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ABSTRACT

Multiple reflections represent a serious problem in the field of seismic processing. Mul-
tiple events can be mistaken for primary reflections, and may distort primary events and
obscure the task of interpretation. In this work we will focus in the suppression of internal
multiples and we will illustrate how the inverse scattering internal multiple algorithm in-
troduced by Weglein and Araujo in 1994, is capable to attenuate internal multiples without
any a priori information about the medium through which the waves propagate. One of the
advantages of this method over other methods is its ability in principle to suppress multiples
that interfere with primaries without attenuating the primaries themselves. We consider the
version of the algorithm for 1D normal incidence case. This algorithm predicts internal
multiples from other events in the data by performing a convolution and a crosscorrelation
of data. In this paper we review the algorithm in theory, discuss intuitively how it works,
and examine the numerical behaviour of the algorithm in synthetic data. In particular, the
role and importance of the algorithm parameter ε is emphasized. The findings of this work
are put to use in prediction of internal multiples in physical model data (Hernandez et al.,
2011).

INTRODUCTION

Primary reflections are reflected only once at a certain subsurface interface before they
arrive at the receivers. These primary reflections provide us with important information
about the subsurface, such as velocities, density, geological structures, etc. Seismic imag-
ing techniques are developed based on primary reflections. However, in addition to primary
reflections, interfaces with a strong impedance contrast generate seismic multiples. Multi-
ple reflections often interfere destructively with primary reflections and lead to poor seismic
images.

Free-surface and internal multiples are defined as multiple reflected events that experi-
ence two or more upward reflections in the subsurface. The former consists of all multiples
that have experienced one or more reflections at the air-earth or air-water boundary. The
latter are events that have all of their downward reflection points below the free-surface
(Cao, 2006).

Although these multiple reflections have been studied extensively, they continue to be
a serious problem in the field of seismic processing. Multiple events can be mistaken for
primary reflections, and may distort primary events and obscure the task of interpretation.

Multiple attenuation methods fall into three main categories. The first conventional
approach is based on deconvolution. These methods use the periodicity of multiples for
suppression and are useful in suppressing short-period free-surface multiples generated at
shallow reflectors. The second category involves the use of filtering techniques, which
take advantage of the different moveout of multiple reflections compared to primary reflec-
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tions at the same time position. Wave equation methods are the third group. These use
recorded data to predict multiples by procedures of wave extrapolation and/or inversion.
These wavefield methods obtain multiple-free data by subtracting the predicted multiples
and can suppress all multiples generated by any complex system of reflectors (Xiao et al.,
2003).

Inverse-scattering techniques (Weglein et al., 2001) belong to the third group. They can
suppress both free-surface multiples and internal multiples. Inverse-scattering series sup-
press one order multiples generated at all interfaces simultaneously (Ikelle et al. (1997);We-
glein et al. (1997)).

In this work we examine the suppression of internal multiples and we will illustrate
how the inverse scattering internal multiple algorithm is capable of attenuating internal
multiples without any a priori information about the medium through which the waves
propagate. Then, we will apply a simple 1D form of the algorithm to synthetic data.

INVERSE SCATTERING INTERNAL MULTIPLE THEORY

1D normal incidence internal multiple attenuation

The application of scattering theory into seismic processing has been studied since the
last few decades, and has provided an alternative theoretical approach to understand, de-
scribe and represent seismic wave’s behaviour. Basically, this theory relates a perturbation
in the properties of a medium to the associated perturbation in the wave field. The first term
in the internal multiple attenuation series for the 1D normal incidence case is Araujo et al.
(1994):
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The function b3IM(kz) is a prediction of the internal multiple present in the data. It is
in the kz-domain, where kz is the conjugate of pseudo-depth (z = cot/2), hence the output
can be straightforwardly transformed to the time domain. The b1(z) entries are the input
data traces in pseudo-depth domain.

