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ABSTRACT

The numerical modelling of wave equations is a common theme in many seismic ap-
plications, and is an important tool in understanding how the physical systems of interest
react in the process of a seismic experiment. We apply state-of-the-art numerical methods
based on domain-decomposition combined with local pseudospectral spatial discretization,
to three physically realistic models of seismic waves, namely their propagation in acoustic,
elastic, and viscoelastic media. The Galerkin formulation solves the weak form of the par-
tial differential equation representing wave propagation and naturally includes boundary
integral terms to represent free surface, rigid, and absorbing boundary effects. Stability, ac-
curacy, and computation issues are discussed in this context along with direct comparison
with finite difference methodologies.

This short paper is a summary of highlights from the 2012 MSc thesis of the first author,
which aims to bridge the gap between the development of accurate physical models to
represent the real world, as seen in seismic modelling, and the implementation of modern
numerical techniques for the accurate solutions of partial differential equations.

INTRODUCTION

The numerical modelling of seismic waves is an integral part of many seismic pro-
cessing procedures. When attempting to image the subsurface of the earth it is sometimes
necessary to iteratively update the current model based on the difference between the re-
sponse of the modelled system, and the data recorded from the actual experiment. As such,
it is important that both the numerical method, and the type of model used in the forward
modelling are capable of accurately representing the physical experiment.

Here, an argument is made that the partial differential equations that accurately model
the earth’s properties require a specific type of numerical method. More precisely, because
of the discontinuous nature of the earth’s properties, the partial differential equations ex-
hibit a low-order level of continuity that shows as a “kin” at the discontinuous interfaces.
Approximation methods that assume a higher level of continuity, can cause the position of
these kinks to show up at incorrect spatial locations, leading to improperly reconstructed
earth models.

In conducting the research for this work, the main motivation came from two previous
works. The main source, was that of E. Faccioli, F. Maggio, R. Paolucci and A. Quarteroni
which culminated in the papers Faccioli et al. (1996, 1997). Their work laid the general
framework for a high-order numerical method based on domain-decomposition combined
with pseudospectral methods, and included a boundary treatment based on Lagrange multi-
pliers that made it extremely efficient to model semi-infinite media by implicitly enforcing
the boundary conditions as part of a damping term.

CREWES Research Report — Volume 24 (2012) 1



McDonald et al.

Several years later the work of Faccioli et al. was reproduced independently by D.
Komatitsch and J.-P Vilotte in Komatitsch and Vilotte (1998), using a different method for
time-advancement.

VERSIONS OF THE WAVE EQUATION

The full acoustic wave equation for pressure is written as

ü(x, t) = K(x)∇ · ( 1

ρ(x)
∇u(x, t)) + f(x, t), x ∈ Ω, t > 0, (1)

where K is the bulk modulus, ρ is the density of the media and f is the forcing term.
Ω is the domain, which is assumed to be discontinuous globally, but made up of smaller
continuous sections where waves will have constant parameters. x ∈ Rd, d = 1, . . . , 3 is
the spatial dimension, dot denotes the time derivative and ∇ is the gradient operator. This
simulates a pure pressure wave propagating through the region Ω and has only a single
component u representing the pressure in the medium at a point x at time t.

The elastic wave equation is obtained by replacing pressure with a vector valued dis-
placement function u = (u1, . . . , ud) defined on an isotropic heterogeneous medium Ω ⊂
Rd, with a vector valued forcing function f = (f1, . . . , fd). The d-components of the dif-
ferential system are expressed as

ρ(x)üi(x, t) =
∑

j

∂

∂xj

σij(u) + fi, x ∈ Ω, t > 0, i = 1, . . . , d, (2)

where the stresses for the isotropic medium are

σij(u) = λ(∇ · u)δij + µ(
∂

∂xi

uj +
∂

∂xj

ui), (3)

with λ, µ the elastic parameters for the medium. It is physically significant that in this
case, the density ρ is outside the derivative, while the elastic parameters λ, µ are inside
the derivative, which leads to different qualitative behaviour when these parameters are not
constant.

In the viscoelastic case, the material response to stresses becomes time-dependent; the
Kelvin-Voigt model for this behaviour uses springs and dash-pots to represent this physical
case. In our model of the wave equation, the results in a modification to the definition of
stress, with

σij(u) = λ(∇ · u)δij + µ(
∂

∂xi

uj +
∂

∂xj

ui) + λ′∇ · vδij + µ′
∂

∂t
(
∂

∂xi

uj +
∂

∂xj

ui), (4)

where v is velocity (the time derivative of displacement u) and λ′, µ′ are additional vis-
coelastic parameters.

