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ABSTRACT

In this note we derive convenient matrix forms for the Knott-Zoeppritz equations. The
attempt is to recapture results used (quoted, not derived) by Levin and Keys, and to extend
these to include the case of an incident S-wave. In addition to being straightforward to
solve and analyze, these forms are used in several other papers in this year’s CREWES
report.

INTRODUCTION

Our aim is to derive solutions to the Zoeppritz equations for an incident P-wave in a
form similar to that quoted by Levin and Keys (Levin, 1986; Keys, 1989), and to extend
these to include the results for an incident S-wave. These forms have proven convenient
both for the purposes of extension to anelastic media and direct inversion (Innanen, 2011);
in this report, they will be used in discussions on reflectivity decomposition of elastic re-
flection coefficients, AVF analysis of anelastic reflection of shear and converted waves, and
in an implementation of the poroelastic AVO theory due to Russell et al. (2011).

BASIC EQUATIONS

We take as our starting point the relations on pg. 140 of Aki and Richards (2002). The
assumption of continuity of displacement and traction across an elastic boundary has led to
four equations relating all relevant displacement amplitudes above and below the boundary.
In our terminology (see Figure 1) these equations relate PI, SI, etc. as follows:

sin θ0 (PI + PR) + cosφ0 (SI + SR) = sinφ1 (PT + P ′
I ) + cosφ1 (ST + S ′

I) , (1a)
cos θ0 (PI − PR)− sinφ0 (SI − SR) = cosφ1 (PT − P ′

I )− sinφ1 (ST − S ′
I) , (1b)

2ρ0(V
2
S0
/VP0) sin θ0 cos θ0 (PI − PR)− ρ0VS0

[
1− 2(V 2

S0
/V 2

P0
) sin2 θ0

]
(SI − SR) (1c)

=2ρ1(V
2
S1
/VP0) sin θ0 cos θ0 (PT − P ′

I ) + ρ1VS1

[
1− 2(V 2

S1
/V 2

P0
) sin2 θ0

]
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I) ,

ρ0VP0

[
1− 2(V 2

S0
/V 2

P0
) sin2 θ0

]
(PI − PR)− 2ρ0(V

2
S0
/VP0) sin θ0 cosφ0 (ST + S ′

I) (1d)

=ρ1VP1

[
1− 2(V 2

S1
/V 2

P0
) sin2 θ0

]
(PT + P ′

I )− 2ρ1(V
2
S1
/VP0) sin θ0 cosφ1 (ST + S ′

I) .

We consider several ratios of elastic parameters:

A ≡ ρ1

ρ0

, B ≡ VS0

VP0

, B′ ≡ VP0

VS0

, C ≡ VP1

VP0

, D ≡ VS1

VP0

, E ≡ VP1

VS0

, F ≡ VS1

VS0

. (2)

INCIDENT P-WAVE: RPP AND RPS

We now limit the number of waves incident on the boundary to one: a P-wave incident
from above (see Figure 2). That is, we let

SI = P ′
I = S ′

I = 0. (3)
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FIG. 1. Displacement amplitudes associated with the Knott-Zoeppritz equations.

We define the displacement coefficients associated with the remaining reflected and trans-
mitted waves to be

RPP ≡
PR

PI
, RPS ≡

SR

PI
, TPP ≡

PT

PI
, TPS ≡

ST

PI
. (4)

We will parametrize the coefficients in terms of the P-wave angle of incidence in the upper
medium, θ0. So beyond substituting the forms in equation (4) into the relations in equations
(1), we further transform all angle-dependent factors to expressions in sin θ0 using Snell’s
law, particularly,

cos θ0 =
√

1− sin2 θ0, sinφ0 =
VS0

VP0

sin θ0, sin θ1 =
VP1

VP0

sin θ0,

cos θ1 =

√
1−

V 2
P1

V 2
P0

sin2 θ0, and cosφ1 =

√
1−

V 2
S1

V 2
P0

sin2 θ0,

(5)

or, setting X ≡ sin θ0,

cos θ0 =
√

1−X2, sinφ0 = BX, sin θ1 = CX,

cos θ1 =
√

1− C2X2, and cosφ1 =
√

1−D2X2.
(6)

Finally, for convenience we define

Γj(X) ≡
√

1− j2X2,

Γj(X) ≡ 1− 2j2X2.
(7)

After substitution of equations (2)–(7), equations (1) can be expressed in matrix form as

P


RPP

RPS

TPP

TPS

 = bP , (8)
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where

P ≡


−X −ΓB(X) CX ΓD(X)

Γ1(X) −BX ΓC(X) −DX
2B2XΓ1(X) BΓB(X) 2AD2XΓC(X) ADΓD(X)
−ΓB(X) 2B2XΓB(X) 2ACΓD(X) −2AD2XΓD(X)

 ,
and

bP ≡


X

Γ1(X)
2B2XΓ1(X)

ΓB(X)

 .
Forming auxiliary matrices PP and PS by replacing the first and second columns of P
with bP respectively, we may use Cramer’s rule to determine the displacement reflection
coefficients:

RPP(θ0) =
detPP

detP
, RPS(θ0) =

detPS

detP
. (9)

We thus recover the forms used by Levin and Keys.
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FIG. 2. Displacement amplitudes given an incident P-wave.

INCIDENT S-WAVE: RSP AND RSS

The extension for an incident S-wave is carried out similarly. As illustrated in Figure
3, we disallow all incident fields except an S-wave from above by setting

PI = P ′
I = S ′

I = 0, (10)

and we define displacement coefficients

RSS ≡
SR

SI
, RSP ≡

PR

SI
, TSS ≡

ST

SI
, TSP ≡

PT

SI
. (11)

CREWES Research Report — Volume 23 (2011) 3



Innanen

This time we parametrize in terms of sinφ0, i.e., the sine of the S-wave incidence angle.
Using equation (7), the other trigonometric functions are expressible in terms of Y ≡ sinφ0

as

cosφ0 = Γ1(Y ), sin θ0 = B′Y, sin θ1 = EY, sinφ1 = FY,

cos θ1 = ΓE(Y ), cosφ1 = ΓD(Y ), and cos θ0 = ΓB′(Y ).
(12)

After substitution of equations (10)–(12), equations (1) can also be expressed in matrix
form as

S


RSS

RSP

TSS

TSP

 = bS, (13)

where

S ≡


−Γ1(Y ) −B′Y ΓF (Y ) EY

Y −ΓB′(Y ) FY −ΓE(Y )
Γ1(Y ) 2Y ΓB′(Y ) AFΓF (Y ) 2AF 2Y ΓE(Y )

−2Y Γ1(Y ) B′Γ1(Y ) 2AF 2Y ΓF (Y ) −AEΓF (Y )

 ,
and

bS ≡


Γ1(Y )
Y

Γ1(Y )
2Y Γ1(Y )

 .
Forming auxiliary matrices SP and SS by replacing the first and second columns of S
with bS respectively, we again use Cramer’s rule to determine the displacement reflection
coefficients:

RSS(φ0) =
detSS

detS
, RSP(φ0) =

detSP

detS
. (14)

Thus are generated the incident-S counterparts to the incident-P solutions of Levin and
Keys.
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FIG. 3. Displacement amplitudes given an incident S-wave.

CONCLUSIONS

We derive matrix forms for the Knott-Zoeppritz equations. The attempt is to recapture
results of Levin and Keys, show how they are arrived at, and to extend these to include the
case of an incident S-wave. We have made particular use of these forms in several other
papers in this year’s CREWES report.
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