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ABSTRACT 
  A review of the CREWES reports over the last ten years will reveal the 
influence of the Gabor transform on the work of Gary Margrave (e.g. Margrave et al., 
2002), who has used this transform, along with his colleagues and students, to 
perform seismic deconvolution and migration.  However, it is interesting to note that 
the Gabor transform was only one of three remarkable inventions in Gabor’s 
landmark 1946 paper: “Theory of Communication”, the others being time-frequency 
analysis and the complex signal. In this report, I will first give a brief discussion of 
time-frequency analysis and the Gabor transform, and then I will focus on Gabor’s 
work on the complex signal and the development of seismic attribute analysis, trying 
to show the link among all seismic attributes.  In this way, I will show that Gabor 
could be considered to be the “father” of seismic attribute analysis. 

INTRODUCTION 
 

Dennis Gabor was a Hungarian/British physicist who invented holography, for 
which he received the 1971 Nobel prize. In 1946, he also wrote one of the most 
influential papers of the 20th century, entitled: “Theory of communication”.  In that 
paper, he invented the complex signal, the Gabor transform and time-frequency 
analysis, each of which has had a major impact on our profession.  In this report, I 
will discuss on how his development of the complex signal lead to seismic attribute 
analysis.  But first, I will briefly review his work on the Gabor transform and time-
frequency analysis. 

Let us first review the Fourier transform, S(ω), of a seismic signal s(t), which 
is written in continuous form as 
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 In equations (1) and (2) note that the seismic signal s(t) is real but that the 
Fourier transform S(ω) is complex and can be written in rectangular form as 

)()()( ωωω imagreal iSSS += ,    (3) 

where Sreal(ω) is the real component of S(ω) and Simag(ω) is the imaginary component 
of S(ω).   
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The rectangular form shown in equation (3) can be re-written in polar form as 
)()()( ωϕωω eSS = ,     (4) 

.)( of spectrum, phase  the)( and spectrum, amplitude the)(  where tsS == ωϕω   

In their discrete form, the Fourier transform pair given in equations (1) and (2) 
are fundamental to all aspects of seismic signal processing, from frequency filtering 
through to seismic migration.  However, Gabor (1946) noticed two fundamental 
problems with the Fourier transform: 

(1) For perfect reconstruction of the forward and inverse transforms, an 
infinite signal length is required, which is never satisfied in observed 
signals. 

(2) As indicated in equations (3) and (4), the time signal is real but the 
frequency signal is complex. 

 To solve the first problem, and motivated by Heisenberg’s uncertainty 
principle, Gabor proposed a time-frequency “quantum” of information which satisfied 
∆t∆f ≈ 1.0. That is, he proposed creating a grid of squares in time-frequency space as 
shown in Figure 1, where the basic “quantum” of information is shown by the red 
square of dimension ∆t by ∆f. 

 
Figure 1. Gabor’s concept of the time-frequency “quantum” of information. 
(adapted from Gabor, 1947). 
 

For the “elementary signal” within each square, Gabor chose a sinusoidal 
function modulated by a Gaussian envelope.  A pictorial representation of Gabor’s 
“elementary signal” is shown in Figure 2, where the cosine is the real part of the 
signal and the sine is the imaginary part.  

 
 

Figure 2. The Gabor wavelet. 
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The wavelet pair shown in Figure 2 is now called the complex Gabor wavelet 

in wavelet transform theory, and can be considered to be one of the starting points for 
the development of wavelet transforms.  Gaussian modulation of the Fourier 
transform lead to the development of Gabor transform, whose use has been well 
documented by Dr. Margrave.  For the rest of this report, I will thus concentrate of 
Gabor’s solution to the second problem posed above (i.e. the time and frequency 
signals are miss-matched, since one is real and the other is complex), which will lead 
us to seismic attributes. 

THE COMPLEX SIGNAL 
 

Gabor next went on to the second problem:  how do we create a complex time 
signal, of which the observed signal is the real component?  Since the Fourier 
transform of a real signal has a symmetric shape on both the positive and negative 
frequency side, Gabor proposed that to do this we simply need to suppress the 
amplitudes belonging to negative frequencies, and multiply the amplitudes of the 
positive frequencies by two.  To compute the form of the complex signal using this 
approach requires the evaluation of an improper integral.  However, in his paper 
Gabor (1946) states that it can be “easily verified” that the solution is 

 
),()()( tihtstz +=      (5) 

 
.)( of ransform  Hilbert t the)( and signal,complex   the)( ,1  where tsthtzi ==−=  

Details of the solution are found in Gabor (1946) and Cohen (1995).  The signal z(t) 
is also often called the analytic signal because it must satisfy the Cauchy-Riemann 
conditions for differentiability, which puts it in a class of functions which have 
traditionally been called analytic.  As Cohen (1995) points out, there are an infinite 
number of possibilities for the form of the imaginary component of the complex 
signal, since we only measure the real part.  Although we will not go into the details 
here, Cohen’s main argument in favour of this approach is that Gabor’s intuition in 
zeroing out the negative parts of the frequency spectrum means that the average 
frequency is now at the centre of the amplitude spectrum defined in equation (4), 
rather than being at zero (which it is when we have symmetric positive and negative 
frequency parts of the spectrum). 
 