The reader is referred to Carcione et al. (2004) for details on the viscoelastic model.
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GALERKIN METHODS FOR SOLVING THE WAVE EQUATION

The Galerkin method can be thought of as the Calculus of Variations performed back-
wards. That is, instead of solving the strong form of the problem as a differential equation,
the Galerkin method seeks to find the weak form expressed in terms of integrals, and solve
that instead.

To apply the method to a differential equation of the form L[u] = f , defined on a region
Ω where L is a linear spatial differential operator, a space of functions V is chosen in which
element u and v will reside. The function u is then written as a linear combination of the
basis functions of the space,

u =
∑

i

aiφi, (5)

and v is chosen from amongst the basis functions. The measure of the residual R[u] =
L[u]− f should then theoretically be zero. That is,∫

Ω

R[u]v dx = 0, for all v ∈ C1
0(Ω), (6)

or, ∑
i

ai

∫
Ω

L[φi]φj dx =

∫
Ω

fφj dx, for all j. (7)

For certain problems, where the strong form corresponds to the Euler-Lagrange equations
of minimum potential energy, the Galerkin method is equivalent to a Rayleigh-Ritz mini-
mization technique .

To make this a feasible numerical method, the infinite sums must be truncated at some
large N , the integrals evaluated, and re-written as a large N -dimensional system of equa-
tions to be solved for the unknown ai’s,

Ka = f . (8)

Clearly, the method is greatly dependent on how the choice of basis function affects the
solvability of the resulting matrix equation. Choosing the basis functions to be sines or
cosines (depending on the boundary conditions) would make the matrix K diagonal, so
long as the differential operator is of the form of a constant coefficient DE.

Another method arises from choosing the basis functions to be compactly supported
piecewise polynomials designed to control the bandwidth of the matrix. These are termed
basis-splines or b-splines. The functions themselves are considered global, but are defined
by a small set of nodes corresponding to the order of the basis function.

In computing the time evolution of a wave propagating through a medium, it is con-
venient to treat time and space separately. In this formulation, we obtain a large, N -
dimensional system of ordinary differential equations to solve, in the form with initial
conditions

M ü +Ku = 0, t > 0, (9)
u(0) = u0, (10)
u̇(0) = u1, (11)
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where M is the called the mass matrix, and K the stiffness matrix. These matrices will be
computed from the particular wave equation under study, and will differ depending on the
choice of basis functions for the Galerkin method, as well as choice of boundary conditions.

NODES

A key idea in this approach is that the basis functions are determined by their point-
wise values on nodal points in space, from which their numerical derivatives and integrals
can be computed directly. The nodal points are not uniformly spaced, in order to avoid
Runge’s phenomena where errors could accumulate near the boundary. For instance, Fig-
ure 1 demonstrates the problems that arise as we attempt to approximate a Gaussian using
polynomials as basis functions, with uniformly distributed nodal points. As the number of
nodes increases, the approximation gets worse and worse near the endpoints.

The fix is to choose Gauss-Lobatto points, as shown in Figure 2, which clusters the
points near the boundaries. In this case, an optimal approximation of the Gaussian is ob-
tained.
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Figure 3.4: Runge phenomenon for increasing order of interpolation. The blue line
is the function, and the green line is the interpolating polynomial.

FIG. 1. Runge phenomenon for increasing order of interpolation. The blue line is the function, and
the green line is the interpolating polynomial.

The Gauss-Lobatto points can be computed numerically. The region under study can
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Figure 3.5: Interpolation of the function exp(−10x2) on clustered nodes.

Returning to the definition of the differentiation matrices, consider the interpolary

expansion

u(x) =
∞∑

n=0

anφn(x) ∀xi, i = 0, ..., N,

We can write this in matrix form
u(x0)

u(x1)
...

u(xN)

 =


φ0(x0) · · · φN(x0)

φ0(x1) · · · φN(x1)
...

. . .
...

φ0(xN) · · · φN(xN)


a0

...

aN


so then a0

...

aN

 =


φ0(x0) · · · φN(x0)

φ0(x1) · · · φN(x1)
...

. . .
...