In order to obtain b1, we begin with the measured surface data with no free-surface
multiples, D(xg, xs, t) where xg and xs are the receiver location, source location and time
respectively. Then, a 3D Fourier Transform on these data is made to obtain D(kg, ks, ω).
Here kg and ks are Fourier Transform variables over geophone and source locations re-
spectively, qg and qs are vertical wavenumber. Subsequently the data is transform to ver-
tical space, D(kg, ks, qg + qs). The third is step is to transform the data to pseudo-depth,
establishing that kz = qg + qs . Then, the inverse Fourier Transform is performed to the
data, b1 = (kg, ks, kz) to b1 = (kg, ks, z). Finally we obtain the input b1 = (kg, ks, z) to
compute the predicted multiple of equation 1. Once added to b1, b3IM attenuates all first
order internal multiples (Weglein and Matson, 1998). In 1D, these steps reduce to a straight
scaling of the time axis:(t)→ D(z) = b1(z), where z = cot/2.
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Subevent Interpretation

This technique does not require subsurface information to achieve the suppression of
internal multiples. Moreover, the internal multiple attenuation method can be explain us-
ing the concept of subevents. This algorithm predicts an internal multiple from interpreted
subevents by performing a convolution and a crosscorrelation of prestack data. For exam-
ple, the first order internal multiple in Figure 1 is composed of three subevents that satisfy
the lower-higher-lower pseudo-depth condition. The parameter ε present in equation 1 en-
sures that z′1 is always greater than and not equal to z′3 and similarly for z′3.

Analytic Example

To illustrate the basis of this method observe Figure 1. In Figure 1 a multiple is gen-
erated at source and received at the receiver; it can be seen as the convolution of three
subevents. The temporal convolution and the correlation predicts the correct travel time of
the multiple, and the spatial convolution predicts the proper offset, because the sum of the
offsets of two subevents minus the offset of the third will equal the offset of the multiple
(Weglein and Matson, 1998).

FIG. 1: Construction of internal multiple. The first subevent which a primary reflection that travel from point
a, reflects from the second reflector, and is measured at c.The second subevent is a primary that propagates
from b, reflects from the first interface at e, and then is measured at c. The third subevent propagates from b,
reflects from the second interface and is measured at d. (Weglein and Matson, 1998)

Then, every event in the record can be thought of as a group of subevents. Convolving
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and correlating these subevents at a particular depths, the multiples are constructed. The
input data to the algorithm is the multiple contaminated prestack data set. The output is a
prestack data set that just contains the predicted multiples. Then by subtracting this second
data set from the original input data, the multiples are attenuated or in the best case removed
whilst the primaries remain undamaged (Matson et al., 1999).

Mathematically speaking we can describe in frequency the first subevent, a primary
reflection, in Figure 1 as

SE1(ω) = T1R2T
′
1e
iωt2 , (2)

The second subevent, another primary, could be written in frequency as,

SE2(ω) = R1e
iωt1 , (3)

And the third subevent is,
SE3(ω) = T1R2T

′
1e
iωt2 , (4)

Transforming these three subevent in pseudo-depth and substituting them in equation 1,
we get equation 5. Also, since the three subevents are discrete localized events and satisfy
the lower-higher-lower conditions, the integration limits could be extended to ±∞.
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Applying a Fourier Transform to the equation below can be written in the frequency
domain as

b3IM (ω) = SE1(ω)SE2(−ω)SE3(ω), (6)

Equation 6 describe the crosscorrelation of subevent 1 with subevent 2 followed by a
convolution with subevent 3. Substituting the three subevents into equation 6 result
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The actual internal multiple in the frequency domain is written as

IMI(ω) = T1R2(−R1)R2T
′
1e
iω(2t2−t1), (8)

Comparing equation 6 and 7 it is noticeable that the amplitude of the predicted multiple
is off by a factor of T1T ′

1 . For typical earth velocities this error is very small and the
predicted multiple gives a satisfactory degree of attenuation. This error could be due to
that the leading order term in the internal multiple attenuation series does not properly take
transmission effects into account and a reflection from above an interface is consider the
negative of the reflection from above (Weglein and Matson, 1998).

Also, it is important to notice that the phase is correctly predicted, (Weglein and Mat-
son, 1998).This algorithm achieves predict the proper travel time of the internal multiples
based on the fact that the convolution of two arrivals will sum the travel time of those
events, and the crosscorrelation will subtract their travel times.
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Therefore, the travel time of subevent 1 and 3 will be summed while the travel time of
subevent 2 will be subtracted. In fact, the portions of the three subevents that have the same
travel path will cancel.

