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AVO analysis for a single thin bed using three-layer media 
equation 
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ABSTRACT 
As effective criteria for hydrocarbon detection, Amplitude Versus Offset (AVO) 

technology has been widely used in the recent years. Zoeppritz equation, which describes 
the reflection and transmission of plane wave on a single interface separating two half 
infinite spaces, is the basis for traditional AVO analysis. This characteristic of Zoeppritz 
equation makes it unsuitable to analyze the propagation of wave in multi-layered media 
when the layers are very thin. This study derives the three-layer media equation based on 
multi-layer media equation by Breshkovsky in elastic regime for discussing the reflection 
and transmission of plane wave in thin bed. For that the reflection coefficient is a 
continuous function of incident angle, frequency and thin bed thickness, it is possible to 
analyze the AVO effects with varying the incident angle, frequency and thin layer 
thickness. It is concluded that (1) three-layer media equation is more quantitative and 
precise than Zoeppritz equation to analyze the AVO responses of thin bed; (2) the 
influence of thin bed thinning on variations of amplitudes is equal to that of dominant 
frequency decreasing; (3) AVO analysis of P-S wave helps us to eliminate the problem of 
multi-solutions in fluids prediction; (4) With decreasing Q (quality factor), the AVO 
curve obtained from three-layer media equation become more smooth and get closer to 
the curve calculated by Zoeppritz equation. 

INTRODUCTION 
Amplitude Versus Offset (AVO) or Amplitude Versus Angle (AVA) analyses are 

using the variation information of pre-stack amplitude to reflect the variation 
characteristics of rock and fluid in reservoir. In the exploration industry, AVO analysis is 
particularly suitable for the detection and mapping of gas zones since reservoirs often 
consist of shale with high Poisson's ratio (highVp/Vs) overlying gas bearing sands with 
low Poisson's ratio (lowVp/Vs) (Juhlin and Young, 1993). The basis for traditional AVO 
analysis is Zoeppritz equation derived by Zoeppritz (1919), which describes how 
transmission and reflection coefficients vary with angle for plane wave impinging upon a 
single interface separating two half infinite spaces. Many scientists (Koefoed, 1955; Aki 
and Richards, 1980; Shuey, 1985; Gidlow et al., 1992; Inannen, 2011) made great efforts 
to facilitate its application by deriving the linear approximations of Zoeppritz equation. 

 

However, with the further development of seismic exploration, Zoeppritz equation 
shows its disadvantages in quantitative interpretation of thin bed. As the layer thinning, 
the reflections from the top and bottom interfaces interfere or stack, which are 
significantly different from the reflections on a single interface. The problems associated 
with thin bed interested scientists early. Widess (1973) studied the reflections at the top 
and bottom interfaces of a thin layer at normal incidence when a thin layer was inter-
bedded in a homogeneous background. He also found that the maximum constructive 
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interference for a zero-phase wavelet occurred when the bed thickness was one-quarter of 
the dominant wavelength-“tuning thickness”. In the later years, the scientists did a lot of 
researches on the AVO effects of thin bed with varying the thin bed thickness. For 
exploration geophysics, the generally accepted threshold for vertical resolution of a layer 
is a quarter of the dominant wavelength (Liu and Schmitt, 2003). In this paper, the layer 
is called a thin layer when1 ≤ n = 𝜆/𝑑 < 4, and an ultra-thin layer when4 ≤ 𝜆/𝑑, where 
 𝜆 and 𝑑 are the dominant wavelength the thickness of Layer 2 respectively. (Liu and 
Schmitt, 2003). Swan (1988) analyzed the AVO responses in a finely layered medium 
and found that AVO distortions due to tuning may be larger than the underlying 
lithological AVO effect. Ball (1988) extended the traditional zero-offset tuning analysis 
by the additional information in offset domain. Chung and Lawton (1995) developed 
expressions for the normal incidence amplitude response of a thin layer for the general 
case of unequal reflection coefficients at the top and bottom of the bed. Liu and Schmitt 
(2003) derived an exact analytical solution to model the reflection amplitude and 
amplitude variation with offset (AVO) responses of a single thin bed for arbitrary 
incident angles in acoustic regime. 

 

These researches carried out by the above scientists are either based on ray theory or at 
normal incidence or in acoustic regime. In this study, the three-layer media equation 
based on multi-layer media equation (Breshkovsky, 1960) is derived to study the AVO 
responses of thin bed with the variations of incident angle, frequency, and thin bed 
thickness with attenuation and no attenuation, comparing with that derived from 
Zoeppritz equation. Several conclusions are arrived at:  

(1) Comparing with the AVO curves calculated by Zoeppritz equation, the AVO 
curves of thin bed calculated by three-layer media equation, taking the reflections from 
the bottom interface into account, are more quantitative and precise. 

(2) At fixed incidence (0。-30。), for ultra-thin layer (4 ≤ 𝜆/𝑑), with the target thin bed 
thinning, the absolute reflection coefficients become smaller. And when4 = 𝜆/𝑑 , the 
absolute reflection coefficient is the biggest; 

(3) For fixed thickness of ultra-thin bed (4 ≤ 𝜆/𝑑), with increasing incident angle, the 
absolute reflection coefficients become smaller when rock type of target layer is water 
sand for Model I. While the absolute reflection coefficients become bigger when rock 
type of target layer is gas sand; 

(4) With increasing the incident angle, the amplitude anomaly obtained by three-layer 
equation may be different from the amplitude anomaly obtained by Zoeppritz equation; 

(5) The influence of thin bed thinning on variations of amplitudes is equal to that of 
dominant frequency decreasing; 

(6) AVO analysis of P-S wave helps us settle the problem of multi-solutions in 
hydrocarbon detection;  
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(7) With the thin bed thinning, the differences of reflection coefficients become 
smaller for different P-velocities of Layer 2 at small incidence (0。-30。); 

(8) With decreasing Q (quality factor), the AVO curve calculated by three-layer media 
equation become more smooth and get closer to the curve calculated by Zoeppritz 
equation. 

Theory and Algorithm 
Model 

Figure 1 show the three-layer model used in this research. The target layer (Layer 2 
shown in Figure 1) is embedded between two infinite half spaces. And a plane harmonic 
and compressional wave illuminates on Interface 1, which causes the reflected 
compressional wave (P-wave) and shear wave (only SV-wave is considered here), 
transmitted compressional wave and shear wave. The transmitted P-wave and S-wave 
(SV-wave) cause reflection and transmission on Interface 1 and Interface 2 again and 
produce multi-reflections within Layer 2.  

 

The parameters of the models are listed in Table 1. Model I consist of shale overlying 
water sand or gas sand in mid-depth layer (9000ft or 2743m in depth) whereas Model II 
is in shallow layer (4000ft or 1219m in depth) with shale overlying water sand, gas sand 
or coal (Hilterman, 2001). At normal incidence, for Model I, when Layer 2 is water sand, 
the reflection is positive for that the impedance of Layer 2 is smaller than that of Layer 1 
(shale). While when the water sand is replaced by gas sand, the reflection changes to 
negative. This “polarity conversion” anomaly helps us to recognize gas reservoir. For 
Model II, the polarities of the reflections are identical for water sand, gas sand or coal 
within Layer 2. While the replacement of gas sand or coal within Layer 2 cause the 
increase of absolute amplitudes which is called “bright spot” anomaly. In this study, we 
analyze the AVO/AVA responses of target Layer 2 for Model I with varying incident 
angle, thickness of the target layer, and dominant frequency. While Model II is an 
example to analyze the AVO response of P-SV wave which can help us to predict the 
hydrocarbon more precisely. 

