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ABSTRACT

The use of inverse scattering methods in the inversion of seismic data has been on the
rise in exploration geophysics. With specific computational approaches it is possible to
ascertain the material properties of the subsurface using scattered acoustic waves. We seek
to determine multiple rock parameters such as density and bulk modulus from reflected
seismic signals. A basic approach is used based on straightforward inverse scattering equa-
tions. In this case we will examine how multiparameter inverse scattering in a constant 2D
background works and what are the results of inverting synthetically generated data.

A simulation was developed for this project in two parts. The forward modeling/mi-
gration stage is covered in Young et al (2011) and the least squares inversion of the data
for rock properties is covered in this report. The inversion imagery is examined for accu-
racy and various models are tested to determine if physically realistic effects are present as
would be seen in real seismic data. The conclusion from doing linearized Born inversion
is that it is successful in mapping out the ’perturbing’ subsurface structure, the results for
a two parameter approach seem realistic, a knowledge of the background velocity and also
the constant background density would allow for the determination of the absolute values
of the rock properties of interfaces at depth.

INTRODUCTION

In the field of exploration geophysics, the inversion of seismic data obtained from ex-
pensive seismic survey operations is of paramount importance to various resource based
industries. Specifically in the interpretation and location of petroleum bearing subsurface
formations as well as in general subsurface mapping of other geologic structures for eco-
nomic and scientific purposes.

The knowledge of the physical parameters of subsurface structures is vitally important
in the exploration process, these telltale indicators are the guide to which many other de-
cisions in the economic exploitation chain are made. The proper interpretation of these
indicators yields successful recovery operations, the failure to gain accurate data for these
interpretations can lead to unwanted and wasteful expenditures of time and money.

We detail here one of the algorithms published in Clayton and Stolt (1981). The two
parts to the simulation chain are the forward modelling and the inversion. In the forward
model we will use standard routines found within the CREWES Matlab toolkit and is used
to generate the synthetic seismic data in the form of 2D shot profile and various velocity
models. The inversion portion and management of its computational issues is our new
contribution and is found in this paper.

This is the second half of the report started in, Young et al (2011), in it we will inves-
tigate the results of inversion performed on forward modeled data derived from the three
models presented previously and add another case for investigation. The Clayton and Stolt
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algorithm derived in their paper is for a two parameter inversion which is investigated here.
Three variants of the one parameter case are investigated here, a simple 1-D inversion, a
1.5D case where the model is uniform along the x(offset) axis, and a 2D version where the
model is not uniform about the x axis. An examination of the accuracy and quality of the
results will be done on a case by case basis.

Mostly qualitative conclusions about the accuracy and quality of each model are il-
lustrated with plots of the results and the supporting information for each case. For the
purposes of accuracy the input velocity models were all regridded to a 5m spacing instead
of a 10m spacing, this eliminated or severely reduced some artifacts such as grid dispersion
and undersampling which could affect the accuracy of the results and can cause other issues
with the fidelity of the results.

Inversion Methodology

Born inversion is a high frequency method in the Fourier (frequency) domain and is
computationally more efficient and faster because a time-space domain convolution oper-
ation is simply a matrix multiplication in the wavenumber-frequency domain. The basic
mathematical theory and method was outlined in Young et al (2011) and the mathematical
foundation is included in Appendix B, in this section we describe the implementation of
the algorithms to compute the migration and inversion images.

Least Squares Method of Clayton and Stolt

In the paper by Clayton and Stolt (1981) and from eqn. 51 we can expand the expression
further to determine a least squares formula for the one and two parameter cases. Starting
with the result for the deconvolved data D′(km, kz, kh)

D′(km, kz, kh) =

[ 2∑
i=1

Ai(km, kh, kz)ai(km, kz)

]
, (1)

which is a statement of the inverse problem. The ai are independent of kh so that any
two distinct kh values will output values of a1 and a2. In a standard seimic survey there are
usually many values of kh which means our problem is overdetermined.

