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ABSTRACT 

In this report, we discuss a new approach to the derivation of the rock physics 
template, or RPT.   We first discuss pore space stiffness and use the Betti-Rayleigh 
reciprocity theorem to derive Gassmann’s equation from the dry and saturated pore 
space stiffnesses.  We then review the work of Russell and Smith (2007), which 
showed empirically that the dry rock pore space stiffness stays constant over a range 
of porosities for a constant pore pressure.  This allows us to use both the pore space 
stiffness method and the Gassmann equations for estimating bulk and shear moduli as 
a function of both saturation and porosity.  Using empirical measurements in 
sandstones, we compare this fit to the alternate approach proposed by Ødegaard and 
Avseth (2003).   We show that our new method is both more intuitive and also 
produces a modulus ratio as a function of porosity which is closer to that derived in 
experimental studies.   

INTRODUCTION 
 
 In an earlier CREWES report, Russell and Smith (2007) use measurements 
from Han (1986) to evaluate two different approaches to the modeling of Kdry versus 
porosity in clean sands: the pore space stiffness method and the critical porosity 
method.  For the range of porosities found in the Han sandstones, the pore space 
stiffness method gave a closer fit than the critical porosity method.  By performing 
fits over a range of different pressures, the authors were also able to derive a 
relationship between pressure and constant pore space stiffness, and hence between 
Kdry and porosity at different pressures or depths.   In this report, we extend the work 
of Russell and Smith (2007) from the bulk modulus case to the shear modulus case 
and show that this will lead us to a new approach to the derivation the rock physics 
template (RPT) (Ødegaard and Avseth, 2003), one that provides better agreement of 
the bulk to shear modulus ratio with published experimental studies (Murphy et al., 
1993).   

PORE SPACE STIFFNESS AND THE GASSMANN EQUATIONS 
 

Pressure plays an important role in rock physics.  The compressibility of a 
porous rock, C, which is the inverse of the bulk modulus, can be written as the 
derivative of the volume of the rock with respect to pressure, divided by the volume 
itself, or  

dP
dV

VK
C �

�
�

�
�
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11 ,     (1) 
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where V = volume and P = pressure.  In equation (1), we are generally interested in 
two types of pressure: confining pressure, Pc, and pore pressure, Pp.  Also, there are 
three different volumes to consider: the volume of the bulk rock, Vb, the mineral, Vm, 
and the pore space, Vp.  Utilizing these concepts, we can build three simple models of 
the rock volume, and these are shown in Figure 1. In this figure, our rock model 
consists of the simplified case of a solid mineral with a single pore, where (a) is the 
situation where the confining pressure applied to the inside and outside of the 
mineral, and shows us that the rock deforms with the mineral modulus, (b) shows no 
stress on the inside of the rock but confining pressure on the outside, and therefore 
gives us the dry rock case, and (c) shows pore pressure on the inside and confining 
pressure on the outside, and gives us the saturated rock case. 

 
 (A) (B) (C) 

Figure 1. A simple rock model consisting of a solid mineral and a single pore, where (A) show the confining 
pressure applied to the inside and outside of the mineral, (B) shows no stress on the inside but confining pressure 
on the outside, and (C) shows pore pressure on the inside and confining pressure on the outside (from Mavko and 
Mukerji, 1995). 

 
The Betti-Rayleigh reciprocity theorem, originally published in the late 19th 

century, states:  
“For an elastic body acted on by two different sets of forces, the work done by 
the first set of forces acting on the displacements caused by the second set of 
forces equals the work done by the second set of forces acting on the 
displacements caused by the first set of forces.” (Mavko and Mukerji, 1995). 

As Mavko and Mukerji (1995) show in the appendix to their paper, if we use this 
theorem to first compare cases A and B from Figure 1, and then cases A and C, this 
will lead us to the Gassmann form of the Biot-Gassmann equation.  We will not 
reproduce the mathematical derivation from Mavko and Mukerji (1995) here, but 
simply state the results.    