 

What’s more, the influences of quality factor (Q), which describes the energy 
attenuation of seismic wave within the medias (only the target Layer 2 is considered here), 
are also discussed in this paper.  



Pan 

4 CREWES Research Report — Volume 24 (2012)  

 

FIG.1. Three-layer media model Δt = TABC − TDC = 2dcosθ2/α2 

Table 1. Elastic Parameters of Model I and Model II (Hilterman, 2001) 

Model Rock type α (m/s) β (m/s) α/β ρ (g/cm3) σ 

Model I  

Shale 2642.6 1166.7 2.23 2.29 0.38 

Water sand 3048.0 1525.0 1.91 2.23 0.31 

Gas sand 2781.3 1664.8 1.67 2.08 0.22 

Shale 2642.6 1166.7 2.23 2.29 0.38 

Model II 

Shale 2191.5 818.0 2.67 2.16 0.42 

Water sand 2133.6 859.0 2.48 2.11 0.40 

Gas sand 1542.6 900.0 1.71 1.88 0.24 

Coal 1400.0 700.0 2.00 1.40 0.33 

Shale 2191.5 818.0 2.67 2.16 0.42 

Method 
Breshkovsky (1960) analyzed the propagation of plane wave in multi-layered and 

elastic media and built the multi-layered media equation. This equation connects the 
displacement of stress of top layer and bottom layer through one coefficients matrix as 
shown in equation (1).  
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where 𝑢xn, 𝜐zn, 𝜎𝑧𝑧n, 𝜏𝑧𝑥n, 𝑢x1, 𝜐z1, 𝜎𝑧𝑧1, and 𝜏𝑧𝑥n represent the displacements and 
stresses in Layer n and Layer 1. Here in this study, the multi-layer media model is 
simplified to three-layer media model (as shown in Figure 1) in which the parameters of 
Layer 1 are equal to those of Layer 2 for computational convenience. The three-layer 
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media equation is also derived (equation (2)). The deriving process is shown in Appendix 
A. 
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Then we can get the reflection and transmission coefficients which are the functions of 
incident angle 𝜃, dominant frequency 𝑓 and target thin layer thickness 𝑑. It is easier for 
us to study the influences of frequency and thin layer thickness to amplitudes comparing 
with Zoeppritz equation. 

𝑅𝑝𝑝(𝜃,𝑓,𝑑) = det𝑉𝑝𝑝
det 𝑉

, 𝑅𝑝𝑠(𝜃,𝑓,𝑑) = det𝑉𝑝𝑠
det 𝑉

, 𝑇𝑝𝑝(𝜃,𝑓,𝑑) = det𝑉𝑝𝑝′

det 𝑉
, 𝑇𝑝𝑠(𝜃,𝑓,𝑑) = det𝑉𝑝𝑠′

det 𝑉
 

Even though, we don’t derive the direct expression of reflection coefficient or its 
linear approximations. We can still analyze the variations of amplitudes with varying 
incident angle, frequency and thin bed thickness in elastic regime. The equation is too 
complicated to inverse directly. We can get the inversion results by non-linear 
optimization algorithms such as Simulated Annealing Algorithm or Genetic Algorithm. 

 
Liu and Schmitt (2003) derived the reflection coefficients equation for thin bed in 

acoustic regime which can be written as  
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, (3) 

So, by comparing the AVO response obtained by three-layer equation with that 
obtained by Liu and Schmitt’s equation for Model II, we discuss the importance and 
usefulness of P-SV wave AVO analysis which makes the hydrocarbon prediction more 
precise. 

According to the theory of internal friction, the energy of seismic wave attenuates 
when propagating within the medium. And Frayer (1978) gave the relationship of 
velocity and quality factor Q which describes the relative energy change in the domain of 
one wave length. 

 1
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, (4) 

where 𝐸  and 𝑘  are the energy and complex wave-number. And (𝑘2)𝐼  and (𝑘2)𝑅 
represent the imaginary part and real part of𝑘2. And  

 𝑘 = ω
𝑉

= ω
𝑉𝑅+𝑗𝑉𝐼

, (5) 

Substituting equation (4) into equation (3) and we can get 
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 V ≈ VR+j �VR
2Q
�,  (6) 

Substituting the P-wave velocity and S-wave velocity in𝑅𝑝𝑝 ,𝑅𝑝𝑠 ,𝑇𝑝𝑝 , 𝑇𝑝𝑠  with 
equation (6), we can get relative reflection and transmission coefficients formulas. 

AVO RESPONSES OF THIN BED WITH NO ATTENUATION 
AVO responses of P-P wave with no attenuation 

Figure 2 shows P-P Wave absolute reflection coefficients without attenuation for 
different n =  λ/d (n=1, 2, 4, 6, 8, 10, 20) for Model I with water sand (a) and gas sand 
(b) in Layer 2 at full angles. The dashed line is calculated by Zoeppritz equation and 
other lines are calculated by three-layer media equation. It can be seen that reflection 
coefficients curves calculated by three-layer media equation are quite different from that 
calculated by Zoeppritz equation especially for post-critical incidence.  

 

We can analyze the AVO responses of gas sand within Layer 2 through Figure 2 (b). 
And it shows that when Layer 2 is an ultra-thin layer (n = λ/d ≥ 4 ), the absolute 
reflection coefficients increase slowly to a local maximum and then decrease to a local 
minimum and finally increase quickly to near unity. Moreover, for pre-critical angles, the 
bigger ofn = λ/d ≥ 4, the more flat the curves become, whereas for post-critical angles, 
the condition is opposite. When Layer 2 is a thin layer (1 ≤ n = λ/d < 4), the reflection 
coefficients curves may have several local maximums and local minimums before critical 
angle (around 72。). It can be explained by ray-tracing theory and the time delay equation 
Δt = TABC − TDC = 2dcosθ2/α2 (as shown in Figure 1) in acoustic regime. For instance, 
when n = λ/d = 1 , Δt = TABC − TDC = 2T cosθ2 . As θ2  increases, Δt receives (3/2)T 
firstly when the reflections on top and bottom interfaces stack together. The incident 
angle θ1  at this time is about 40。which can be calculated by Snell’s law. Then Δt 
receives T when the reflections on top and bottom interfaces counteract with each other 
and θ1 is about 55.4。. And then the reflection receive its second local maximum and 
second local minimum when Δt is T/2 and 0 and θ1 is about 67。and 72。respectively. 
The degrees of incident angles calculated here are not exactly equal to the degrees shown 
in Figure 2 (b). This is caused by the influences of converted S-wave. 
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FIG.2. P-P Wave absolute reflection coefficients spectrum (frequency=30Hz) for different n =  λ/d 
from 1 to 20 for Model I with water sand (a) and gas sand (b) at full angles. The dashed line is 
calculated by Zoeppritz equation and other lines are calculated by three-layer media equation. 