Clayton and Stolt (1981) recommends using a least squares approach for the solution
of this problem. The general set of equations in matrix form is usually given by[

ΣA2
1 ΣA1A2

ΣA1A2D
′ ΣA2

2

] [
a1(km, kz)
a2(km, kz)

]
=

[
ΣA1D

′

ΣA2D
′

]
(2)

where the summation is taken over kh values. So we simply need the matrix inverse of this
given by [

a1(km, kz)
a2(km, kz)

]
=

[
ΣA1D

′

ΣA2D
′

] [
ΣA2

1 ΣA1A2

ΣA1A2D
′ ΣA2

2

]−1
(3)
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Using Kramer’s Rule we can formally write

a1(km, kz) =

∣∣∣∣ ΣA1(km, kz, kh)D′(km, kz) ΣA1(km, kz, kh)A2(km, kz, kh)
ΣA2(km, kz, kh)D′(km, kz) ΣA2

2(km, kz, kh)

∣∣∣∣∣∣∣∣ ΣA2
1(km, kz, kh) ΣA1(km, kz, kh)A2(km, kz, kh)

ΣA1(km, kz, kh)A2(km, kz, kh) ΣA2
2(km, kz, kh)

∣∣∣∣ (4)

a2(km, kz) =

∣∣∣∣ ΣA2
1(km, kz, kh) ΣA1(km, kz, kh)D′(km, kz)

ΣA1(km, kz, kh)A2(km, kz, kh) ΣA2(km, kz, kh)D′(km, kz)

∣∣∣∣∣∣∣∣ ΣA2
1(km, kz, kh) ΣA1(km, kz, kh)A2(km, kz, kh)

ΣA1(km, kz, kh)A2(km, kz, kh) ΣA2
2(km, kz, kh)

∣∣∣∣ (5)

this is for a two parameter solution.

Of course other types of objective functions can be used but we are following the rec-
ommendations in this paper.

One thing needs to be mentioned, a constraining expression in this least squares proce-
dure given in Clayton and Stolt (1981), is shown as |khkm| < |kz|2, this formula states that
the evanescent zone in k-space is to be excluded from the calculation of the parameters,
a1(km, kz) and a2(km, kz) because of the limitations of the Born approximation. This is for
the two parameter case where kh is not zero. The limitation of usable values in k-space will
affect the quality of the final spatial domain image, with less k-values meaning a loss of
resolution in the (x,z) image space. As we will see the larger the number of kh values used
the more we can distinguish between the a1 and a2 parameters.

Fourier transform back to (x,z) space.

Once we have the parameters a1(km, kz) and a2(km, kz) we note these values are in
Fourier space and like D′ can be 2D Fourier transformed back into (x,z) space.

D(x, z) = F{D′(km, kz)}, (6)

ã1(x, z) = F{a1(km, kz)}, (7)

ã2(x, z) = F{a2(km, kz)}, (8)

where ã1(x, z) and ã2(x, z) designate the Fourier transformed material parameters.

Migration Image

ComputingD(x, z) will give us the migrated image of the seismic data, however ã1(x, z)
and ã2(x, z) do not directly yield the rock properties at a given point, instead the values of
ã1(x, z) and ã2(x, z) are of the pertubation in the rock properties at a given point relative to
the background medium, see Clayton and Stolt (1981). We will provide images of ã1(x, z)
and ã2(x, z) which should map out the regions of changes in rock parameters.
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Inversion procedure for ã1(x, z) and ã2(x, z)

From the definitions of the ã1(x, z) and ã2(x, z) parameters which we will repeat here.

a1 =

(
Kr

K
− 1

)
, a2 =

(
ρr
ρ
− 1

)
, (9)

we can determine the resulting velocity through the definition of the P wave velocity in
an acoustic medium as

VP =

√
K

ρ
(10)

therefore solving for K and ρ in terms of a1 and a2 and substituting into the expression
for the P wave velocity.