First, by comparing situations A and B (the mineral and dry cases), we arrive 
at the following equation: 






KKK mdry

�	
11 ,    (2) 

where Kdry is the dry rock bulk modulus, Km is the mineral bulk modulus and K
 is the 
pore space stiffness.  
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The pore space stiffness is the inverse of the dry rock pore space 
compressibility, which can be expressed in the same form as equation (1) by 

pPc

p

p dP
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which states that the inverse of the pore space stiffness is equal to the ratio of the 
fractional change in pore volume to the full pore volume for an increment of applied 
confining pressure at constant pore pressure (Mavko and Mukerji, 1995).   Note that 
this compressibility is identical to Cpc, (Zimmerman et al., 1986, Zimmerman, 1991) 
which is one of Zimmerman’s four fundamental compressibilities.  In equation (2), I 
have used Zimmerman’s notation for pressure and also his sign notation.  Mavko and 
Mukerji (1995) use different notation and also drop the negative sign.    

Next, using the Rayleigh-Betti reciprocity theorem to compare cases A and C 
gives an equation involving Ksat, the saturated bulk modulus: 






KKK msat
~
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�	 ,     (4) 
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  ~ is the saturated pore space stiffness and Kf  is the fluid bulk 

modulus.   Notice the similarity between equations (2) and (4) and the fact that if the 
fluid bulk modulus is equal to zero, equation (4) simplifies to equation (2).  We can 
re-express equation (2) as a function of pore space stiffness to get 
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Also, we can re-express equation (4) as a function of pore space stiffness to get 
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By equating equations (5) and (6) we can eliminate the pore space stiffness term, K
.  
After dividing through by the mineral bulk modulus, Km, and the porosity, 
, and re-
arranging the terms slightly, we then get 

� 
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.   (7) 

Equation (7) is one of the standard forms of the Gassmann equation (Mavko et al., 
1998), and is used as the basis for fluid substitution.  The fact that the Gassmann 
equation falls out so naturally from a derivation of the dry and saturated pore space 
stiffnesses suggests that these physical quantities are fundamental to the way in which 
porosity and pressure changes affect porous rocks in fluid substitution.   This 
observation was tested empirically by Russell and Smith (2007), who used 
measurements from Han (1986) to evaluate two different approaches to the modeling 
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of Kdry versus porosity in clean sands: the pore space stiffness method and the critical 
porosity method.  A summary of their results will be given in the next section. 

PORE SPACE STIFFNESS AND POROSITY 
 

First, note that equation (2) can be re-arranged to give the following 
relationship 

k
K
K

m

dry



�

	
1

1 ,      (8) 

where mKKk /
	 .  Equation (8) tells us that the dry rock over matrix bulk modulus 
ratio is an inverse function of porosity and the pore space stiffness over matrix bulk 
modulus ratio k.  This equation confirms our observations that we expect this ratio to 
go to one at zero porosity.  Also, it is clear that either as k gets smaller or 
 gets 
larger, this ratio gets smaller, as shown in Figure 2. 
 

 
 

Figure 2. A family of dry rock over matrix bulk modulus ratio curves for 
varying values of k (from Russell and Smith, 2007). 

 
The basic idea behind the pore stiffness method is that, for a given pressure, 

K
 should stay constant over a range of porosities, allowing us to re-compute Kdry at a 
different porosity.  This will be discussed later in this section. 
 

An alternate approach to changing Kdry as a function of porosity is the critical 
porosity method (Nur, 1992, Mavko and Mukerji, 1995), where the equation is given 
by 

cm

dry

K
K






�	 1 ,     (9) 
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where 
c is equal to critical porosity, which is the porosity that separates load-bearing 
sediments below 
c from suspensions above 
c.    
 

The pore stiffness method and critical porosity methods represent two valid 
approaches to modeling Kdry as a function of porosity.  Russell and Smith (2007) 
evaluated how well these two equations fit a dataset that was measured by De-hua 
Han for his Ph.D. thesis at Stanford University (Han, 1986).  This dataset consisted of 
70 separate sandstone samples of varying porosity and clay content (from clean to 
51% clay).  For each sample, measurements of P-wave velocity, S-wave velocity and 
density were done for both the wet and dry cases.  In addition, the velocities were 
measured at pressures of 5, 10, 20, 30, 40 and 50 Mpa, respectively.  This dataset was 
used initially by Han to predict the effects of porosity and clay content on the acoustic 
properties of sandstones (Han et al., 1986).  In their discussion of the critical porosity 
method, Mavko and Mukerji (1995) used only the ten clean sandstones from Han’s 
dataset.  From this subset of Han’s data, Mavko and Mukerji (1995) used all of the 
sandstones at 40 Mpa, which gave a reasonable visual fit to a critical porosity trend, 
and a single sandstone at pressures from 5 to 40 Mpa, which illustrated the fact that 
Kdry/Km is pressure dependent.    