To physically interpret equation (5), note that the Hilbert transform is a filter 
which applies a 90o phase shift to every sinusoidal component of a signal.  The 
complex trace can be transformed from the rectangular form given in equation (5) to 
polar coordinates, to give the instantaneous amplitude envelope A(t) and 
instantaneous phase Φ(t) given by 
 

)(sin)()(cos)()()( )( ttiAttAetAtz ti Φ+Φ== Φ ,  (6) 
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ts
thtthtstA   I have given the instantaneous 

phase a different symbol than the frequency phase in equation (4) (Φ(t) versus φ(ω)) 
to clearly differentiate between these two different phase terms.  
 

The complex trace was introduced into geophysics by Taner et al. (1979), who 
also discussed its digital implementation and introduced the term “seismic attribute” 
into exploration geophysics. As well as introducing the amplitude envelope and 
instantaneous phase attributes, Taner et al. (1979) also introduced the instantaneous 
frequency of the complex seismic trace as an attribute, which was initially derived by 
J. Ville (1948), a paper directly inspired by Gabor (1947). The instantaneous 
frequency is the time derivative of the instantaneous phase, and is given in one of two 
ways as 
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The reason that it is preferable to use the second approach, which involves derivatives 
of both the seismic trace and its Hilbert transform, is that the instantaneous phase 
“wraps-around” at + and – π, and therefore is unsuitable for differentiation. Like the 
Hilbert transform, the derivative applies a 90o phase shift, but it also applies a high 
frequency ramp in the frequency domain.   The derivative operation can be performed 
either in the frequency domain or with a 2M+1 length temporal filter (Fornberg, 
1987). 
 

To illustrate the various attribute methods, Figure 3 shows a 3D seismic 
volume that was recorded over a karsted terrain (Hardage et al., 1996).  It consists of 
97 inlines and 133 crosslines, each with 200 samples (800–1200 ms).  The karst 
features are illustrated by the red ellipses. 
 

 
 

Figure 3. The seismic volume that will be used to illustrate our attribute methods, 
where the red ellipses indicate karst features. 
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Figures 4 and 5 are displays of vertical and horizontal slices through the 
seismic volume shown in Figure 3.  In particular, notice the karst feature on the right 
side of the seismic line in Figure 4, which can also be seen as an elliptical contour on 
the time slice in Figure 5. 
 

 
Figure 4. Seismic inline 146 taken from the seismic volume shown in Figure 

3, where the red ellipse indicates a karst feature.  A 1000 ms time slice is 
shown in the next figure. 

 
Figure 5. A 1000 msec time slice cut from the seismic volume shown in Figure 
3, where inline 146 is shown on the display and the red ellipse indicates a karst 

feature. 

 
Figure 6 is a display of the instantaneous attributes associated with the seismic 

amplitude slice at 1000 msec, where Figure 6(a) shows the amplitude envelope slice, 
Figure 6(b) shows the instantaneous phase slice, and Figure 6(c) shows the 
instantaneous frequency slice.  Notice that the karst feature is best seen on the 
instantaneous phase slice. 
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(a)                                                (b)                                                   (c)   

 
Figure 6. Instantaneous attributes derived from the 1000 msec time slice shown in Figure 5, where (a) shows 

instantaneous amplitude, (b) shows instantaneous phase, and (c) shows instantaneous frequency. 
 