VP =

√
Kr

ρr
∗
√
a2 + 1

a1 + 1
= VPr

√
a2 + 1

a1 + 1
(11)

VPr is already known and is the background medium velocity, it is also specified as the
velocity of the medium at the surface z=0.

Prior to the deconvolution step we had D′ as follows

D′(km, kz, kh) =
−1

ρr

[
D′(km, kz, kh)

S(ω)

]
, (12)

which demands that we choose an input value for ρr, for our simulation cases we choose
the value to be set at 1000 kg/m3. And since VPr is already set at a value of 2500 m/s
the value of Kr is then determined to be 6.75x109 Pa. Because all of these values are
predetermined we can compute the values of K and ρ at each point and obtain maps of
these values from solving for K and ρ

K(x, z) =
V 2
Prρr

ã1(x, z) + 1
(13)

and
ρ(x, z) =

ρr
ã2(x, z) + 1

(14)

Velocity Models

The models used in this study have been regridded from the original 10m grid to a
5m grid for the reasons mentioned in Young et al (2011). One side effect not initially
considered was that the CREWES Matlab routine AFD_V ELCREATE automatically
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interpolates velocities into the intermediate cells between two layers if the interpolation
creates a grid point between the two known layer velocities.

Hence we actually have an intermediate layer between the intended layers with the
intended velocities. The side effect of this should be minimal as the layer itself is only one
cell thick, in this case 5m and hence the below the resolution limit of all seismic waves
below 100Hz for the model media velocities used here.

Four velocity models are used in this study. They are discussed in more detail in their
respective sections but all models are standardized on a 2500m x 1000m grid with 5m
spacing, therefore the maximum grid is 500x200 and 100,000 grid point values need to be
computed. All models assume a uniform background velocity of 2500m/s and the velocity
is homogeneous in the x direction for a given discrete layer for each model. For the irregular
and polygonal bodies the interior velocities are uniform as well.

Input Source waveform: the Ricker wavelet

We have chosen a Ricker wavelet as the source wavelet selected at a 20Hz central
frequency over 64 or 128 sample points. In all cases the source signature is deconvolved
from the synthetic data in order to see what effects, if any, a deconvolution would have on
the final results.

Computational Considerations

From the domain of computer science the concept of GIGO (Garbage In Garbage Out)
applies to this particular problem and the quality of the input data created by the forward
modeling procedures. In computational problems there is always a trade off between accu-
racy and the time needed to obtain the result. In our case with 105 grid points (500x200) to
be computed per shotpoint and 500 shotpoints/group and 40-60 offset groups, the forward
problem alone consumes 15% of the total run time, averaging 3 hours to generate a single
synthetic data set for a single velocity model.

The migration step itself takes around 600-800 minutes of time to complete(around 10-
13 hours) and so there is going to be a large trade off between having accuracy and having
computational efficency. These times are for execution on a six core Intel PC running paral-
lel MATLAB on all cores and nothing else. Extensive parallelization of this program is one
possibility and has been attempted without much success within the Matlab environment,
mainly due to the author’s lack of experience in parallel computing. These simulations are
not considered realistic in terms of the length and depth coverage

F-D stability

We discussed grid dispersion effects if the incorrect grid spacing is chosen for the for-
ward modeling step in the first paper. One effect observed was the problem with an overlap
feture seen in all images in the central region, at 10m grid spacing this was clearly apparent
but disappears at the 5m spacing.
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There is a lower limit to the grid size before other FD effects take over such as grid
overrun, where the speed of propagation on the grid is so fast it causes errors in the accurate
location of the wavefront Bording and Lines (1997). For our case the expression in 2D is

ci(z)δt ∗ (

√
1

8
or

√
3

8
) = h (15)

where δ t=0.5ms and h is the minimum step size of the grid to maintain stability, our max.
model velocity used is 6000 m/s which corresponds to h=4.2 m for a 2nd order Laplacian
approximation or h=1.83m for a 4th order Laplacian, these are the minimum grid spacings
and is less then the 5m spacing used in our models so we won’t suffer from this issue. A
possible solution is to implement the use of a sixth order Laplacian FD routine which allows
for a smaller grid spacing and high contrast in model velocities as well. This comes at the
cost of additional computational time which is the trade off needed to higher accuracy.
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SYNTHETIC EXAMPLES