Figure 3 shows the absolute reflection coefficients at small incidence (from 0。to 30。) 
for water sand (a) and gas sand (b) in Layer 2 respectively. It can be seen that whether the 
target Layer 2 is water sand or gas sand, the absolute reflection coefficients, when n=4 at 
normal incidence (or incident angle is zero), are bigger than other absolute reflection 
coefficients. While when n=1 or 2, the absolute reflection coefficients are zero. This is 
can also explain by time delay equation. When d = λ/4 at normal incidence (without 
converted S wave), the time delay is Δt = TABC − TDC = 2dcosθ2/α2 =  λ/(2α2) = T/2 
and then the reflections from top interface and bottom interface reinforce mutually. While 
when d = λ and d = λ/2 at normal incidence, the time delay is 2T and T respectively 
and the reflections from top interface and bottom interface weaken mutually to zero. 

 

FIG.3. P-P Wave absolute reflection coefficients spectrum (frequency=30Hz) for different n =  λ/d 
from 1 to 20 for Model I with water sand (a) and gas sand (b) at small angles. The dashed line is 
calculated by Zoeppritz equation and other lines are calculated by three-layer media equation. 
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FIG.4. P-P Wave reflection coefficients spectrum at small angles (a) and middle angles (b). The 
dashed lines are obtained when Layer 2 is gas sand and the solid lines are obtained when Layer 
2 is water sand. The different colors represent different methods or differentn =  λ/d. (n=2, red 
lines; n=4, green lines; n=6, blue lines; Zoeppritz equation, black lines) 

Figure 4(a) shows the reflection coefficients at small incidence (from 0。to 30。). The 
solid and dashed lines are obtained when Layer 2 is water sand and gas sand respectively. 
The blue lines, green lines, red lines and black lines are obtained when n=2, 4, 6 and 
using Zoeppritz equation. Some interesting things can be found through the comparison 
between Figure 4(a) and Figure 4(b). At small incidence, for water sand, the polarities are 
positive whereas the polarities become negative when replacing the fluid with gas sand in 
Layer 2. This “phase conversion” can help us to recognize the occurrence of gas. What’s 
more, when n=6, the absolute reflection coefficients are almost a constant (zero) and then 
gradually increase which is quite different from the AVO curves by Zoeppritz equation. 
At middle incidence (from 35 。 to 45 。 ), for water sand the reflection coefficients 
calculated by three-layer media equation become negative, whereas reflection 
coefficients calculated by Zoeppritz equation is still positive. This means that at middle 
incidence when replacing the water sand with gas sand, the “Phase Conversion” changes 
to “Bright Spot” which can also be used to indicate gas accumulation. Zoeppritz equation 
is not precise and quantitative enough to found these changes and differences which are 
very important in fine analysis of reservoir prediction. 
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FIG.5. Four NMO corrected gathers showing amplitude anomalies for Model I. (a) “Phase 
Conversion” anomaly after fluids replacement at small incidence calculated by Zoeppritz equation. 
(b) “Phase conversion” anomaly after fluids replacement at small incidence calculated by Three-
layer media equation.(c) “Phase conversion” anomaly after fluids replacement at middle incidence 
calculated by Zoeppritz equation. (d) “Bright Spot” anomaly after fluids replacement at middle 
incidence calculated by Three-layer media equation. 

Figure 5 are four reflection events after NMO showing amplitude anomalies when 
replacing water sand with gas sand in Layer 2 calculated by Zoeppritz equation and 
Three-layer media equation respectively. For Figure 5(a) and (b) at small incidence, two 
anomalies are all “Phase Conversion”. For Figure 5(c) at middle incidence, the amplitude 
anomaly after fluids replacement obtained by Zoeppritz equation is also “Phase 
Conversion”. While for Figure 5(d) at middle incidence, the amplitude anomaly 
indicating gas sand appearance changes to “Bright Spot”. This difference testifies the 
analysis of Figure 4 further. 

 

Figure 6 shows the variation of absolute reflection coefficients with varying d/λ =
1/n from 0 to 1 at different incident angles (0,10,15,20,30,40,50 degree) for water sand 
(a) and gas sand (b) in Layer 2. We can see that for1/n = 0.5, when incident angle is 
zero, the reflection coefficient is zero, whereas for1/n = 0.25, the reflection coefficient 
receive local maximum, which correspond to the conditions in Figure 3. What’s more, it 
also can be noted that the two dashed lines (normal incidence) are centro-symmetric on 
1/n = 0.5 within the domain of [0, 1]. For water sand (a), when 1/n (from 0 to 0.25) is 
fixed, the absolute reflection coefficients decrease with increasing the incident angle 
generally. While for gas sand (b), when 1/n  (from 0 to 0.25) is fixed, the absolute 
reflection coefficients increase with increasing the incident angle generally. 
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FIG.6. P-P Wave absolute reflection coefficients versus d/λ = 1/n for water sand (a) and gas 
sand (b) in Layer 2 at different incident angles (0, 10, 15, 20,30,40,50 degree) The dashed lines 
are at normal incidence.  

 

FIG.7. P-P Wave absolute reflection coefficients spectrum (d = 10m ) for different dominant 
frequency from 10Hz to 100Hz for Model I with water sand (a) and gas sand (b) at full angles. 
The dashed line is calculated by Zoeppritz equation and other lines are calculated by three-layer 
media equation. 

From Figure 7, we can see that the variations of absolute reflection coefficients with 
increasing the incident angles for different dominant frequencies are quite similar to the 
variations of absolute reflection coefficients for different λ/d = n. The higher of the 
dominant frequency, the more flat the reflection coefficients curves become. This is 
opposite to the variations of reflection coefficients with increasingλ/d = n. We can build 
the cross-plot for thickness/wavelength (1/n) versus frequency at fixed incidence as 
shown in Figure 8. The color denotes normalized amplitudes. It helps us analyze the 
influences of frequency and thin-bed thickness on amplitudes more clearly. It can be seen 
that the cross-plot in Figure 8 (a) and (b) are all centro-symmetric on the diagonal lines 
(green). So, the influence of λ/d = n increasing (or thin bed vanishing) is equal to that of 
dominant frequency decreasing.  
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This also provides us with one way to predict the thickness of thin bed. In seismic 
interpretation aiming at thin bed, we can record the different amplitudes with varying the 
dominant frequency of wavelet. When the amplitude receives the maximum value, the 
thickness of thin bed can be determined as λ/4 (“tuning thickness”). 

 

FIG.8. P-P Wave absolute amplitude spectrum with varying frequency and at fixed incident angle 
20 degree (a) and 50 degree (b) for Model 1. The color represents the normalized and absolute 
amplitudes. 