 
Russell and Smith (2007) performed an analytic study to determine which 

model gives the best fit to these points: critical porosity or constant pore space 
stiffness, in which they measured the root-mean-square error (RMSE) for the two fits, 
and also found the best values of k and 
c.  For the two fits they found, by using the 
ten clean sandstones at 40 Mpa pressure, that the RMSE for the pore space stiffness 
method was 0.039, and for the critical porosity method was 0.058.  Thus, the critical 
porosity method gave a better fit to the points.   For the pore space stiffness method 
the best fit value was k = K
/Km = 0.162, and for the critical porosity method the best 
fit was 
c = 0.343 (or 34.3%). The fits are shown in Figures 3(a) and (b). 
  

 
(a)      (b)    

Figure 3. The best fits for the (a) constant pore space stiffness method, where K
 /Km = 0.162, and the RMS 
error is 0.039, and the (b) critical porosity method, where 
c = 0.343 (or 34.3%), and the RMS error is 0.058 
(from Russell and Smith, 2007). 
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Russell and Smith (2007) next performed a least squares fit to the full set of 
ten clean sandstones at each pressure: 5, 10, 20, 30, 40 and 50 Mpa.  Their best fit 
values and RMS errors for each of the six pressure relationships is shown in Table 1.  
As can be seen in the table, the error is smaller for the pore space stiffness method in 
each case, and the values of pore space stiffness and critical porosity increase with 
increasing pressure, as we expect. 
 

P(MPa) 
c RMSE K
 /Km RMSE 
5 0.289 0.126 0.104 0.094 

10 0.311 0.107 0.129 0.076 

20 0.329 0.079 0.147 0.055 

30 0.338 0.069 0.156 0.044 

40 0.343 0.058 0.162 0.039 
50 0.348 0.053 0.166 0.038 

 
Table 1. The best fit values and RMS errors as a function of 
pressure for the critical porosity and pore space stiffness methods 
(from Russell and Smith, 2007). 

 
 From the values computed for the pore space stiffness method, Russell and 
Smith (2007) then computed a relationship between pressure and K
�����Figure 4(a) 
shows the fit of K
/Km versus pressure on a linear scale and Figure 4(b) shows the fit 
of K
/Km versus pressure on a semi-logarithmic scale, where the natural logarithm of 
pressure has been plotted on the horizontal axis.  The logarithmic fit is close to linear, 
and a best-fit linear fit was computed, with coefficients given by 
 

)ln(027.0065.0 P
K
K

m

�	
 .    (10) 

 

 
(a)      (b)    

Figure 4. The constant K
 /Km fits as a function of pressure plotted on (a) a linear-linear scale and 
(b) a linear-logarithmic scale.  Note the good linear fit in (b) (from Russell and Smith, 2007). 
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Using calculus to differentiate equation (10), we get 
 

P
K

dP
dK m027.0

	
 .    (11) 

 
Replacing the derivative with the difference operator and re-arranging, Russell and 
Smith (2007) then found that 

P
PKK m

�
	� 027.0
 .    (12) 

Equation (12) is a very useful result, since it allows us to derive constant K
 
curves at different pressures than the in-situ pressure, and hence predict a depth 
variable Kdry

 
 versus porosity relationship.   

THE ØDEGAARD/AVSETH ROCK PHYSICS TEMPLATE 
 

Ødegaard and Avseth (2003) presented a new technique for the interpretation 
of elastic inversion results using what they called the rock physics template, or RPT, 
approach.  In this method, they compute a theoretical template consisting of values of 
VP/VS ratio versus acoustic impedance (�VP) and compare this template to results 
derived from both well logs and the inversion of pre-stack seismic data.  To compute 
the values of velocity ratio and acoustic impedance, Ødegaard and Avseth (2003) 
compute Kdry and �dry as a function of porosity, 
� using Hertz-Mindlin contact theory 
(Mindlin, 1949) and the lower Hashin-Shtrikman bound (Hashin and Shtrikman, 
1963).  The authors also incorporate the critical porosity method for the computation 
of the porous and solid phases.  The bulk modulus computation is given as: 