One of the most important characteristic of this algorithm is that it selects all the
subevents that suit the lower-higher-lower relation through the integration limits of the
equation 1 (Weglein and Matson, 1998).

INVERSE SCATTERING INTERNAL MULTIPLE ATTENUATION
ALGORITHM

How the algorithm works

The inverse scattering internal multiple algorithm just needs the data itself as an input.
The algorithm, before it predict the internal multiples makes a series of transformations
of the data. First, to frequency domain and then to vertical wave number and finally to
pseudo-depth. Once the data is transformed to pseudo-depth, the algorithm starts to search
for possible multiples in the data. The subevents that the algorithm identifies as possible ray
path of the internal multiples must satisfy the lower-higher-lower condition. The algorithm
in fact treats the internal multiples as a combination of subevents. At this point the param-
eter epsilon is very important to consider, due to that this parameter limits the searching
process. The value of epsilon is related to the width of the wavelet. The key to understand
how this algorithm predict the internal multiples just with the data itself is to realize that
the convolution of two subevents adds the times of these subevents and the crosscorrelation
instead subtract the times. These subevents then construct at particular depth the internal
multiple.

The output of the algorithm is a prestack data set that contains the predicted multiples.
Then by subtracting this second data set from the original input data, the multiples are
attenuated or in the best case removed whilst the primaries remain undamaged (Matson
et al., 1999).

SYNTHETIC MODEL

Simple Synthetic Model

To start to work with the algorithm we generated a synthetic model. The model con-
sists of three primary reflectors and two multiples.Table 1 resumes the information of this
synthetic model.

One of the most important parameters to take in account of this method is the parameter
epsilon ε. Several values of epsilon were tested, but the best fit was achieve setting epsilon
equal to seven (ε = 7). A continuation we present the results obtained:
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FIG. 2: Sketch of the synthetic model used

FIG. 3: Application of the 1D internal multiple attenuation algorithm for the synthetic model
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PARAMETER VALUE
Sample number 512
Interval Sample time 3ms
Velocity and depth of the first interface 2000m/s at 200m
Velocity and depth of the second interface 2500m/s at 600m
Velocity and depth of the third interface 2800m/s at 900m
Epsilon (ε) 7
Type of wavelet Ricker
Wavelet central frequency 60Hz
Wave speed of the source/receiver medium 1500m/s

Table 1: Synthetic model parameters

PARAMETER TESTING

Effects of the Wavelet

In order to evaluate how sensitive is the algorithm to various parameters we made
a series to tests, such as remove of the wavelet, i.e., the data no include effects of the
wavelet. The results found do not show significant difference with the previous one, in-
cluding wavelet. A continuation we present them.

FIG. 4: Parameter testing: wavelet removal

Missing internal multiples in the input

The algorithm also predict or point out possible multiples even though when they are
not included in the actual data. See figure below, Figure 5. This is an important result
because through this we confirm that the algorithm effectively predicts multiples based
on the combination of the primaries, that satisfy the lower-higher-lower condition. In the
figure below we can notice that the algorithm predict to additional internal multiples that
are not include in actual data, at deeper depths.
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FIG. 5: Parameter testing: missing internal multiples in the input

Evaluation of epsilon extreme values

For smaller epsilon values, the algorithm affects the primaries. Therefore, an underesti-
mation of epsilon significantlycould damage important information present in the data. An
overestimation of the value of epsilon would not damage the data, but the output will not
shows any internal multiples or other seismic events.

CONCLUSIONS

The principal objective of this work was to implement and test an inverse scattering
internal multiple attenuation algorithm based on the work of Weglein and Araujo (1998).
This work shows that the algorithm is capable to attenuate internal multiples without any
a priori information about the medium through which the waves propagate. Based on the
results found, several conclusions can be drawn: The output prediction depends strongly
on the parameter epsilon. For the synthetic data the value of epsilon that performed the best
prediction was 7. For smaller epsilon values, the algorithm affects the primaries. Therefore,
an underestimation of ε could damage significantly important information present in the
data. An overestimation of the value of epsilon would not damage the data, but the output
will not show any internal multiples or other seismic events. For the synthetic model the
algorithm works well, predicts multiples in the correct time and the amplitude is similar
without any a priori information about the subsurface.
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