AVO responses of P-S wave (converted SV wave) with no attenuation 
At oblique incidence, in elastic media, part of seismic wave energy transforms into S-

wave which also contains important information of elastic parameters of the layers. 
VP/VS  and Poisson’s ratio σ  are effective parameters for geophysicists to predict the 
accumulation of oil and gas. For that VP is not only influenced by the rock framework, 
but also by fluids contained in the rock. When the rock pores contain oil or gas，VS 
decreases apparently. Whereas VP  does not change obviously. What’s more, AVO 
analysis of combining P-P wave and P-S wave can help us eliminate the problem of 
multi-solutions in hydrocarbon detection. Model II is an example to show this. 

 

Figure 9 shows the P-P and P-S wave absolute amplitude spectrum with varying 
incident angle and thin bed thickness at fixed frequency (30Hz) for Model II in elastic 
and acoustic regimes respectively. The color represents the values of normalized 
amplitudes. This figure helps us analyze the variation of amplitudes with varying incident 
angles and thickness/wavelength (1/n) more easily. Figure (a) is the P-P wave absolute 
amplitude spectrum for Model II with water sand in Layer 2 in elastic regime. Figure (b) 
is the P-P wave absolute amplitude spectrum for Model II with water sand in Layer 2 in 
acoustic regime. Figure (c) is the P-S wave absolute amplitude spectrum for Model II 
with water sand in Layer 2 in elastic regime. Figure (d), (e), and (f) are the corresponding 
amplitude spectrums for Model II with gas sand in Layer 2. Figure (h), (i), and (j) are the 
corresponding amplitude spectrums for Model II with coal in Layer 2. 
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It can be seen that the P-P wave amplitudes in acoustic regime (Figure (b), (e), and (i)) 
for different incident angles and thin bed thickness are similar to those in elastic regime 
(Figure (a), (d), and (h)). If we fixed thickness/wavelength at 0.25, we can extract the 
lines from Figure 9 and obtain the AVA curves in Figure 10. The dashed lines are 
calculated in elastic regime, whereas the solid lines are calculated in acoustic regime. The 
black, blue and green lines are for water sand (Figure (a), (b), and (c)), gas sand (Figure 
(d), (e), and (f)) and coal (Figure (h), (i), and (j)) in target Layer 2 respectively. 

 

FIG.9. P-P and P-S wave absolute amplitude spectrums with varying incident angle and 
thickness/wavelength (1/n) at fixed frequency (30Hz) for Model II with water sand ((a), (b), (c)), 
gas sand ((d), (e), (f)) and coal (h), (i), (j)) in Layer 2 in elastic regime and acoustic regime 
respectively. The color represents normalized amplitude. 

In Figure 10 (a), it is obvious that when replacing water sand in Layer 2 with gas sand 
or coal, the amplitude anomalies are all shown as “bright spot”. In this condition, it is 
difficult for us to predict the rock type in Layer 2. While if we analyze the AVA 
responses of P-S wave in Figure 10 (b), this problem can be settled. The differences 
between the amplitudes with gas sand in Layer 2 and those with water sand in Layer 2 are 
too small to recognize the amplitude anomaly. While amplitudes with coal in Layer 2 are 
quite different from those with water sand in Layer 2. The amplitude anomaly is also 
“bright spot” for coal.  

If we increase the P-velocity of target Layer 2 and fix other elastic parameters, we can 
analyze the influence of P-velocity contrasts on P-S converted wave amplitudes. Figure 
11 shows the P-S wave reflection coefficient curves with varying incident angle for 
Model I with gas sand in target Layer 2 when n=1(a), n=4(b), n=8(c) and n=10(d). We 
can also compare the P-S wave AVA responses by three-layer media equation (solid lines) 
with the P-S wave AVA responses by Zoeppritz equation (dashed lines). The color of the 
lines denotes different P-velocities of Layer 2 
(α2 = 2781.3, black; α2 = 3081.3, blue; α2 = 3381.3, red ). 
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FIG.10. P-P wave (a) and P-S wave (b) amplitude spectrums with varying incident angle for fixed 
thin bed thickness (1/n=0.25) and fixed frequency (30Hz) for Model II. In (a), the solid and dashed 
lines denote the P-P wave amplitudes calculated in acoustic and elastic regime respectively. And 
different colors (black, blue and green) correspond to different fluids (water sand, gas sand and 
coal) in Layer 2. In (b), different colors (black, blue and green) correspond to different fluids 
(water sand, gas sand and coal) in Layer 2. 

It can be seen that the P-S wave AVA responses by three-layer media equation are 
quite different from that by Zoeppritz equation. The polarities of the AVA curves by the 
two equations are opposite. What’s more, with increasing the incident angle, the 
gradients the curves by the two equations are also different. At small incidence (0。~30。), 
for n=1 (a) and n=4 (b), when increasing the P-velocity of Layer 2, the absolute reflection 
coefficients calculated by three-media layer equation and Zoeppritz equation all decrease. 
While, for n=8 (c) and n=10 (d), the differences of reflection coefficients by three-layer 
media equation are very small for different P-velocities of Layer 2. 
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FIG.11. P-S wave reflection coefficients with varying incident angle when n=1(a), n=4(b), n=8(c) 
and n=10(d) for Model I with gas sand in Layer 2. The colors of the lines denote different P-
velocities of Layer 2 (α2 = 2781.3, black; α2 = 3081.3, blue;α2 = 3381.3, red ). 

AVO RESPONSES OF THIN BED WITH ATTENUATION 

If the thickness of target Layer 2 is thick enough, for instance whenn = 0.2 and 0.1, the 
reflection coefficients curves calculated by three-layer media equation fluctuate and 
receive many local minimums and local maximums (as shown in Figure 12) with 
increasing the incident angle. This doesn’t correspond to the practical seismic data, for 
that the layers absorb the energy of the reflected waves on Interface 2 which cannot 
receive Interface 1. This problem also exists when the incident angles are big for thin 
layer and ultra-thin layer (α2 < α1).  
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FIG.12. P-P Wave absolute reflection coefficient spectrum when n = 0.2 and 0.1 with water sand 
(a) and gas sand (b) in Layer 2 for Model I. 

We can simulate the energy absorption function by setting quality factor (Q), which 
describes the energy change of seismic wave within one wave length (only the target 
Layer 2 is considered here). And then substitute equation (6) into the reflection 
coefficient equation. Figure 13 shows the P-P wave absolute reflection coefficients 
spectrum (n = 6) with varying quality factor Q from 5 to 100 for Model I with water 
sand (a) and gas sand (b) in Layer 2. The dashed line is calculated by Zoeppritz equation 
with no attenuation and the bold-solid line is calculated by three-layer media equation 
with no attenuation. In Figure 13, it is obvious that the reflection coefficients curves get 
closer with increasing the value of Q. It seems that decreasing Q is smoothing the curves. 

 

FIG.13. P-P Wave absolute reflection coefficients spectrum ( n = 6 ) for different Q 
(5,10,20,30,50,100) for Model I with water sand (a) and gas sand (b) in Layer 2. The dashed line 
is calculated by Zoeppritz equation and other lines are calculated by three-layer media equation. 

