t� � �	 � . To 
obtain a solution, it is most often assumed that the time dependence of the source 
wavelet, � �f t  is band limited. This type of source minimizes the number of term needed 
to approximate the infinite series summation.The finite Hankel transform is defined by 
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 � � � � � �0
0

, , , ,
a

i iS k z t U r z t J k r rdr	 %  (17) 

where the ik  are the solutions of the transcendental equation � �0 0jJ k a 	 . At the pseudo 
– boundary, r a	 , the boundary condition is that of total reflection. The inverse of (17) 
is given by 

 � � � � � �
� �

0
2

1 1

, ,
, , i i

i i

S r k t J k r
U r z t

J k a

&

	

	
� �� �

'  (18) 

(See Appendices A and B.) The transformed equation (3) has the modified form 

 � � � �2
2

2 2
S

j t tt

z z f t
P S S S

z
S Pk b

�
�

�
�

� 	
�
� � � � �  (19) 

where an over scored quantity indicates the harmonic average. Introducing second order 
accurate finite difference analogues in depth and time yield the following finite difference 
problem 

 
(

� � � � � � ) � �

1 2 2 2
1 1 11

1 2
11 11

2 2

2 2 2

m m m j m

m S

S S S dt P S

S z z dt f t

Pk

bdt b dt

�

� � � �

�
� �

�

� �� �	 � � * �� � � �

� � � �

� �� � � �

�
 (19) 

which is to be solved subject to zero initial conditions 

 � � � � � � � �
0 0

0 0

, ,, ,
, , 0 , , 0j

jt t
t t

S k z tU r z t
U r z t S k z t

t t	 	
	 	

��
	 	 � 	 	

� �
 (20) 

The time step is denoted as dt  and the quantity *  is defined as dt h  where h  is the 
sptial step in the vertical � �z direction. 

Starting again with equation (3) and apply a finite Fourier transform w.r.t. the 
coordinate y  to � �, , ,U x y z t  in the equation 

 � �2 2 ,t tP U b U f tU � � � �� 	 � x . (21) 

where the source term is given by � � � � � � � � � �, , , � � �	 � � �s s Sf x y z t x x y y z z f t . In 
this instance it is assumed that the medium does not vary spatially in the y  direction. The 
forward Fourier cosine transform is defined by 

 � � � � � �
0

, , , , , , cos
c

S x p z t U x y z t py c dy�	 %  (22) 

And the inverse transform is given by the infinite series 
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 � � � � � �
1

,0, , 2, , , , , , cos
n

S x z t p yU x y z t S x p z t
c c c

�&

	

� �	 � ! "
# $

'  (23) 

The assumption of a band limited source wavelet is again made so that a finite number of 
terms to adequately approximate the infinite series summation may be obtained. 

 
� �

� � � � � � � �

2 2
2

2 2 2

cos

t tt

S s S

P P p c S S S
x z

x x py c z z f t F

S S P b� �

� � �

� � 	
� �

� � 	

� � � � � �
 (24) 

Second order accurate finite difference analogues in depth � �z , the horizontal coordinate 

� �x and time result in the following finite difference analogue: 

 
(
� � � � ) � �

1 2
, , 1 1, 1, , 1

2 2 1
, ,4 2 2 2

m n m n m n m n m n

m n m n

S P S S S S

p dt c P S S FP b dt b dt� � � �

�
� � � �

�

� �	 * � � �� �

� � � � � �� * � � � � �� � � �� �

�� � � � �

� �
 (25) 

where as before an over scored quantity indicates the harmonic average. The terms b  and 
�  should be expressed as arithmetic averages. The spatial steps in the � �x  and � �z  
dimensions are chosen to be equal and equal to h , The time step is dt  with dt h* 	 . 
The free surface is chosen to be perfectly reflecting so that the finite difference analogue 
here is of a very simple form 

DISCUSION AND CONLUSIONS 
A plane wave analysis of the poroviscoacoustic wave equation in a fluid filled porous 

medium was briefly considered here. Although use of this equation, rather than the 
coupled poroviscoelastic equations where both the slow and fast wavesP � are inherent, 
has been questioned by some authors. The acoustic type damped wave, which describes 
only the propagation of the fast waveP �  and does not consider any interaction that the 
two wavesP � may introduce, does present some insight into the attenuation mechanism. 
When compared to an anelastic acoustic style of equation, the quantities involved, which 
defined the quality factor � �f

PQ may be determined. In addition, the relationship between 

the quantities that define � �f
PQ  and Biot’s frequency become evident. Also presented are 

two hybrid finite integral transform – finite difference for the computation of synthetic 
traces in a radially symmetric medium with depth dependent model parameters and in a 
2.5D  medium where the parameters may be spatially dependent in the � �,x z  plane, but 
constant in the directiony � . The use of these relatively simple approaches for the 
determination of the seismic response in a poroviscoacoustic medium may be considered 
as tutorial steps in the problem of treating the the coupled slow/fast wavesP � which 
more adequately describes waveP �  propagation in a more correct poroviscoelastic 
formulation. 
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APPENDIX A: FINITE HANKEL TRANSFORM 
Although the two following finite Hankel transform methods may be found in the 

literature (Sneddon, 1972, for example), it was felt that for completeness they should be 
included here, at least in an abbreviated theorem formulation. The finite Hankel 
transform of the first kind is a direct application of the following theorem. 