We have chosen to test our inversion process using four cases. A single horizontal
reflector with a large velocity contrast between them. A four layer model with constant
horizontal velocities in each layer but different from layer to layer. A "shallow" body
containing low velocity material intruding into a 4 layer model background which contains
a concave top surface and a convex bottom surface. Finally, a case where again there
is an intrusion into a background four layer model but this time the body has a strongly
concave upper surface and a convex lower surface containing higher velocity material than
the surroundings.

For these experiments we have fixed the model parameters at a receiver line length
of 2500m and a depth of 1000m (corresponding to a time of approximately 0.8 sec), we
then choose a source/receiver spacing of 5m and a sampling time of 4ms. For the forward
differencing calculations the time step is 0.5ms between frames and a computation grid of
5m in the x direction and 5m in the z direction. A bandlimited source wavelet was also
added which in this case is a Ricker wavelet with a user specifiable frequency and duration,
we used 20Hz and 128 samples.

For each case the initial velocity model is used as input into the CREWES forward
differencing routines and are displayed for each model run. In the four layer case this is
followed by a snapshot at one particular source point comprising the gather of the receivers
for that source point. A deconvolution was then done on all the shot profiles and a single
snapshot is displayed, usually at the same source point, the displayed image is also missing
the direct wave as this was subtracted prior to the deconvolution.

The computation of the kz, km grid is needed to sample enough of the k-space grid to
give the proper resolution and details. Initially we found that sampling only the points in
quadrant 1 (+kz,+km) produced inversions which were incomplete, only reflectors with
a positive slope were imaged and the structures with a negative spatial slope were absent.
When we sampled k-space quadrant 4 (+kz,−km → 0) plus quadrant one (+kz, 0→ +km)
we were able to obtain a complete and structurally correct migration.

To do a proper inversion required computation of migration images at two or more half-
offset values, kh. Once this is computed then a least squares inversion is done using the
algorithm used to compute a1 and a2 given above, an image in kz, km space is produced
prior to inverse Fourier transforming back into x,z space.

The shotpoint images were scaled using mean value and not max value scaling to bring
out the details of each of the models and results. Max value scaling produced images with
a bright spot at the top, where the wave amplitudes from the shot is the greatest and the rest
of the image was too faint to clearly see the details due to geometric spreading.
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RESULTS FOR A 1-D MODEL

A simple 1-D model will illustrate many of the features we will be looking for in an
accurate inversion, as can be seen in fig.1 if the synthetic input data has the complete
spectrum of frequencies from 0Hz to the Nyquist limit then the integration of the trace
will produce a fairly accurate stepped function profile. The main feature is that the first
discontinuity location corresponds with the expected location of the first interface.

Subsequent discontinuities will not match up in depth due to the fact that the inversion
formula uses only the first layer velocity, Bleistein et al. (2001) has a through explanation
on the reasons for the cumulative errors in depth below the first interface, this effect is seen
clearly in the 1.5D and 2D models.

The amplitudes of the step function should correspond approximately to the ideal step
function amplitudes and it does for the first interface as can be see in fig.2 A major effect
is illustrated in these figures, when the frequency range becomes bandlimited we get very
strong deviations from the step profile. A loss of the 0 Hz frequency causes the horizontal
parts of the step to deviate strongly, as can be seen in the frequency plots, this is expected
as the idealized step function is an infinitesimal sum of all possible frequencies. The loss of
high frequencies introduces a Gibb’s phenomena into the trace integration causing a high
frequency oscillation in the sharp corners and a overshoot at the corner itself.