 

Assuming that the target Layer 2 has strong absorption ability and is thick enough, the 
reflection coefficients calculated by three-layer media equation will get close to the 
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reflection coefficients calculated by Zoeppritz equation with attenuation. Figure 14 
testifies this prediction. The red-solid line calculated by three-layer media equation with 
no attenuation fluctuates seriously. While the red-dash line become smooth and get close 
to the black-dash line calculated by Zoeppritz equation. 

 

FIG.14. P-P Wave absolute reflection coefficients curves comparison (n = 0.2) for Model I with 
water sand (a) and gas sand (b) in Layer 2. Black-solid line is calculated by Zoeppritz equation 
with no attenuation; Red-solid line is calculated by three-layer media equation with no attenuation. 
Black-dash line is calculated by Zoeppritz equation with Q=5; Red-dash line is calculated by 
three-layer media equation with Q=5. 

CONCLUSION 
AVO technology is an effective method for exploration geophysicists to recognize oil 

and gas reservoir. While traditional AVO analysis is based on Zoeppritz equation which 
only contains the information of single interface. The three-layer media equation derived 
in this study describes the propagation of seismic wave in layered-media. Even though, 
we don’t derive the direct expression of reflection coefficients or its linear 
approximations, this equation is still suitable to analyze the AVO responses of thin bed 
with varying the incident angle, frequency and thin bed thickness in elastic regime. 
What’s more, the influences of absorption function (only target Layer 2 is considered 
here) for different Q is also discussed in this paper.  

 

Several conclusions can be arrived at: (1) taking the reflections from bottom interface 
into consideration, the AVO/AVA responses by three-layer media equation are more 
precise than the AVO/AVA responses by Zoeppritz equation; (2) if the incident angle is 
fixed, the influence of thin bed thinning on variations of amplitudes is equal to the 
influence of dominant frequency decreasing; (3) the AVO responses of P-S wave, which 
also contains the information of rock properties, is important in fine hydrocarbon 
prediction ; (4) With decreasing Q (quality factor), the AVO curve calculated by three-
layer media equation become more smooth and get closer to the curve calculated by 
Zoeppritz equation. 
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Because the reflection coefficients equation is too complicated to inverse directly, we 
can use the nonlinear optimization algorithms such as Simulated Annealing Algorithm or 
Genetic Algorithm. To improve the precision of the inversion results and computational 
efficiency, we can limit the ranges of optimal solutions and carry out some other 
strategies which are the next step of the research. 

APPENDIX A 
A plane harmonic wave illuminates the Layer 2 as shown in Figure 1.For elastic media, 

the displacement potential functions of P-wave and S-wave in Layer 1 and Layer 3 can be 
written respectively as 

 𝜙1 = 𝐴1′ 𝑒𝑥𝑝[𝑗(𝜎1𝑥 − 𝜏1𝑧 − 𝜔𝑡)] + 𝐴1′′𝑒𝑥𝑝[𝑗(𝜎1𝑥 + 𝜏1𝑧 − 𝜔𝑡)], (A-1) 

 𝜙3 = 𝐴3′ 𝑒𝑥𝑝[𝑗(𝜎3𝑥 − 𝜏3𝑧 − 𝜔𝑡)],  (A-2) 

 𝜑1 = 𝐵1′𝑒𝑥𝑝 [𝑗(𝜎1′𝑥 + 𝜏1′ 𝑧 − 𝜔𝑡)],  (A-3) 

 𝜑3 = 𝐵3′𝑒𝑥𝑝 [𝑗(𝜎3′𝑥 − 𝜏3′ 𝑧 − 𝜔𝑡)], (A-4) 

where𝜎𝑖 = 𝜅𝑖sin𝜃𝑖 ; 𝜏𝑖 = 𝜅𝑖cos𝜃𝑖;  𝜎𝑖′ = 𝜅𝑖′sin𝜃𝑖 ; 𝜏𝑖′ = 𝜅𝑖′cos𝜃𝑖; 𝑖 = 1,3 ;𝜅𝑖  and 𝜅𝑖′  are 
the wave-numbers of P-wave and S-wave in Layer 𝑖  respectively. 𝜎𝑖  and 𝜏𝑖  are the 
horizontal and vertical components of P wave-number respectively. 𝜎𝑖′  and 𝜏𝑖′  are the 
horizontal and vertical components of S wave-number respectively.  𝜃𝑖  represents the 
incident or refracted angles as shown in Figure 1. 𝐴𝑖′  and 𝐵𝑖′ refer to the amplitudes of P-
wave and S-wave respectively. 𝜔 is the angular frequency. It is known that 

 𝜎1 = 𝜔
𝛼1

sin𝜃1, (A-5) 

where 𝛼1 is P-wave velocity in Layer 1. And  

 𝜎1′ = 𝜔
𝛽1

sin𝛾1, (A-6) 

where 𝛾1 and 𝛽1 are the reflection angle and velocity of S-wave in Layer 1. Then  

 𝜎1′ = 𝜔
𝛼1

𝛼1
𝛽1

sin𝛾1 = 𝜔
𝛼1

sin𝜃1
sin𝛾1

sin𝛾1 = 𝜎1,  (A-7) 

So we can set 

 𝜎 = 𝜎1 = 𝜎1′ = 𝜎3 = 𝜎3′ , (A-8) 
equations (A-1) -(A-5) can be written as  
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 𝜙1 = 𝐴1′ 𝑒𝑥𝑝[𝑗(𝜎𝑥 − 𝜏1𝑧 − 𝜔𝑡)] + 𝐴1′′𝑒𝑥𝑝[𝑗(𝜎𝑥 + 𝜏1𝑧 − 𝜔𝑡)], (A-9) 

 𝜙3 = 𝐴3′ 𝑒𝑥𝑝[𝑗(𝜎𝑥 − 𝜏3𝑧 − 𝜔𝑡)], (A-10) 

 𝜑1 = 𝐵1′𝑒𝑥 𝑝[𝑗(𝜎𝑥 + 𝜏1′ 𝑧 − 𝜔𝑡)], (A-11) 

 𝜑3 = 𝐵3′𝑒𝑥 𝑝[𝑗(𝜎𝑥 − 𝜏3′ 𝑧 − 𝜔𝑡)] ,  (A-12) 

𝑢 and 𝜐 represent the displacements in X direction and Z direction respectively. And 
they can be written as 

 
𝑢 = �𝜕𝜙

𝜕𝑥
− 𝜕𝜑

𝜕𝑧
�

𝜐 = �𝜕𝜙
𝜕𝑧

+ 𝜕𝜑
𝜕𝑥
�

,  (A-13) 

And the stress in X direction and Z direction are 𝜎𝑧𝑧 and 𝜏𝑧𝑥. 

 
𝜎𝑧𝑧 = 𝜆 �𝜕𝑢

𝜕𝑥
+ 𝜕𝜐

𝜕𝑧
� + 2𝜇 𝜕𝜐

𝜕𝑧

𝜏𝑧𝑥 = 𝜇 �𝜕𝜐
𝜕𝑥

+ 𝜕𝑢
𝜕𝑧
�              

, (A-14) 

where 𝜆 is lame coefficient and 𝜇 is shear modulus. 