CORRELATION-BASED ATTRIBUTES 
 

Attribute analysis until the mid-1990s was based on the three basic attributes 
introduced by Gabor and Ville in the 1940s: instantaneous phase, instantaneous 
frequency and instantaneous amplitude.  Then, in the space of roughly ten years, 
papers on two new approaches to attribute analysis appeared, both based on cross-
correlations between traces.  The coherency method (Bahorich and Farmer, 1995) 
was a new approach which relied on computing cross-correlation coefficients 
between traces.  Several extensions to coherency were then published: the semblance 
method (Marfurt et al., 1998) and the eigen-coherence method (Gersztenkorn and 
Marfurt, 1999).  Next, Roberts (2001) introduced curvature attributes.  Although 
these first curvature attributes were based on a picked horizon, Klein et al. (2008) 
showed how they could be extended to the full seismic volume using the time shifts 
from a trace-to-trace correlation.  It was hard to see how instantaneous attributes and 
coherency and curvature based on cross correlation were related. However, the link 
was provided in the paper by Barnes (1996) on 2-D and 3-D complex trace analysis, 
which will be discussed in the next section.  Let us first discuss the correlation-based 
attributes. 

 
First, we will discuss the coherency approach.  The coherency method and the 

related methods of semblance and eigen-coherency are based of first computing a 
coherency matrix from a rolling window of J traces and 2M+1 samples, as shown in 
Figure 7a. If we search over a range inline and crossline dips p and q, as shown in 
Figure 7b, the full coherency matrix can be written as 
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  Let us now look at how this 

coherency matrix is used in the three methods described above. 
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The first coherency method (Bahorich and Farmer, 1995) involved finding the 
maximum correlation coefficients between adjacent traces in the x and y directions, 
and taking their harmonic average, which can be written (Marfurt et al., 1999) as 

   




















=

2/1

2/1
3311

13
2/1

2211

12
1 )()(

max
cc
c

cc
ccoh .   (9) 

 
Marfurt et al. (1998) extended this by computing the semblance of all 

combinations of all J traces in the window in Figure 7a. This can be written 
mathematically as 

[ ]






=

),(
),(max2 qpCTr
aqpCacoh

T

.    (10) 

 
[ ] [ ] .),( of diagonal main of sum ),( and 1,,1where qpCqpCTraT ==   

 
 The third approach, eigen-coherency (Gersztenkorn and Marfurt, 1999), 
involves finding the maximum eigenvalue of C(p,q) and dividing by the sum of the 
eigenvalues, and can be written 









= ∑

=

j

j
jcoh

1
13 /max λλ ,    (11) 

where Ji ,,1,i =λ are the eigenvalues of C(p,q).  Note that it can be shown 
mathematically that the trace of C(p,q), which is the sum of the main diagonal, is 
identical to the sum of the eigenvalues of C(p,q), or Tr[C(p,q)].  Thus, the 
denominators in equations (10) and (11) are actually equivalent to each other.  
Although the formulation of eigen-coherency given in the paper by Gersztenkorn and 
Marfurt (1999) did not search over dip angles p and q, an algorithm that did this was 
introduced by Marfurt et al. (1999).  
 

 
(a)                                                                                     (b)    

Figure 7. Search criteria for coherency methods, where (a) shows an elliptical spatial window with J traces used to 
extract the cross-correlations, and (b) shows the dip searches p and q over the 2M+1 sample time window (from 
Marfurt, 2006) 
 

Figure 8 shows an example of coherency computed over the full Boonsville 
data cube, where the 1000 msec time slice has been extracted. The algorithm used 
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was eigen-coherency with no dip scans.  Notice the excellent definition of the karst 
feature, which is outlined by a red ellipse. 

 

 
Figure 8. Eigen-coherency applied to the Boonsville data cube, where the 1000 msec time slice is shown on the 
right.  Notice the excellent definition of the karst feature, as highlighted with the red ellipse. 
 

Let us now move from coherency to curvature.  Roberts (2001) shows that 
curvature can be estimated from a time structure map by fitting the local quadratic 
surface given by 
 

feydxcxybyaxyxt +++++= 22),( .   (12) 
 

Note that this equation is a combination of an ellipsoid (the first three terms) and a 
dipping plane (the last three terms), as illustrated in Figure 9.  Also, the coefficients d 
and e are identical to the inline and crossline dips p and q defined earlier for the 
coherency searches.    
  

 
Figure 9. Equation (12) is a combination of the ellipsoid shown on the left (terms a, b and c) and the dipping plane 
shown on the right (terms d, e and f). 
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Roberts (2001) shows that at each x and y location, the coefficients a through f 
can be estimated from the three-by-three grid of time structure points shown in Figure 
10. 

 
Figure 10. The three-by-three rolling window of seismic time picks used by 

Roberts (2001) as a way to compute the curvature coefficients given in 
equation (12). 

