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ABSTRACT

It has been shown through previous data examples that nonstationary deconvolution,
and in particular the CREWES Gabor nonstationary deconvolution, provides significant
enhancement for deep georadar reflections. In many examplesthe improvement extends
the radar image from a few meters to a few tens of meters.

We find here through controlled experiment that nonstationary deconvolution has an
attenuation correction property - the frequency and phase components of attenuation loss
are compensated for. Though the compensation effect is noticeable on seismic data, the
effect on georadar data is quite a bit more obvious and we find that, in terms of attenuation
factorQ,Q is about an order of magnitude smaller (so the attenuation effect is much larger)
for georadar than it is for seismic. We show that it thisQ compensation probably accounts
for the significant signal improvements that we see in georadar data.

INTRODUCTION

Recent application of the CREWES Gabor nonstationary deconvolution algorithm (Ga-
bor decon, Margrave et al. (2011)) to georadar data has lead to significant improvements in
depth of image penetration. For example, in Ferguson et al. (2011) increase the image from
meters to ten meters in a quarry. Ferguson et al. (2010) and Rowell et al. (2010) extend the
image in basalt to 35 meters. In each of Ferguson et al. (2011), Ferguson et al. (2010), and
Rowell et al. (2010), data acquisition time (the number of sample acquired) appears to be
the limiting factor in image depth when Gabor decon is used.

More recently Ferguson et al. (2012b) provide images tens ofmeters below a nuclear
weapons repository in the French Alps, and Ferguson et al. (2012a) triple the effective time
length of their data with Gabor decon.

We postulate that Gabor decon has significantQ compensation attributes and so it will
return very good results for signals like georadar that haveweakQ values. We then es-
timateQ for a recent georadar acquisition in the Alps of Central Italy. We find that the
extracted value(Q = 21.8) is about 10 times smaller than what is typical of seismic data
(Q ∼ 102). We then generate two synthetic signals - a georadargram anda seismogram -
for the same reflectivity sequence and we scale these by a georadar wavelet of 200 MHz
central frequency and a seismic wavelet of 20 Hz respectively. The georadargram is then
attenuated usingQ = 21.8 and the seismogram is attenuated usingQ = 218, and then they
are both input to Gabor deconvolution. We find that the georadar signal is significantly at-
tenuated in amplitude and that reflections appear to be shifted to earlier times. In contrast,
the seismic signal is much less attenuated and reflections are not as severely time shifted.

As expected, Gabor decon does an excellent job of restoring the amplitude and phase
characteristics of the seismogram, but that the phase characteristics of the georadargram do
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remain shifted though they are improved. We conclude that previous findings that Gabor
decon drastically improves georadar images is most probably due toQ compensation.

THEORY

Gabor deconvolution

Gabor decon is based on Margrave et al. (2011) and we will review it’s most salient
points here. This nonstationary deconvolution algorithm is based on assumptions of white
reflectivity and minimum-phase source wavelet similar to Weiner deconvolution (Robin-
son, 1967). The data model upon which Margrave et al. (2011) is based is that the Gabor
transform of a trace is approximately equal to the Gabor transforms of reflectivity, the
source wavelet, and the attenuation mechanism multiplied together. Margrave et al. (2011)
compute the Gabor spectrum of estimated reflectivity through division of the spectrum of
the trace by the spectrum of the combined estimate of the wavelet / attenuation function.

The deconvolution operator is determined from the data directly, so attenuation that is
removed is consistent with the data such that the deconvolution process is stable Margrave
et al. (2011). The source waveletw and the attenuation functionα are treated as sepa-
rate, convolutional (in time) effects where the wavelet is assumed to be stationary, and all
nonstationary effects are due to attenuation Margrave et al. (2011). Attenuation includes
constantQ that causes frequency-dependent loss of amplitude and the short-path multi-
ple effect of O’Doherty and Anstey (1971); they combine to form an effective attenuation
mechanism with the frequency dependent and minimum phase characteristics.

In the Gabor domain of timet and frequencyf , the model of an attenuated seismic
trace is

Ŝg (t, f) ≈ ŵ (f) α (t, f) r̂g (t, f) , (1)

where

r̂g (tk, f) =

∫ ∞

−∞

gk (t) r (t) e
−2π i f t dt (2)

is the Gabor transform of time-domain reflectivityr, andg is a partition of unity (POU).
Variablestk andf are the two coordinates of the Gabor domain (Gabor time and Gabor
frequency).∗