The progressive loss of frequencies doesn’t affect the location of the interfaces in the
integrated trace nor the amplitudes but it does cause the profile to tend towards resembling
the plot of a series of delta function spikes with average amplitudes tending to zero in
between the spikes. As we will see later this effect is very strong in the synthetic data for
various models. One major advantage of 1D models is that there is no geometric dispersion
effect to take into account in the amplitudes.
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RESULTS FOR 1.5-D MODELS

A 1.5D model is defined to be a model which has a heterogeneous velocity profile
only in depth, the velocity does not vary in the horizontal direction. This type of model
can retain the normal incidence assumption of a 1-D model while testing in a pseudo 2D
environment, ie horizontally extending a vertical profile.

The 2 Layer high velocity model

This two layer model (fig.3) is done as a simple test to determine if a large velocity dif-
ference has the expected effect on the resulting pertubations in the rock properties. Figure
4 shows the migrated result of the model run and looks as expected. The velocity difference
across the interface is 1500 m/s so the reflection coefficent is quite large. A small step is
present in the middle of the image and is 1 grid cell(5m) in height, this was done to see
if the step is present in the migrated data and to determine the effects on the pertubation
maps.

After the inversion stage we have two pertubation maps as shown in figure 5 and figure
6, the model run used kh=80 half offsets whereas the 4 layer model case used 20 offsets
initially. This has produced an effect mentioned in Clayton and Stolt (1981) which is now
noticeable. The relative intensities of the two properties are beginning to differentiate each
image from the other, the relative maximum value for the bulk modulus image is in fact 55,
where as the maximum value for the density image is 70, the two images have been rescaled
equally to illustrate that the relative weighing of intensities have shifted and this is expected
as more information in the form of more offset data was included into the inversion.

The last figure in this section (fig.7) displays the level of pertubation from the back-
ground velocity field for the two layer model. As expected where there is no interface be-
tween the two layers there is little change from the background velocity of 2500 m/s(yellow
in the image), ignoring the false high frequency variations. Where the interface is located
the amplitude decreases to around 1000 m/s(blue areas), this is a difference of 1500 m/s
which is the magnitude of the difference found on the initial velocity model not accounting
for the sign change. To save space the images of the K and ρ pertubations in absolute units
have been omitted due to space limitations for this simple model.
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FIG. 3: 2 Layer high velocity model
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FIG. 4: 2 Layer high velocity model, deconvolved synthetic data, x=1195m
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FIG. 5: Inverted bulk Modulus pertubation image for a 2 layer high velocity model
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FIG. 6: Inverted density pertubation image for a 2 layer high velocity model
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FIG. 7: Velocity pertubation image for a 2 layer high velocity model
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The four layer horizontal model

This physically simple model is relatively more complex then the 2 layer model and
demonstrates the power and accuracy of the inversion routine, in figure 10 and figure 11
we get the expected responses from the forward differencing model. Hyperbolic features
corresponding to the model reflectors and in the deconvolved case as in all cases we’ve
subtracted the direct wave. We do get some high frequency "wakes" following each of the
hyperbolic returns plus reflections from the sides of the aperture. Note the z axis is labeled
in time, this is because of the output of the particular CREWES plotting routine used and
in which there wasn’t time to change over to a depth labeled axis.

In Figure 12 we can see a very simple one dimensional column in km, kz space, this is
because there is only the horizontal reflectors which are flat and so no variance in relative
angle the source and no "slope" their a straight vertical column is expected. Figure 13
shows the resulting migration, again we have some wakes and aperture artifacts on the
sides. But we do get the expected number of layers with reflector 1 at the model depth
expected.

The difference is in the depth of the second and subsequent layers. Reflector 2 and 3
are shallower then expected because there is a difference in layer velocities which are not
accounted for in the inversion algorithm below the first reflector. This is due to the number
of terms in the Born approximation that we take. This effect will be apparent across all the
models we choose to use.