HM
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and the shear modulus computation is given as 

z
zz m

c

HM

c
dry ��

�

�
�
�

�
�

�
�

�
	

�1
/1/

�




�


� ,    (14) 

where HM is an abbreviation of Hertz-Mindlin, 
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6
, P = effective 

pressure, Km and �m are the mineral bulk and shear moduli, n = the number of 
contacts per grain, �m is the mineral Poisson’s ratio and 
c is the high porosity end-
member.   
Once we have computed the dry rock bulk and shear moduli at different porosities, 
we can use the Gassmann equation (equation 7) to model the saturated rock 
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properties.   Gassmann’s theory predicts that the shear modulus is independent of 
fluid content, or 

drysat �� 	 .     (15) 
 
The saturated density can be computed from the equation 
  





 ooggwwmsat S�S�S�)(�� ����	 1 .   (16) 
 
where the subscripts m, w, g and o indicate matrix, water, gas and oil, S is the fraction 
of saturation of each fluid component. The only other term we need to know in 
equation 7 is Kfl, the fluid bulk modulus.  This can be computed by the Reuss average 
given by 

o

o

g

g

w

w

fl K
S

K
S

K
S

K
��	

1 .    (17) 

 
(Note that this is for uniform distribution of the fluids.  For patchy saturation we use 
the linear Voigt average).   
 

We can then compute each new saturation value by re-arranging equation 7 to 
give 

x
xKK msat �

	
1

,    (18) 
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, and varying the value of Sw and 
. 

 
Finally, we plug the new values of the bulk and shear moduli and the density 

into the equations for P and S-wave velocity in the saturated, porous reservoir, given 
by 

sat

satsat
satP

KV
�

�3
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_
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	 ,    (19) 

and 

sat

sat
satSV

�
�

	_ ,     (20) 

 
 From equations 19 and 20 we can finally compute the VP/VS ratio and the P-
impedance, which is the product of density and P-wave velocity.   
 

Figure 5 shows the computation of a set of curves in which we varied porosity 
and saturation using the following parameters: Km = 36.8 GPa and �m = 44 GPa 
(which implies that �m = 0.073), n = 8.64, and P = 0.02 GPa.  For the saturation 
change we assumed a two phase gas-water system in which Kwater = 2.92 GPa and 
Kgas = 0.021 GPa.  For the density, we assumed that �m = 2.65 g/cc, �water = 1.09 g/cc 
and��gas = 0.001 g/cc. 
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Figure 5: Cross-plot of VP/VS ratio versus acoustic impedance for the Ødegaard and Avseth rock 
physics template using the values given in the text.  A range of porosities from 5 to 40% and 
water saturations from 0 to 100% are shown. 

A NEW ROCK PHYSICS TEMPLATE 
 

In this section, we will derive a new rock physics template based on the pore 
space stiffness approach.  As shown by Russell and Smith (2007), equation 2 allows 
us to model Kdry at different porosities.  To do this, note first that equation 2 can be re-
written as 

�
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mdry KKK
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.     (21) 

Thus, if Kdry is computed at some known porosity 
cal, where the subscript cal 
stands for calibration value, we can derive the value of K
�in the following way 
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Assuming that the pore pressure stays constant, a new value of dry rock bulk 
modulus Kdry_new at a new porosity 
new will have the same pore space stiffness.  That 
is, we can write 

�
�
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Combining equations 22 and 23, we can eliminate K
 and compute the new value of 
the dry rock bulk modulus as follows: 

�
�
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�
�
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This is shown in Figure 6, where it is clear that we simply move along the curve of 
constant K
. 

 
Figure 6: Computing a value of Kdry at a new porosity by assuming constant K
. 