Substituting equations (A-9) and (A-11) into equation (A-13) and then into equation 
(A-14). We can obtain the displacements and stress in Layer 1 which are 

 𝑢x1 = �𝑗𝜎�𝐴1′ 𝑒−𝑗𝜏1𝑧 + 𝐴1′′𝑒𝑗𝜏1𝑧� − 𝑗𝜏1′𝐵1′𝑒𝑗𝜏1
′ 𝑧�𝑒𝑗(𝜎𝑥−𝜔𝑡), (A-15) 

 𝜐z1 = �−𝑗𝜏1�𝐴1′ 𝑒−𝑗𝜏1𝑧 − 𝐴1′′𝑒𝑗𝜏1𝑧� + 𝑗𝜎𝐵1′𝑒𝑗𝜏1
′ 𝑧�𝑒𝑗(𝜎𝑥−𝜔𝑡), (A-16) 

 𝜎𝑧𝑧1 = −�(λ1κ12 + 2𝜇1𝜏12)�𝐴1′ 𝑒−𝑗𝜏1𝑧 + 𝐴1′′𝑒𝑗𝜏1𝑧� + 2𝜇1𝜎𝜏1′𝐵1′𝑒𝑗𝜏1
′ 𝑧�𝑒𝑗(𝜎𝑥−𝜔𝑡),(A-17) 

 𝜏𝑧𝑥1 = 𝜇1�2𝜏1𝜎�𝐴1′ 𝑒−𝑗𝜏1𝑧 − 𝐴1′′𝑒𝑗𝜏1𝑧� + �𝜏1′
2 − 𝜎2�𝐵1′𝑒𝑗𝜏1

′ 𝑧�𝑒𝑗(𝜎𝑥−𝜔𝑡), (A-18) 

According to Maclaurin’s rule  

 𝑒𝑗𝜏1𝑧 = cos(𝑗𝜏1𝑧) + 𝑗sin(𝜏1𝑧) =  cosH + 𝑗sinH, (A-19) 

 𝑒−𝑗𝜏1𝑧 = cos(−𝑗𝜏1𝑧) − 𝑗sin(𝜏1𝑧) =  cosH − 𝑗sinH, (A-20) 

 𝑒𝑗𝜏1′ 𝑧 = cos(𝑗𝜏1′ 𝑧) + 𝑗sin(𝜏1′ 𝑧) =  cosR + 𝑗sinR, (A-21) 

 𝑒−𝑗𝜏1′ 𝑧 = cos(−𝑗𝜏1′ 𝑧) − 𝑗sin(𝜏1′ 𝑧) =  cosR − 𝑗sinR, (A-22) 

where H = 𝜏1𝑧 = 𝜔
𝛼1

cos𝜃1𝑧 and R = 𝜏1′ 𝑧 = 𝜔
𝛽1

cos𝛾1𝑧. And on the bottom interface of 
Layer 1 where 𝑧 = 0, so the displacements are 
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 𝑢x1 = [𝑗𝜎(𝐴1′ + 𝐴1′′) − 𝑗𝜏1′𝐵1′]𝑒𝑗(𝜎𝑥−𝜔𝑡),  (A-23) 

 𝜐z1 = [−𝑗𝜏1(𝐴1′ − 𝐴1′′) + 𝑗𝜎𝐵1′ ]𝑒𝑗(𝜎𝑥−𝜔𝑡),  (A-24) 

 𝜎𝑧𝑧1 = −[(λ1κ12 + 2𝜇1𝜏12)(𝐴1′ + 𝐴1′′) + 2𝜇1𝜎𝜏1′𝐵1′ ]𝑒𝑗(𝜎𝑥−𝜔𝑡), (A-25) 

 𝜏𝑧𝑥1 = 𝜇1�2𝜏1𝜎(𝐴1′ − 𝐴1′′) + �𝜏1′
2 − 𝜎2�𝐵1′�𝑒𝑗(𝜎𝑥−𝜔𝑡), (A-26) 

Then we get 

  

⎣
⎢
⎢
⎢
⎡ 𝑢x

1

𝜐z1

𝜎𝑧𝑧1

𝜏𝑧𝑥1⎦
⎥
⎥
⎥
⎤

= �

𝑗𝜎 0 −𝑗𝜏1′
0 −𝑗𝜏1 0

−(λ1κ12 + 2𝜇1𝜏12)
0

0
2𝜇1𝜏1𝜎

−2𝜇1𝜎𝜏1′
0

0
𝑗𝜎
0

𝜏1′
2 − 𝜎2

�

⎣
⎢
⎢
⎡
𝐴1′ + 𝐴1′′
𝐴1′ − 𝐴1′′
𝐵1′
𝐵1′ ⎦

⎥
⎥
⎤
𝑒𝑗(𝜎𝑥−𝜔𝑡) , (A-27) 

and 

 

⎣
⎢
⎢
⎡
𝐴1′ + 𝐴1′′
𝐴1′ − 𝐴1′′
𝐵1′
𝐵1′ ⎦

⎥
⎥
⎤
𝑒𝑗(𝜎𝑥−𝜔𝑡) = �

𝑗𝜎 0 −𝑗𝜏1′
0 −𝑗𝜏1 0

−(λ1κ12 + 2𝜇1𝜏12)
0

0
2𝜇1𝜏1𝜎

−2𝜇1𝜎𝜏1′
0

0
𝑗𝜎
0

𝜏1′
2 − 𝜎2

�

−1

⎣
⎢
⎢
⎢
⎡ 𝑢x

1

𝜐z1

𝜎𝑧𝑧1

𝜏𝑧𝑥1⎦
⎥
⎥
⎥
⎤
, (A-28) 

Similarly, we can obtain the displacement and stress on the bottom interface of Layer 
2 where 𝑧 = 𝑑, 𝑑 is the thickness of Layer 2. 

⎣
⎢
⎢
⎢
⎡ 𝑢x

2

𝜐z2

𝜎𝑧𝑧2

𝜏𝑧𝑥2⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

𝑗𝜎cos𝐻 𝜎sin𝐻 −𝑗𝜏2′ cos𝑅
−𝜏2sin𝐻 𝑗𝜏2cos𝐻 −𝜎sin𝑅

−(λ2κ22 + 2𝜇2𝜏22)cosH
2𝜇2𝜏2𝜎sin𝐻

−(λ2κ22 + 2𝜇2𝜏22)sinH
2𝜇2𝜏2𝜎cos𝐻

−2𝜇2𝜎𝜏2′ cos𝑅
�𝜏2′

2 − 𝜎2�cos𝑅

        𝑗𝜏2′ sin𝑅
𝑗𝜎cos𝑅

      
2𝜇2𝜎𝜏2′ sin𝑅

�𝜏2′
2 − 𝜎2�sin𝑅⎦

⎥
⎥
⎥
⎤
 

  ×

⎣
⎢
⎢
⎡
𝐴1′ + 𝐴1′′
𝐴1′ − 𝐴1′′
𝐵1′
𝐵1′ ⎦

⎥
⎥
⎤
𝑒𝑗(𝜎𝑥−𝜔𝑡),                                                                                      (A-29) 