The 4 layer migrated data is then processed through the inversion stage, figures 14 and
15 are the result after the fourier transform is performed to move from the wavenumber
km, kz) to the space domain (x,z). What is displayed is the pertubation in the physical rock
properties, bulk modulus K and density, ρ, relative to a uniform background medium. The
colorbar scales are relative units. As can be seen, the reflection boundaries clearly show
up as discontinuties in the medium, the amplitude of each deeper layer increases because
the relative velocity differences increase by 500 m/s from the previous boundary, ie the
background velocity is 2500 m/s, jumping to 3000, 3500 and 4000 m/s at the last interface.

Aside from the hotspots at the sides of the reflectors the images are fairly smooth within
each layer because of the least squares minimization process which acts as a smoothing
filter and minimizing the noise in the final image. In this case 40 migrated images were
calculated for a range of half-offset values, kh between 231 to 271 out of a possible 500
values.

This small spread of kh range is not enough to begin to distinguish differences between
the K and ρ images as has ben pointed out in Clayton and Stolt (1981). In a later model we
will see differences when the spread of kh is increased and other side effects from a large
number of offsets being used.

Figures 16 and 17 display the result of applying equations 13 and 14 using the cal-
culated pertubation parameters ã1(x, z) and ã2(x, z). The pertubation magnitudes are not
large relative to the mean property, for instance the background density, ρr is set at 1000 kg
m3 and the highest pertubation in density is almost at 1100 kg/m3 which is a 10% differ-
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ence. The same applies to the bulk modulus map as well. Both images also display the high
frequency horizontal artifacts present on the original migrated image which are of course
not real variation in the physical medium.

The final figure 18 shows the result of computing the P wave velocity of the medium
using eqn.18, the velocity changes are of the correct sign but of much lower value then
anticipated and will need to be further investigated.
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FIG. 8: Background velocity model

FIG. 9: 4 Layer flat velocity model
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FIG. 10: 4 Layer flat velocity model, synthetic data with 30 Hz ricker wavelet, x=1195m

FIG. 11: 4 Layer flat velocity model, deconvolved synthetic data, x=1195m
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FIG. 13: 4 Layer flat velocity model, deconvolved, migrated synthetic data, x=1195m

18 CREWES Research Report — Volume 24 (2012)



Multiparameter inverse scattering

X(m)

D
ep

th
(m

)

Relative bulk modulus pertubation inversion image

 

 

0 500 1000 1500 2000 2500

0

100

200

300

400

500

600

700

800

900

1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

FIG. 14: Inverted bulk Modulus pertubation image for a 4 layer model
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FIG. 15: Inverted density pertubation image for a 4 layer model
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FIG. 16: Inverted bulk Modulus pertubation image (absolute units) for a 4 layer model
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FIG. 17: Inverted density pertubation image (absolute units) for a 4 layer model
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FIG. 18: Velocity pertubation image for a 4 layer model
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RESULTS FOR 2-D MODELS

Two fully 2D models are analyzed here to check for differences from the 1.5D models
in terms of observed effects and any additional effects not observed in a 1.5D domain.

The shallow low velocity model

The shallow, low velocity model shown in fig.19 was created to see if the inversion
properly handles the deep reflectors when encountering a low velocity layer. In this case
we have a biconvex lens embedded in a four layer model. The four layer background is
the same as discussed in the previous section, only the addition of the low velocity body is
the difference. Going through the standard processing procedure we can see the results of
the deconvolution and migration in figure 20. The migrated image displays the expected
features, the low velocity of the body distorts the traveltimes of waves passing through it.
This has distorted the apparent position of deepest interface as seen in the migrated image.
There are numerous low amplitude artifacts present, some of which are reflection multiples,
especially ghost images of the body itself.

The lower convex part of the intrusion is not located in exactly the correct depths due to
the velocity difference, this can be seen in the migrated image. Note the deformation of the
lowest reflector layer at z=850 m depth in the model and how it distorts from a horizontal
reflector in the model into a concave shape, due to the distortion in travel times introduced
by the low velocity found in the intrusion. Details of the velocities can be found on Table
2 of Appendix A.