Finally, we need to compute the shear modulus as a function of porosity.  As 
shown empirically by Murphy et al. (1993), the modulus ratio Kdry/� is remarkably 
constant for clean sandstones over a range of porosities.  The authors found a value of
0.9 for this ratio.  Assuming that this ratio is constant, regardless of its value, once we 
have computed the in-situ and new values of Kdry

caldry

newdry
calnew K

K

_

_�� 	

, we can compute a new value for 
the shear modulus by the equation 

.     (25)

Although the use of equation 25 would seem reasonable, it has one major 
limitation.   This is that the value of the shear modulus will generally not give the 
correct value at the mineral limit, unless the ratio at this limit happens to be the same 
as the ratio at the calibration point.  For that reason, we decided to use an equation 
which is identical in form to equation 24, or  

�
�
�

�
�
�
�

�
��	

mcaldrycal

new

mnewdry ��




��
1111

__

.   (26) 

 
 Figure 7 shows the results of applying equations 24 and 26 to compute 
porosity change from 5 to 40% and the standard Gassmann approach, described in the 
previous section, to compute saturation change from 100% wet to 100% gas (Sw = 
0%).   
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All of the parameters used in Figure 7 were the same as for the Ødegaard and 
Avseth method except that, since we are not using the Hertz-Mindlin approach, we 
did not need the coordination number n or the pressure P.  Note that the absolute 
pressure does not enter our new approach, only the relative pressure change using 
equation 10.  In this case, the pressure does not change, so we have no need to use 
this equation.  However, we still needed to calibrate the two sets of curves.  To do 
this, we used the value of Kdry

 

 computed for the 20% porosity case using the Hertz-
Mindlin approach.  This ensures that the results of the two methods will be identical 
for a porosity of 20%. 

 
Figure 7: Cross-plot of VP/VS ratio versus acoustic impedance using the pore space stiffness 
approach, where the 20% porosity (
) case has been calibrated to the Ødegaard and Avseth 
approach of Figure 5. 

 
 A comparison between the results in Figures 5 and 7 is shown in Figure 8, 
where we have displayed on the results for porosities of 5%, 20% and 40%.   
 

 
Figure 8: Comparison of the pore space stiffness and the Ødegaard and Avseth, or Hertz-
Mindlin, rock physics template approaches, where the red curves are for pore space stiffness and 
blue for Hertz-Mindlin.  The black curve and points are at the calibration value for a porosity of 
20%, at which point the curves are identical. 
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 In Figure 8 notice that, as expected because of the calibration, the results of 
the two methods are identical at 20% porosity.  However, at the extreme values of 5 
and 40%, the pore space stiffness method appears to be “squeezed” in acoustic 
impedance compared to the Hertz-Mindlin method.  That is, at a porosity of 40%, the 
Hertz-Mindlin approach gives a greater acoustic impedance value than the pore space 
stiffness method but, at a porosity of 5%, the Hertz-Mindlin approach gives a smaller 
acoustic impedance value than the pore space stiffness method.  However, for the P to 
S-wave velocity ratio, the situation is different, and the Hertz-Mindlin approach gives 
a larger range of values at 40% whereas the pore space stiffness method gives a larger 
range of values at 5%.    
 

However, we feel that doing the computations over such a large range of 
values of porosity is probably pushing both methods too far.  Thus, Figure 9 shows 
the comparison of the two methods over a range of 10% (plus and minus 5% from the 
calibration value).  Notice that the discrepancies between the two methods are now 
much less. 
 

 
Figure 9: Comparison of the pore space stiffness and the Ødegaard and Avseth, or Hertz-
Mindlin, rock physics template approaches for a more reasonable range than in Figure 8. The red 
curves are for pore space stiffness and blue for Hertz-Mindlin.  The black curve and points are at 
the calibration value for a porosity of 20%, where the curves are identical. 

 
 Of course, the key question is: which of the two methods is correct?  In fact, 
the real question is: which of the two methods is closer to being correct, since of 
course both methods are much too simplistic to exactly predict the behavior of 
complex earth materials.  The ultimate test is to compare these templates with real 
data, both from well logs and seismic inversions.  However, even here we might be in 
doubt as to which method works best, because the results will be dependent on how 
the scaling is done. 
 
 Therefore, to test the accuracy of the two methods, we used published 
experimental data.  As mentioned earlier, it was shown empirically by Murphy et al. 
(1993) that the modulus ratio Kdry/� is remarkably constant for clean sandstones over 
a range of porosities.  The authors found a value of 0.9 for this ratio.  Therefore, we 
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felt that a good test of the two methods would be to plot the Kdry

 

/� ratio found using 
these calculations.  This is shown in Figure 10. 