Set  

  M = �

𝑗𝜎 0 −𝑗𝜏1′
0 −𝑗𝜏1 0

−(λ1κ12 + 2𝜇1𝜏12)
0

0
2𝜇1𝜏1𝜎

−2𝜇1𝜎𝜏1′
0

0
𝑗𝜎
0

𝜏1′
2 − 𝜎2

�

−1

,  (A-30) 
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 𝑁 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑗𝜎cos𝐻 𝜎sin𝐻 −𝑗𝜏2

′ cos𝑅
−𝜏2sin𝐻 𝑗𝜏2cos𝐻 −𝜎sin𝑅

−�λ2κ2
2 + 2𝜇2𝜏2

2� cosH
2𝜇2𝜏2𝜎sin𝐻

−�λ2κ2
2 + 2𝜇2𝜏2

2� sinH
2𝜇2𝜏2𝜎cos𝐻

−2𝜇2𝜎𝜏2
′ cos𝑅

�𝜏2
′ 2
−𝜎2� cos𝑅

        𝑗𝜏2
′ sin𝑅

𝑗𝜎cos𝑅

      
2𝜇2𝜎𝜏2

′ sin𝑅

�𝜏2
′ 2
−𝜎2� sin𝑅⎦

⎥
⎥
⎥
⎥
⎤

, (A-31) 

Then 

 

⎣
⎢
⎢
⎢
⎡ 𝑢x

2

𝜐z2

𝜎𝑧𝑧2

𝜏𝑧𝑥2⎦
⎥
⎥
⎥
⎤

= NM

⎣
⎢
⎢
⎢
⎡ 𝑢x

1

𝜐z1

𝜎𝑧𝑧1

𝜏𝑧𝑥1⎦
⎥
⎥
⎥
⎤
 , (A-32) 

Because the displacement and stress on the Interface 2 are continuous, the 
displacement and stress on the top interface of Layer 3 are equal to those of bottom 
interface of Layer 2. So  

 

⎣
⎢
⎢
⎢
⎡ 𝑢x

3

𝜐z3

𝜎𝑧𝑧3

𝜏𝑧𝑥3⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡ 𝑢x

2

𝜐z2

𝜎𝑧𝑧2

𝜏𝑧𝑥2⎦
⎥
⎥
⎥
⎤

= NM

⎣
⎢
⎢
⎢
⎡ 𝑢x

1

𝜐z1

𝜎𝑧𝑧1

𝜏𝑧𝑥1⎦
⎥
⎥
⎥
⎤
, (A-33) 

And 

 C = NM = �

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31
𝑐41

𝑐32
𝑐42

𝑐33
𝑐34

    𝑐14
    𝑐24
    
𝑐34
𝑐44

�, (A-34) 

Where  

𝑐11 = 2𝑠𝑖𝑛2𝛾2𝑐𝑜𝑠𝐻 + 𝑐𝑜𝑠2𝛾2𝑐𝑜𝑠𝑅, 𝑐12 = 𝑗(𝑡𝑎𝑛𝜃2𝑐𝑜𝑠2𝛾2𝑠𝑖𝑛𝐻 − 𝑠𝑖𝑛2𝛾2𝑠𝑖𝑛𝑅), 

𝑐13 =
𝑠𝑖𝑛𝜃2
𝜌2𝛼2

(𝑐𝑜𝑠𝑅 − 𝑐𝑜𝑠𝐻) 

𝑐14 = −2𝑗𝛽2(𝑡𝑎𝑛𝜃2𝑠𝑖𝑛𝛾2𝑠𝑖𝑛𝐻 + 𝑐𝑜𝑠𝛾2𝑠𝑖𝑛𝑅), 
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𝑐21 = 𝑗(
𝛽2𝑐𝑜𝑠𝜃2
𝛼2𝑐𝑜𝑠𝛾2

𝑠𝑖𝑛2𝛾2𝑠𝑖𝑛𝐻 − 𝑡𝑎𝑛𝛾2𝑐𝑜𝑠2𝛾2𝛾𝑠𝑖𝑛𝑅) 

 𝑐22 = 𝑐𝑜𝑠2𝛾2𝑐𝑜𝑠2𝐻 − 2𝑠𝑖𝑛2𝑐𝑜𝑠𝑅 

𝑐23 = −
𝑗

𝜌2𝛼2
(𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝐻 − 𝑡𝑎𝑛𝛾2𝑠𝑖𝑛𝜃2𝑠𝑖𝑛𝑅) 

𝑐24 = 2𝛽2𝑠𝑖𝑛𝛾2(𝑐𝑜𝑠𝑅 − 𝑐𝑜𝑠𝐻)  𝑐31 = −2𝜌2𝛽2𝑠𝑖𝑛𝛾𝑐𝑜𝑠2𝛾2(𝑐𝑜𝑠𝑅 − 𝑐𝑜𝑠𝐻)  

𝑐32 = −𝑗𝜌2(
𝛼2𝑐𝑜𝑠22𝛾2
𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛𝐻 + 4𝛽2𝑐𝑜𝑠𝛾2𝑠𝑖𝑛2𝛾2𝑠𝑖𝑛𝑅) 

𝑐33 = 𝑐𝑜𝑠2𝛾2𝑐𝑜𝑠𝐻𝑐𝑜𝑠𝑅 + 2𝑠𝑖𝑛2𝛾2𝑐𝑜𝑠𝑅)  

𝑐34 = −2𝑗𝜌2(𝑐𝑜𝑠2𝛾2𝑡𝑎𝑛𝜃2𝑠𝑖𝑛𝐻 + 𝑠𝑖𝑛2𝛾2𝑠𝑖𝑛𝑅) 

𝑐41 = 𝑗(
2
𝛼2
𝑐𝑜𝑠𝜃2𝑠𝑖𝑛2𝛾2𝑠𝑖𝑛𝐻 +

𝑐𝑜𝑠22𝛾2
2𝑉𝑠𝑐𝑜𝑠𝛾2

𝑠𝑖𝑛𝑅 

𝑐42 =
𝑠𝑖𝑛𝜃2𝑐𝑜𝑠2𝛾2

𝛼2
(𝑐𝑜𝑠𝑅 − 𝑐𝑜𝑠𝐻) 

𝑐43 = −
𝑗

2𝜌2
(
𝑠𝑖𝑛2𝜃2
𝛼22

𝑠𝑖𝑛𝐻 −
𝑐𝑜𝑠2𝛾2
𝛽22

𝑡𝑎𝑛𝛾2𝑠𝑖𝑛𝑅) 

𝑐44 = 2𝑠𝑖𝑛2𝛾2𝑐𝑜𝑠𝐻 + 𝑐𝑜𝑠2𝛾2𝑐𝑜𝑠𝑅 

where 𝛼2, 𝛽2, 𝜃2, 𝛾2, 𝜌2 are the P-wave velocity, S-wave velocity, transmission angle 
of P-wave, transmission angle of S-wave, and density within Layer 2. And H = 𝜔

𝛼2
cos𝜃2𝑧, 

R = 𝜔
𝛽2

cos𝛾2𝑧. So, we call equation (A-33) as three-layer equation. 