A POU is a set of localizing windows within which the propagating wavefield is as-
sumed to be stationary and who’s superposition sums to unityMargrave et al. (2011). Fig-
ure 1 demonstrates this property. In Figure 1(a), 20 overlapping Gaussians are plotted on a
time axis between 0 and 3µs - they are identical except for a time shift. Figure 1(b) shows
a plot of the sum of the amplitudes of the 20 Gaussians in 1(a).The triangles annotated
on the resulting curve indicate the range of complete overlap of the Gaussians, and within
this range, the sum is identically unity. Any process that isapplied in the Gabor domain,
then, will be correct only within this range. An example of the application of a POU to a

∗The Gabor time coordinatetk is given astk in Margrave et al. (2011). We use the subscriptg here rather
thank to reduce confusion between the discrete number of windows1 ≤ k ≤ M and the discrete number of
Gabor time samples1 ≤ g ≤ N .
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FIG. 1. Example of a partition of unity (POU). a) 20 identical Gaussian windows shifted by a
constant increment. b) The sum of the Gaussian windows in (a). The sum is identically unity within
the time range indicated by the triangles on (b).
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time-domain reflectivity series is given in Figure 2. A reflectivity time-seriesr is plotted
in Figure 2(a) and the Gaussiangk=11 that is highlighted on Figure 1 is plotted for refer-
ence. Figure 2(b) is a plot ofg11 r - reflections outside the range ofg11 are zeroed, and
reflections withing11 are scaled according to the shape ofg11. Plotted in Figure 2(c) is the
reconstruction ofr as a sum of the 20 windowed reflectivities

∑

k gk r
†. Within the exact

range (indicated by the triangles) reflectivityr is precisely recovered while outside of this
range (in particular between 0 and 5µs) reflections are reduced in amplitude. To arrive at
this practical solution for̂rg (equation 2), a number of assumptions are made and these are:
a) the attenuation functionα varies slowly with respect to the POU, b) the time-domain
convolution of the wavelet with the attenuation function decays rapidly away fromt = 0
(is centred ont = 0) due tow being short in time relative to the POU, and c) reflectivity
r is windowed twice - once by the analysis window and again by the synthesis window,
so the combined effects of the two windows onr is to pass small values except where the
windows overlap Margrave et al. (2011).

Deconvolution then proceeds as a solution forr̂gusing equation 1:

r̂g (t, f) ≈ Ŝg (t, f)÷ [ŵ (f) α (t, f)] , (3)

(Margrave et al., 2011) followed by an inverse Gabor transform according to

r (t) ≈
∑

k

gk (tk) IFTf→t {r̂g (tk, f)} , (4)

where IFTf→t indicates thef → t inverse Fourier transform (Margrave et al., 2011). Esti-
mation ofŵ α is done using either boxcar smoothing ofŜg or, more commonly, hyperbolic
smoothing ofŜg (Margrave et al., 2011) analogous to the wavelet predictionmethod of
Robinson (1967) in that the Hilbert transform is used to relate the amplitude and phase of
w.

Q estimation by the spectral-ratio method

Most media attenuate individual frequencies of a propagating wavefield (Zener, 1948).
Q is a common measure of this attenuation, and it is usually defined in terms of peak
strain-energyE and energy loss per period∆E according to (Zener, 1948):

Q (f) = −
2 π Ef

∆Ef

. (5)

BecauseQ estimates are often stationary inf they can be estimated in the frequency do-
main through fitting a slope to the amplitude spectrum - thespectral ratio method (Båth,
1974). Two different measurements of the source waveform for two different receivers are
obtained andQ is estimated by slope fitting along thef coordinate of thelog of the ratio
of their amplitude spectra.

Q =
−π∆t

M
, (6)

†For brevity we have left out the forward and inverse Fourier transforms as well as a Gabor-domain filter-
ing process applied to the windowed reflectivity so that we may concentrate on the conceptual foundations
of the POU.
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FIG. 2. Reflectivity example. a) A random reflectivity series. The accurate range of the Gabor
transform is indicated by triangles, and the Gaussian highlighted in 1(a) is over-plotted. b) The
reflectivity in (a) multiplied by the Gaussian. Reflectivity beyond the range of the Gaussian is set to
zero and the passed reflectivity is scaled according to the shape of the Gaussian. c) The sum of all
20 windowed reflectivities. Within the accurate range, the reconstruction (inverse Gabor transform)
is exactly the same at the original reflectivity in (a).
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Parameter Value
Points in prediction filter 3

Points in Burg spectral estimate 105

Table 1. Parameterization of burg (Burg amplitude spectrum estimator) from the CREWES seismic
tool box.

whereM is the slope of the log-spectral ratio

M =
d

df
log

{

A1 (f)

A2 (f)

}

(7)

The resulting stationary estimate forQ is assumed to be constant for allf (though this is
not precisely consistent with equation 5).