 
For example, coefficient d is estimated by: 
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For the computations of the other coefficients refer to Roberts (2001).  Note 
also that the time shifts on the grid in Figure 10 do not have to come from a picked 
surface.  To generalize this method to a complete seismic cube, Klein et al. (2008) 
proposed computing the time shifts from the shift at the maximum correlation 
coefficient between the central trace of the grid and the other traces.  This would 
make t5 equal to zero.  Thus, curvature can be seen of as a related correlation attribute 
to coherence, where coherence is based on the correlation coefficient and curvature is 
based on the correlation time shift. 

The two curvature attributes proposed by Roberts (2001) that are the easiest to 
visualize are Kmax and Kmin, which can be written mathematically as 
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 A pictorial representation of the attributes Kmax and Kmin is shown in Figure 
11, superimposed on a quadratic surface. 
 

 

Figure 11. An illustration of the curvature attributes Kmax and Kmin. 

Roberts (2001) also defines most positive and negative curvature K+ and K-, 
which are equal to Kmin and Kmax with d = e = f = 0.  That is, we are looking at a pure 
ellipsoid with linear dip removed.  Simplifying equations (14) and (15) gives us 

22)()( cbabaK −−++=+ ,   (16) 

and 

.)()( 22 cbabaK −−−+=−    (17) 

It is interesting to note that there is another way to define most positive and 
negative curvature attributes K+ and K-.  Let us re-write the first three terms of 
equation (12) in the following equivalent form: 
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Then, the eigenvalues of matrix A are given by 
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or 

22)()(
2
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Thus, by comparing equation (20) to equations (16) and (17), we see that the most 
positive and negative curvature attributes K+ and K- are equal to the eigenvalues of 
matrix A, which means that they represent the rotation of the quadratic equation (12) 
to its principal axes.  Another way to look at this is that we remove the cross term xy.   



A new perspective on Gabor 

 CREWES Research Report — Volume 24 (2012)  

Yet another curvature attribute is Euler curvature, written as 

δδδ 2
max

2
min sincos)( KKKeuler +=  ,   (17) 

where δ represents an azimuth angle.  Notice that most of our previous curvatures can 
be derived from Euler curvature: 

).90()0(),45(),90( ),0( oooo
max

o
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In the case where linear dip has been removed, K+ and K- can be substituted for Kmin 
and Kmax.  There are other types of curvatures defined by Roberts (2001), but the ones 
defined above are the most common.  Figure 12 shows maximum and minimum 
curvature compared with the original time slice. 
 

     
(a)                                               (b)                                                   (c)   

Figure 12. A display of curvature attributes. The 1000 msec time slice is shown in (a), maximum curvature is 
shown in (b) and minimum curvature is shown in (c).  

 
INSTANTANEOUS AND CORRELATION ATTRIBUTES 

 
At first glance, there appears to be no relationship between instantaneous 

attributes, coherency and curvature.  However, notice that in the coherency method it 
is important to find the x and y dips, called p and q.  Also note that the coefficients d 
and e in equation (12) are identical to the inline and crossline dips p and q defined.   
Furthermore, if we differentiate equation (12) we find that at x = y = 0 the first three 

quadratic coefficients can be written .
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Thus, we can re-write equation (12) as a function of the dips and their x and y 
derivatives, as follows: 
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where the f term is simply a vertical shift that can be ignored.  The connection 
between instantaneous and correlation attributes can therefore be found if we can find 
a connection between dip and instantaneous attributes. 
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   This relationship was first described in a paper by Barnes (1996) that pre-
dated most of the new attributes.  Barnes (1996) introduced two new spatial 
instantaneous attributes and showed how these attributes could be used to find both 
the dips and the azimuth.  Although Barnes (1996) was motivated by the work of 
Scheuer and Oldenburg (1988) on phase versus group velocity, his method takes us 
back full circle to Gabor (1947).   To see this, let us re-visit our earlier 3D dataset, as 
shown again in Figure 13, and notice that we only computed the frequency attribute 
in the time direction.  However, since the Hilbert transform is actually a function of 
three coordinates (i.e. Φ(t,x,y)) Barnes noted that we can also compute spatial 
frequencies in the inline (x) and crossline (y) directions. 
 

 
Figure 13.  The 3D Boonsville seismic volume. 

 
Analogous to instantaneous frequency, Barnes (1996) therefore defined the 

instantaneous wavenumbers kx and ky  (using the Marfurt (2006) notation) as: 

2
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As with instantaneous frequency, the derivative operation can be done either 
in the frequency domain or using finite differencing up to a given order. The 
instantaneous time dips in the x and y direction, p and q, are then given as: 
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x
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where T = period and λ = wavelength.  Using the dips p and q, the azimuth φ and true 
time dip θ are then given by: 

)/(tan)/(tan 11
yx kkqp −− ==φ ,   (23) 

and 

22 qp +=θ .    (24) 

To understand this concept, I created a seismic volume that consisted of a dipping 
cosine wave, which is shown in Figure 14.  The period, wavelength and time dip are 
shown on the plot, where the period is found by measuring the time between 
successive peaks, and the wavelength from the picked horizon. 
 