Inversion of the migrated images are shown in figures 21 and 22, again both images
look to be almost exactly the same but the amplitudes are different enough to be notice-
able. The boundary around the low velocity zone provides a strong contrast to that of the
surrounding layers, in fact the P wave velocity of the body is 100 m/s lower then the back-
ground medium. There is significant bright spot in the middle of the deepest reflector just
under the midpoint of the low velocity body which is not straightforward to explain but
maybe due to refraction effects of waves impinging on dipping surfaces.

The final image (fig.23) is of the pertubation in the velocity field, the outline of the
low velocity zone shows up clearly as much stronger then all but the deepest horizontal
interface. There is a very large amount of noise in this image which makes it difficult to
quantatatively discuss the results.

In the inversion images there is a noticeable ’beading’ effect, which is a series of bright
and dark spots along the interface, this occurs in both 2D models displayed here. This
occurs where there is a sharp corners in the model, as can be seen in fig. 19 along the sides
of the model is a jagged line and is an effect due to the gridding of the model. The interface
boundaries cannot be interpolated below the resolution of the grid and so the position of the
line is approximated. These rough edges act as point diffractors and can cause interference
patterns to be created in the image as can be seen in the interior of the body where the
velocity should be uniform.
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FIG. 19: Embedded low velocity model
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FIG. 20: Embedded low velocity model, deconvolved, migrated synthetic data, x=1195m
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FIG. 21: Inverted bulk Modulus pertubation image for a embedded low velocity model
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FIG. 22: Inverted density pertubation image for a embedded low velocity model
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FIG. 23: Low velocity body pertubation image
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The Anticline velocity model

The anticline velocity model shown in figure 24 also has a low velocity center relative
to all but the top two layers. With a gradually increasing dip to the concave upper surface
and a convex lower surface this model should create significant distortions and be challenge
to image. Again the four background layers are the same velocities as found in the 1.5D
4 layer velocity model. The internal velocity of the body is 3200 m/s which is higher then
the background medium and different from the case given previously.

The sides of the upper surface have a greater slope towards the ends while the lower
surface has a fairly consistent and shallower angle. The steep dips on the upper side means
we see a gap in the migrated image on the lower left and right sides wings. This is indeed
the case as seen in fig. 25, there is also a significant amount of noise associated with
multiple reflections and diffraction features from the edges of the layer interfaces.

Figures 26 and 27 show the results of the inversion carried out on the migrated data,
notice the pertubation features outline the model velocity structure quite well and most of
the artifacts are absent, even the multiples are not very strong in amplitude compared to
the primary pertubation features. Again as in the other models their is a slight difference in
relative maximum amplitudes between each image. These inversion images were computed
from 40 kh half-offset values

The next set of images shown in figures 28 and 29 illustrate a point made in the figure
2 caption of Clayton and Stolt (1981), about the region of resolution of bulk modulus and
density variations. In these cases kh has been increased from 40 to 120 half-offset images,
this was done to see if there were clear distinctions between the bulk modulus and density
pertubation results. As can be seen there are clear intensity differences favoring density
changes over bulk modulus changes.

What was not taken into account when this simulation was run is that the ratio of kh/kz
needs to be maintained. In our case the kz was fixed at 50 wavenumbers, for the original
run we have a ratio of 40/50=0.8 for the next run it becomes 120/50=2.4, this produced
a very strong resolution effect which moved the resolution limit to shallower depths. It’s
why the greatest intensity region seems to be focused at the 350m level instead of the 700m
level.

The change occured because the source-reciever offset appears to have increased rel-
ative to the depth of the reflector, favoring in our case the shallower reflectors. As the
images shows all the features visible in the prior images are still present but look much
weaker at depths greater then 350m. The solution would have been to maintain the kh/kz
ratio and increase the value of kz from 50 to 150 wavenumbers but will greatly increase the
computational time as well.
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FIG. 24: Anticline embedded velocity model
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FIG. 25: Anticline embedded velocity model, deconvolved synthetic data, x=1195m
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FIG. 26: Inverted bulk Modulus pertubation image for an anticline embedded velocity
model
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FIG. 27: Inverted density pertubation image for an anticline embedded velocity model
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FIG. 28: Inverted bulk modulus pertubation image for an anticline embedded velocity
model 120 half-offsets
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FIG. 29: Inverted density pertubation image for an anticline embedded velocity model for
120 half-offsets
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SUMMARY AND CONCLUSION