Using raw data from Ferguson et al. (2012a) (line 40) the followingQ estimation pro-
cedure is followed:

1. Compute the mean trace of the data and subtract this trace sothat laterally coherent
system noise is attenuated .

2. Pick two time windows the same size that spans the range of good signal. The
separation between the windows should be 3 times (or more) the size of the windows.

3. Useburg.m from the CREWES toolbox to compute the Burg amplitude spectra for
the two windows. Burg spectra are more robust than Fourier spectra for small win-
dows Table 1.

4. Input the burg spectra intosprat.m from the CREWES toolbox to estimateQ using
the spectral ratio method. Thesprat.m algorithm will compute the log-spectral-
ratio (LSR) and plot it versus frequency. Theory suggests that the LSR will be a
straight line with negative slope. In practice we find this behaviour over a limited
frequency range only.

TheQ estimate for our data is shown in Figure 3. As expected, the negative LSR slope
is linear between a fixed frequency range between 60 MHz and 220 MHz. This value is
consistent withQ values reported by others (Irving and Knight, 2003, for example).

SYNTHETIC EXAMPLES

Forward modelling

Based on the attenuation work of Futterman (1962) we generatea reflectivity series
which we then convolve with a minimum phase wavelet. The resulting band limited trace
is then transformed into the Gabor(t, f) domain. There, the trace amplitude is multiplied
by a real-valued exponentialA that attenuates the amplitude

A (t, f) = e−π t f/Q, (8)
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FIG. 3. Q estimate for the data of line 40 (Ferguson et al., 2012a).

whereQ = 21.8 for georadar andQ = 218 for seismic, and then by a complex valued
exponential that causes phase dispersion according to

B = e−iH{−π t f/Q}. (9)

The results of the above process are given for georadar(fdom = 200MHz) and seismic
(fdom = 20Hz) respectively in Figure 4. Not that the reflectivity signals (red curves) are
identical with the exception of the different time axes (nano seconds verses seconds), and
the bandlimited reflectivities (blue curves) are very similar due to the choice of dominant
frequencies. The applied attenuation, however, causes significant differences in the signals
(green curves). The seismic signal (Figure 4(a)) is attenuated, but this effect is not strong
and the dispersion is not obvious until later times around 0.15 seconds where misalignment
of peaks and troughs becomes apparent. By 0.4 seconds, misalignment of zero crossings is
evident. Attenuation of the georadar signal (Figure 4(b)) is much stronger and dispersion
is evident at 5 ns and increase significantly from there. The attenuated reflection data from
4 are then input to Gabor decon functiongabordecon from the CREWES toolbox. The
results shown in 5 are what we consider to be an optimal balance of input values. The
seismic signal (Figure 5(b)) has been phase corrected and gained by Gabor decon such that
there is significant overlap with the bandlimited signal at most of the reflection features
with some over estimation of amplitude at the later times. The georadar signal (Figure
5(a)) is quite will restored at early times but some fidelity is lost beginning at about 20
ns where amplitudes and trough / peak / zero crossings begin to diverge. Though not a
perfect restoration, the signal is still interpretable andtherefore very useful in particular
when compared with it’s original, attenuated and dispersedstate (Figure 4(a)).

CONCLUSIONS

We present a theoretical and synthetic development that suggests thatQ compensa-
tion by Gabor decon (nonstationary deconvolution) is the mechanism by which so many
georadar datasets are improved. The attenuation factorQ for georadar is about 10 times
smaller and therefore georadar attenuation effects of amplitude decay and phase dispersion
are much more pronounced. We find that, for realistic frequencies Gabor decon enhances
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FIG. 4. Comparison of georadar attenuation (Q=21.8) and seismic attenuation (Q=218) for the
same reflectivity series. Figures 4(a) and 4(b) have reflectivity r plotted in red, r ·w plotted in blue,
and r · w · α plotted in green. a) For tmax = 10

−
7 s, fdom = 200 MHz, and Q = 21.8, the georadar

signal is strongly attenuated (the green curve departs significantly from the blue curve) relative to
the seismic signal. b) For tmax = 1 s, fdom = 20 Hz, and Q = 218, the seismic signal is not strongly
attenuated relative to the georadar signal.
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FIG. 5. Gabor decon applied to the attenuated signals from Figure 4. Green curves are the
restored signals. a) The georadar signal is fairly well restored with amplitude and phase departures
beginning at about 20 ns. b) The seismic signal is very well restored.
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seismic signals as expected and that georadar signals can beeven more significantly en-
hances. The amplitude and phase restoration for georadar are not perfect, of course, but
the improved signal presence at later times is significant, and we find that a small amount
of phase dispersion and amplitude error remains.
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