Theorem I: If � �f x  satisfies Dirichlet’s conditions in the interval � �0, a  and if its Hankel 
transform in that range is defined to be 
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  � � � � � � � � � �1
J

0

a

j jH f x f x f x J x dx� �+ +� � , 	� � %  (A.1) 

where j+  is a root of the transcendental equation  

 � � 0jJ a� + 	  (A.2) 

then, at any point in the interval � �0,a  at which the function � �f x  is continuous , 

 � � � � � �
� �

J 22
1

1

2 j
j

j
j

J x
f x f

a J x

�

�

+
+

+

&

	
�

	
� �� �

'  (A.3) 

where the sum is taken over all the positive roots of equation (A.2). 

The finite Hankel transform and inverse of the second kind used in the text are given 
as follows: 

Theorem II: If � �f x  satisfies Dirichlet’s conditions in the interval � �0, a  and if its 
Hankel transform in that range is defined to be 

 � � � � � � � � � �1
J

0

a

j jH f x f x f x J x dx� �+ +� � , 	� � %  (A.4) 

in which j+  is a root of the transcendental equation  

 � � � � 0j j jJ a h J a� �+ + +- � 	  (A.5) 

then, at each point in the interval � �0,a  at which the function � �f x  is continuous , 

 � � � �
� �

� �
� �

2
J

22 2 2 2 2
1

2 j j j

j j j

f J x
f x

a h a J x

�

�

+ + +

+ � +

&

	

	
� � � �� �

'  (A.6) 

where the sum is taken over all the positive roots of (A.5) and h is determined from a 
boundary operator N at x a	  defined as 

 � � � � � � 0
df a

f h f a
dx

	 � 	N . (A.7) 
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APPENDIX B: TERMS IN INVERSE SUMMATION SERIES 
The analytic Fourier transform of the Gabor wavelet  

 � � � �
2

0
0cos exp tf t t ��

�

� �� �
	 �� �! "

# $� �� �
 (B.1) 

is, apart from some constant multiplicative terms, 

 � � � �
1 2 2 2

2
0

0 0

exp 1 cosh
4

F � � ��� � �
� �

� �� �
	 � � ! "� �

� � # $
. (B.2) 

The horizontal wave number, k , in a coordinate system with cylindrical symmetry is 
related to the angular frequency as 

 k
v
�
	  (B.3) 

where v  is velocity and �  is the circular frequency. It will be assumed that some upper 
bound, u� , on the band limited spectrum of the source wavelet has been determined, 
often through numerical integration of the spectrum and then reintegration to the value 

u�  up to which about 99.99% of the initial integration. Once u�  has been determined, 
the value of uk  may be obtained as 

 
min

u
uk

v
�

	  (B.4) 

with minv  being the minimum velocity P  or VS  encountered on the spatial grid which is 
one dimensional. It is known from numerical experiments that a good approximation for 
the duration of the Gabor wavelet in the time domain is 0f� . For some arbitrary ik  in 
the inverse series,  

 i
ik

a
.
	  (B.5) 

where the values of i.  are the roots of the transcendental equation 

 � �1 0iJ . 	  (B.6) 

so that 

 
min

u u
uk

v a
� .

	 	  (B.7) 

or equivalently 
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min

u
u

a
v
�. 	  (B.8) 

indicating that the number of terms which must be considered to adequately approximate 
the infinite series summation increases linearly with a. It may be seen upon examination 
of equation (C.2) that the spectral width of the Gabor wavelet decreases with increasing 
values of � . With the value of 4� 	  used here, 02u� �/ , so that with the predominant 
wavelength defined in terms of the predominant circular frequency and the minimum 
velocity encountered, 0 min 0v f 	  equation (B.7) becomes 

 4u. �0	  (B.9) 

In the above equation, 0a0 	 , a dimensionless quantity relating the predominant 
wavelength with the pseudo – boundary introduced at r a	 . For large values of i, the 
relation approximate relation i i. �/  holds (Abramowitz and Stegun, 1980). Thus the 
number of terms N, required to approximate the infinite series is, with u N. �/ , given as 

 4N 0/ . (B.10) 

For comparison purposes, going through the derivation with 5� 	  results in the value of 
N being given as 

 8 5N 0/  (B.11) 

which is less than that estimated for 4� 	 , as would be expected. 