φ0(xN) · · · φN(xN)


−1u(x0)

...

u(xN)


The matrix equation for the nodal values of the derivative is then

u′(x0)
...

u′(xN)

 =


φ′0(x0) · · · φ′N(x0)

φ′0(x1) · · · φ′N(x1)
...

. . .
...

φ′0(xN) · · · φ′N(xN)


a0

...

aN



FIG. 2. Interpolation of the function exp(?10x2) on clustered nodes.

be partitioned into different intervals, and Gauss-Lobatto points selected for each interval.
In 2D, a rectangular domain is partitioned into sub-rectangles, and grids of Gauss-Lobatto
points formed, as demonstrated in Figure 3. Observe the clustering near the centre lines; it
will be useful to have many points near regions of discontinuity in the propagating medium.

The mathematical formulation, going from the nodes to basis functions to numerical
derivatives and integrals (quadrature) are contained in the thesis of the first author, McDon-
ald (2012).
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Figure 6.2: 2D Legendre-Gauss-Lobatto SEM nodes distributed over 4 subdomains.

functions constructed by equating the basis functions from each element. Several

examples of these functions are seen in figure 6.3.

Interior to each domain, equation 6.7 is discretized using pseudospectral differ-

entiation matrices and integration weights by writing

uk
i (x, t) =

n∑
i=1

uk
i (xi, t)li(x, z).

Substituting this into 6.7 and choosing the functions v to be equal to lj(x, z) produces

the system of equations for the vector of nodal values uk
i (t) in the kth element

Mkük
i (t) + Ak

i u̇
k
i (t) +

∑
j

Kk
iju

k
j (t) = Mkfk

i (t)

The element mass matrix Mk is a diagonal matrix with the integration weights along

FIG. 3. 2D Legendre-Gauss-Lobatto SEM nodes distributed over 4 subdomains.

ABSORBING BOUNDARY CONDITIONS

The weak form (as integrals) of the wave equation that arises in the Galerkin formu-
lation makes its very easy to translate boundary conditions into surface integrals, that can
be directly incorporated into the numerical methods for solving the associated linear sys-
tem representing the differential equations model. We have experimented with several

CREWES Research Report — Volume 24 (2012) 5



McDonald et al.

variations of boundary conditions (full reflection, Rayleigh boundary reflection, Higdon
absorbing boundaries) to test the weak formulation as an implementation technique.

In Figure 4 one observes that the boundary reflections from the absorbing boundary
conditions are zero along horizontal and vertical lines away from the source and increase
as the angle of incidence increases, but the reflected wave has only about 10% of the energy
of the incident wave. This is promising, however the increased computational cost may not
be feasible for larger models.
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Figure 5.8: Absorbing boundary reflection. Note the scale change.

To test the method on a discontinuous velocity model a portion of the Marmousi

FIG. 4. Absorbing boundary reflection. Note the scale change.

GALERKIN COMPARED TO FINITE DIFFERENCE METHODS

A nodal Galerkin method is compared to fourth and second order finite difference meth-
ods on a 501 by 501 node grid. To test this we consider a forcing term with Ricker wavelet
time-component and conservative spatial component

(u1(x), w1(x)) = −∇e−r||x−xo||2 (12)

and propagate a 15 Hz wavelet in a 4500m square bipartite medium with properties ρ =
2.064g/cm3, Vp = 2305m/s, Vs = 997m/s in the first layer, and ρ = 2.14g/cm3, Vp =
4500m/s, Vs = 2600m/s in the second layer.

Figures 5, 6, 7 show the norm of the displacement for the three models propagated
to one second and then normalized and clipped to exaggerate the dispersion effects. The
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one second. We could take a smaller time step, but the one chosen assures us that the

wavelet in time is well-represented and that the error associated with time stepping

will not taint our results as we are more interested in spatial accuracy.
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Figure 6.13: Second-Order Finite Difference. Comp time = 64 s.

Locally the fourth order model approximates the wavefronts better than the

second-order model (as is expected), but the size of the stencil means that we must

alter it somehow at the boundaries, this is not the case with the differentiation

matrices that appear in the nodal Galerkin methods as they are global and so for

the approximation of the derivative at one node they take information from all other

FIG. 5. Second-Order Finite Difference. Comp time = 64 s.

extended arcs in the fourth-order model result from the wider stencil moving over the large
step in the velocity model and then being propagated. Again, this is exaggerated here and
is mainly due to the relatively small number of grid points we are using, but the effect is
apparent.