Substituting equation (A-27) and (A-29) into equation (A-33), we have 

 

⎣
⎢
⎢
⎢
⎡

𝑗𝜎𝑇𝑝𝑝 + 𝑗𝜏3′ 𝑇𝑝𝑠
−𝑗𝜏3𝑇𝑝𝑝 + 𝑗𝜎𝑇𝑝𝑠

−�(𝜆3𝜅32 + 2𝜇3𝜏32)𝑇𝑝𝑝 − 2𝜇3𝜎𝜏3′ 𝑇𝑝𝑠�
𝜇3�2𝜏1𝜎𝑇𝑝𝑝 + �𝜏1′

2 − 𝜎2�𝑇𝑝𝑠� ⎦
⎥
⎥
⎥
⎤

= C

⎣
⎢
⎢
⎢
⎡

𝑗𝜎(𝑅𝑝𝑝 + 1) + 𝑗𝜏1′𝑅𝑝𝑠
𝑗𝜏1(𝑅𝑝𝑝 − 1) + 𝑗𝜎𝑅𝑝𝑠

−�(𝜆1𝜅12 + 2𝜇1𝜏12)(𝑅𝑝𝑝 + 1) + 2𝜇1𝜎𝜏1′𝑅𝑝𝑠�
−𝜇1�2𝜏1𝜎(𝑅𝑝𝑝 − 1) + �−𝜏1′

2 + 𝜎2�𝑅𝑝𝑠� ⎦
⎥
⎥
⎥
⎤

,  (A-35) 

where Rpp = 𝐴1′′

𝐴1′
, Rps = 𝐵1′

𝐴1′
, Tpp = 𝐴3′

𝐴1′
, Tps = 𝐵3′

𝐴1′
 are reflection coefficients and 

transmission coefficients of P-wave and S-wave respectively. According to the models 
used, the elastic parameters of Layer 1 are equal to those of Layer 3, then  

 �

𝑣11 𝑣12 𝑣13 𝑣14
𝑣21 𝑣22 𝑣23 𝑣24
𝑣31 𝑣32 𝑣33 𝑣34
𝑣41 𝑣42 𝑣43 𝑣44

�

⎣
⎢
⎢
⎡
𝑅𝑝𝑝
𝑅𝑝𝑠
𝑇𝑝𝑝
𝑇𝑝𝑠 ⎦

⎥
⎥
⎤
 = �

𝑥1
𝑥2
𝑥3
𝑥4

�, (A-36) 

where 
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�

𝑣11
𝑣21
𝑣31
𝑣41

� = C

⎣
⎢
⎢
⎢
⎡

𝑠𝑖𝑛𝜃1
𝑐𝑜𝑠𝜃1

−𝑍1𝑐𝑜𝑠2𝛾1
− 𝜇1𝑠𝑖𝑛2𝜃1

2𝜇2𝛼1 ⎦
⎥
⎥
⎥
⎤

, �

𝑣12
𝑣22
𝑣32
𝑣42

� = C

⎣
⎢
⎢
⎢
⎢
⎡−

𝑠𝑖𝑛𝜃1
𝑠𝑖𝑛𝛾1

𝑐𝑜𝑠𝛾1
𝑠𝑖𝑛𝜃1

𝑍1𝑠𝑖𝑛2𝛾1
− 𝑍1

2𝜇2
𝑐𝑜𝑠2𝛾1⎦

⎥
⎥
⎥
⎥
⎤

, �

𝑣13
𝑣23
𝑣33
𝑣43

� =

⎣
⎢
⎢
⎢
⎡
−𝑠𝑖𝑛𝜃1
𝑐𝑜𝑠𝜃1

𝑍1𝑐𝑜𝑠2𝛾1
− 𝜇1𝑠𝑖𝑛2𝜃1

2𝜇2𝛼1 ⎦
⎥
⎥
⎥
⎤

 , 

�

𝑣14
𝑣24
𝑣34
𝑣44

�=

⎣
⎢
⎢
⎢
⎢
⎡−

𝑠𝑖𝑛𝜃1
𝑠𝑖𝑛𝛾1

𝑐𝑜𝑠𝛾1
−𝑠𝑖𝑛𝜃1

−𝑍1𝑠𝑖𝑛2𝛾1
− 𝑍1

2𝜇2
𝑐𝑜𝑠2𝛾1⎦

⎥
⎥
⎥
⎥
⎤

 , �

𝑥1
𝑥2
𝑥3
𝑥4

�=C

⎣
⎢
⎢
⎢
⎡
−𝑠𝑖𝑛𝜃1
𝑐𝑜𝑠𝜃1

𝑍1𝑐𝑜𝑠2𝛾1
− 𝜇1𝑠𝑖𝑛2𝜃1

2𝜇2𝛼1 ⎦
⎥
⎥
⎥
⎤
, 𝑉 = �

𝑣11 𝑣12 𝑣13 𝑣14
𝑣21 𝑣22 𝑣23 𝑣24
𝑣31 𝑣32 𝑣33 𝑣34
𝑣41 𝑣42 𝑣43 𝑣44

�,𝑋 = �

𝑥1
𝑥2
𝑥3
𝑥4

�, 

Z1 = ρ1α1. 

According to Cramer’s rule, we can obtain four matrices𝑉𝑝𝑝 ,𝑉𝑝𝑠 , 𝑉𝑝𝑝′  and 𝑉𝑝𝑠′  by 
replacing the first, the second, the third and then the fourth columns of matrix 𝑉 with 𝑋. 
Then we can the reflection and transmission coefficients 

 𝑅𝑝𝑝 = det𝑉𝑝𝑝
det 𝑉

,𝑅𝑝𝑠 = det𝑉𝑝𝑠
det 𝑉

,𝑇𝑝𝑝 = det𝑉𝑝𝑝′

det 𝑉
, 𝑇𝑝𝑠 = det𝑉𝑝𝑠′

det 𝑉
,  (A-37) 

Where det𝑉𝑝𝑝, det𝑉𝑝𝑠, det𝑉𝑝𝑝′ , det𝑉𝑝𝑠′ , and det𝑉 are the determinants of the matrices. 

When the incident angle is zero (normal incidence), we can get  

 𝑅𝑝𝑝 =
−𝑗�𝑍1

2

𝑍2
−𝑍2�𝑠𝑖𝑛𝐻

2𝑍1𝑐𝑜𝑠𝐻+𝑗�
𝑍1
2

𝑍2
+𝑍2�𝑠𝑖𝑛𝐻

, (A-38) 

𝑇𝑝𝑝 = 1
𝑍1
�(𝑍1𝑐𝑜𝑠𝐻 + 𝑗𝑍2𝑠𝑖𝑛𝐻)

−𝑗�𝑍1
2

𝑍2
−𝑍2�𝑠𝑖𝑛𝐻

2𝑍1𝑐𝑜𝑠𝐻+𝑗�
𝑍1
2

𝑍2
+𝑍2�𝑠𝑖𝑛𝐻

+ (𝑍1𝑐𝑜𝑠𝐻 − 𝑗𝑍2𝑠𝑖𝑛𝐻)�,(A-39) 

  𝑅𝑝𝑠 = 𝑇𝑝𝑠 = 0, (A-40) 
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