 
Figure 14.  A dipping cosine wave with the period and wavelength illustrated. 

Note that the dip is given by the period/wavelength. 

 
Next, let’s look at the dipping cosine wave in 3D, as shown in Figure 15.  In 

this display, we have sliced it along the x, y and time axes.  For this dipping event, it 
is clear how the dips and azimuths are related to the instantaneous frequency and 
wavenumbers.  Note that in this example, the p dip is steeper than the q dip, so the 
true dip, which is found along a line which is orthogonal to strike, we be computed 
from equation (24). 
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Figure 15. A dipping cosine wave in 3D, where the inline and crossline dips p 

and q are illustrated, as well as the true dip θ and azimuth φ. 

 
Next, we will illustrate these instantaneous spatial attributes using the 

Boonsville dataset.  There are many possible displays based on the “building blocks” 
for these attribute, which include the derivatives of seismic amplitude, Hilbert 
transform and phase in the t, x, and y directions, the three frequencies, and p, q, true 
dip and azimuth.  Note that the many divisions involved in the computations make 
this method very sensitive to noise when compared to correlation based methods.  In 
Figure 16, the true dip and azimuth are compared with the time slice from the 
Boonsville dataset. 

 

   
(a)                                               (b)                                                   (c)   

Figure 16.  A display of instantaneous dip and azimuth attributes, where the 1000 msec time slice is shown in (a), 
instantaneous dip is shown in (b) and instantaneous azimuth is shown in (c).  
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Note that as part of the correlation curvature method, azimuth can also be 
estimated if we replace the p dip attribute by coefficient d in equation (12) and the q 
attribute by coefficient e in equation (12), and then use equation (24) to compute 
azimuth.  A comparison between the two azimuth methods is shown in Figure 17, 
where we see good similarity between the two plots, but higher frequency detail in 
the instantaneous azimuth calculation. 

 

 
(a)   (b)   

Figure 17.  A comparison of instantaneous azimuth and correlation azimuth attributes, where instantaneous 
azimuth is shown in (a), and correlation azimuth is shown in (b).   The time slice displayed in the plot is at 1000 
msec. 
 

Also, recall from equation (18) that all of the curvature attributes can be 
derived from the instantaneous dip attributes described earlier, using a second 
differentiation, as was observed by al-Dossary and Marfurt (2006).  Figure 18 shows 
a comparison between maximum curvature derived the two different ways, where 
Figure 18 (b) shows instantaneous maximum curvature and Figure 18 (c) shows 
correlation maximum curvature.  The two different curvature methods give similar 
results.  However, although instantaneous curvature shows a higher frequency 
lineament than correlation curvature, as shown by the ellipses, it misses the feature 
shown by the circles which the correlation curvature captured.  Thus, each method 
has its own strengths. 
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(a)                                               (b)                                                   (c)   

Figure 16.  A display of maximum curvature attributes computed using instantaneous and correlation methods, 
where the 1000 msec time slice is shown in (a), instantaneous maximum curvature is shown in (b) and correlation 
maximum curvature is shown in (c).   Note that the colour scale on (c) is different than the colour scale used on 
this plot in Figure 12 b.  The ellipses show a lineament feature and the circles show circular feature. 
  

CONCLUSIONS 
In this report, I have shown how Dennis Gabor can justifiably be considered 

as the father of seismic attribute analysis, based on his invention of the complex 
signal (Gabor, 1947).  I have also provided an historical overview of seismic 
attributes and shown their inter-relationships. 

 
The introduction of the complex signal by Gabor lead to the development of 

the first set of seismic attributes by Taner et al. (1979).  These initial attributes were 
restricted to complex amplitude, phase and frequency in the time direction.  More 
recent attributes such as coherency (Bahorich and Farmer, 1995) and curvature 
(Roberts, 2001) at first appeared unrelated to the instantaneous attributes.  However, 
as shown by Barnes (1996) and Marfurt (2006), by extending Gabor’s concept of the 
complex signal to the x and y directions in a seismic volume, the dip, azimuth and 
curvature attributes can all be computed.  These new attributes are actually higher in 
frequency content than the original correlation versions.  Although there appears to be 
no direct connection between coherency and instantaneous attributes, the dip steering 
done as part of the coherency process can be done using instantaneously derived dips. 
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