The computation times are listed with the figures but are not very indicative of the as-
sociated computation costs of the three methods. The implementation of the three methods
are nearly identical, with the only difference being the application of the derivative approx-
imations. For the finite-difference methods the cost of this is kN2 where k is the width
of the finite-difference stencil (3 for second order, 5 for fourth order). The differentiation
matrices for the nodal Galerkin methods can be considered finite-difference matrices with
stencils of width N and so the cost of applying these methods is N3. We take dt = 0.0008
and so take 1179 steps to reach one second. We could take a smaller time step, but the one
chosen assures us that the wavelet in time is well-represented and that the error associated
with time stepping will not taint our results as we are more interested in spatial accuracy.

Locally the fourth order model approximates the wavefronts better than the second-
order model (as is expected), but the size of the stencil means that we must alter it somehow
at the boundaries, this is not the case with the differentiation matrices that appear in the
nodal Galerkin methods as they are global and so for the approximation of the derivative at
one node they take information from all other nodes in the model.

Figures 8 and 9 show comparisons of the centerline of the model (x = 2250, for all z) at
time corresponding wavefront in various regions of the velocity model. The amplitude error
associated with the second-order stencil is apparent as is the dispersion of all three methods
near a jump. Notice the ringing in Figure 9 that is apparent for both finite difference results.
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Figure 6.14: Fourth-Order Finite Difference. Comp time = 75 s.

FIG. 6. Fourth-Order Finite Difference. Comp time = 75 s.

ELASTIC AND VISCOELASTIC SOLUTIONS

To demonstrate the utility of the Galerkin method used with accurate physical models,
a comparison is made between wave propagation of a single impulse through a two-layer
elastic medium and through a two-layer viscoelastic medium with damping parameters
Qp = 24, Qs = 16, shown in Figure 10. Observe the viscoelastic model contains much
more detail about the wave propagation, including physically relevant effects such as the
broadening of the wavelength as it propagates.

FURTHER WORK

In terms of the numerical implementation of the methods in this research, some pre-
liminary work was done with 3D modelling but not enough to warrant inclusion. Some
research level software packages do exist for 3D pseudospectral-element modelling, but
are more geared towards global-scale seismic modelling (see SPECFEM3D available at
http://www.geodynamics.org/cig/software/specfem3d). It would be interesting to attempt
to build attempt to replicate three-component three-dimensional seismic acquisition for a
2D line by restricting one of the horizontal dimensions to something small and then see-
ing if the absorbing boundary conditions properly handle the reflections from the relatively
near boundaries. Another approach would be to assume a model that was constant in one
spatial dimension and then analytically integrate the equations along that dimension to pro-
duce a 2.5D model. Both of these approaches could then be compared to a full 3D model
and see if the results along the surface are similar. If so, this would lead to more accurate
amplitudes in the modelled data and increase the computational efficiency drastically.
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Figure 6.12: Nodal Galerkin. Comp time = 206 s.

FIG. 7. Nodal Galerkin. Comp time = 206 s.

CONCLUSIONS

The research showed that the study of a Galerkin method is a feasible and computa-
tionally efficient method for the numerical modelling of several types of seismic waves.
Special attention was paid to the treatment of numerically imposed boundaries and discon-
tinuous interfaces through the use of the weak form of the dynamic equilibrium equations.
Further, it was shown that a significant amount of analytic work is required to build the
equation used in the numerical procedure, but that the payoff for such work is a more ef-
ficient model that is capable of representing desirable properties such as free-surface and
absorbing boundary conditions with less input from the end-user.

Extended details are available in the thesis of the first author, McDonald (2012).
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nodes in the model.

Figures 6.15 and 6.16 show comparisons of the centerline of the model (x = 2250,

for all z) at time corresponding wavefront in various regions of the velocity model.

The amplitude error associated with the second-order stencil is apparent as is the

dispersion of all three methods near a jump.
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FIG. 9. Close-up of the centerline of the horizontal component of a 2D elasticwave. The region
plotted shows the disagreement of the three methods in the presence of a sharp jump in the velocity
model. Note the ringing in the FD methods.
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Figure 7.4: Elastic vs. viscoelastic wave propagation.FIG. 10. Elastic vs. viscoelastic wave propagation.
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