 In Figure 10, the constant dashed line is equal to the dry modulus ratio found 
at the calibration porosity of 20%, a value of 0.884.  The red line is the ratio found by 
the Hertz-Minlin (HM) method, and the blue line is the ratio found using the pore 
space compressibility (PS) method.  Note that the HM and PS lines intersect twice, 
once at the calibration point and once at the mineral (0% porosity) point, a value of 
0.884 (the fact that this value is close to Murphy et al.’s value of 0.9 shows that, at the 
calibration point, the HM method is quite good).  However, note that the HM line 
significantly deviates from the expected constant line, whereas the PS line is quite 
close except where it is forced to deviate to produce the fit at 0% porosity. 
 

 
Figure 10: Comparison of the pore space stiffness and the Ødegaard and Avseth, or 
Hertz-Mindlin,  rock physics template approaches, where the dry rock K/� ratio has 
been plotted against porosity. 

 
To make this clearer, we next plot the actual shear modulus curve as a 

function of porosity.  In Figure 11, we plot this curve over the full range of porosities, 
from 0 to 40%, and in Figure 12 we plot only the porosities from 0 to 10%.  In both 
plots three different models are shown: the Hertz-Mindlin approach, the pore space 
compressibility approach, and the constant ratio approach.  Based on the 
measurements made by Murphy et al. (1993), we would expect that the constant ratio 
approach should produce a shear modulus which is most physically realistic, except 
for the zero porosity mineral case.   

 
In Figure 11, it is obvious that the three curves all tie at the calibration point, 

as they should.  However, over most of the range of porosities, the shear modulus 
computed using pore space compressibility approach ties the shear modulus from the 
constant ratio approach.    
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Figure 11: A plot of shear modulus versus porosity for three different models: the Hertz-
Mindlin approach, the pore space compressibility approach, and the constant ratio approach.  
  
Due to the large range of porosities plotted in Figure 11, it is difficult to see 

what happens close to zero porosity.  To illustrate this region, we have therefore 
plotted only the porosities from 0 to 10% in Figure 12.   Note from this plot that, as 
we get arrive at 0% porosity (shown by the red ellipse) the Hertz-Mindlin and pore 
space compressibility approaches give the correct value for �m

 

 of 44 Gpa, whereas 
the constant ratio approach underestimates this value. 

 
Figure 12: A plot of shear modulus versus porosity for three different models: the 
Hertz-Mindlin approach, the pore space compressibility approach, and the constant 
ratio approach, over a smaller range of porosities than in Figure 11. Note that the 
behavior as we approach zero porosity (illustrated by the red ellipse) is more clearly 
shown than in Figure 11. 
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Based on the results shown in Figures 11 and 12, we therefore conclude that 

the pore space compressibility approach combines the best features of both the 
constant ratio approach, where the dry modulus ratio is constant for most porosities, 
and the Hertz-Mindlin approach, where the correct value of the mineral shear 
modulus is predicted at zero porosity. 

 
  

CONCLUSIONS 

In this report, we have discussed a new approach to the derivation of the rock 
physics template, or RPT (Ødegaard and Avseth, 2003).   We first discussed pore 
space stiffness and used the Betti-Rayleigh reciprocity theorem to derive Gassmann’s 
equation from the dry and saturated pore space stiffnesses.  From this very intuitive 
approach to the derivation of the Gassmann equation, it was obvious that pore space 
stiffness plays a very important role in the understanding of the way that dry rock 
bulk modulus changes as a function of porosity for constant pore pressure.  We then 
reviewed the empirical work done in CREWES report by Russell and Smith (2007) to 
show that the pore space method gives a good fit to measured sandstone values by 
Han (1986). 

After reviewing the work of Ødegaard and Avseth (2003), which was based 
on Hertz-Mindlin contact theory, the lower Hashin-Shtrikman bound and the critical 
porosity method for the computation of the porous and solid phases, we then 
discussed how to use both the pore space stiffness and Gassmann equations for 
estimating bulk and shear modulii as a function of saturation and porosity.  Using 
empirical measurements in sandstones, we next compared the two approaches.  We 
showed that this new method is both more intuitive and also produces a dry modulus 
ratio as a function of porosity which is closer to that derived in experimental studies 
of Murphy et al. (1993).  As a final note, this new method is more appealing from the 
point of view of Occam’s razor, or the law of parsimony, which states that "simpler 
explanations are, other things being equal, generally better than more complex ones." 
(from Wikipedia, the free encyclopedia).  
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