In this project the inversion algorithm in the Fourier domain from Clayton and Stolt
(1981) is implemented in MATLAB code and tested. We examine only the constant back-
ground velocity case and setup four cases to test various aspects of the inversion. What
can be concluded is that linearized Born inversion works for all cases, testing indicates the
algorithm will produce a very good solution for the 1.5D cases with flat layer geometry.

The single layer high velocity differential produced the same structural image as that of
the migrated, deconvolved input images, the inversion produced bulk modulus and density
pertubation images clearly showing the location of the pertubation. The computed veloc-
ity image has the same velocity amplitudes as the velocity model including the 1500 m/s
pertubation found at the interface between layers.

The four layer case was more complex but produced clear images as well, because of
the least squares inversion method any noise in a given input image is smoothed out when
a stack of images are summed and averaged. The bulk modulus and density pertubation
images show a progresive increase in velocity differential from the background velocity,
these show up as more intense boundaries and is what was expected.

For the 2-D cases the results are a little more complex but still useful to note, the shal-
low low velocity embedded body produced a migrated image with fairly strong ghosting
artefacts. Especially in the lower layers where the contrast between the high velocity deep
layers and the body is the greatest. The resulting inversion images are surprisingly clear,
the multiples seen in a given migrated images have been smoothed out to a large extent.

However another issue arises where a form of ’beading’ occurs along all the non hori-
zontal boundaries in the inversion images of both 2D models. The size of these bright beads
is approximately that of the grid spacing the cause of which is explained in the section on
the shallow velocity model, this effect shows up in both 2-D model runs. Computing the
velocity pertubation image from the K and ρ pertubation images yields a very noisy im-
age which is generally correct in the location of the pertubation but the amplitude of the
velocity changes do not match the initial velocity model.

For the final case of the anticline structure the results are generally the same as the em-
bedded low velocity body, the difference here is that the anticline structure has an internal
velocity which is higher then the first two layers but lower then the deepest two layers. This
was done to test how the amplitude of the pertubation changed with both depth and with
relative dip angle.

The migrated image has a lot of noise from point diffractions from the edges of the flat
layers and from the sharp corners of the tips of the anticline structure. The resulting inver-
sion and the pertubation images again show that most of this noise is smoothed out in the
process. The amplitude of the pertubation increases with depth. The edges of the anticline
become progressively more intense as the difference in velocity between the horizontal
media and the body become relatively greater.

Other effects mentioned in the Clayton and Stolt (1981) paper were examined as well,
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adding more images with larger kh resulted in pertubation images in K and ρ with differing
amplitude scales. This was most clearly seen in the anticline model where the number of kh
images used in the inversion was tripled. The amplitudes between K and ρ clearly favored
a weighting towards a greater variation in density rather then bult modulus to produce
variations in velocity.

A second effect shows up which is also mentioned in the paper, the kh/kz ratio was
not maintained when calculating the inversion for a large number of offsets. This caused a
the resolution of the image to change with depth, becoming shallower and emphasizing the
shallower layers. The remedy for this effect is to maintain the same ratio by increasing the
number of kz values used.

The model which worked out the best in testing seems to have been the flat, multi-
layered model which had moderate velocity changes between layers, while the single layer
model yielded a correct velocity differential while the other models had values which fell
short of the expected values.

The issues which need to be examined and resolved is the noise generated by diffraction
at the ends of the interface layers. This is not accounted for in the forward modeling routine
and needs to be compensated for; the next steps in refining this method are:

• Determine why the pertubation velocity falls short of the expected values for cases
other then the single interface model.

• Incorporate and test an analytical source solution, in this case using the equations
developed in Alford et al. (1974), the method on how to accomplish this is described
in Mosco et al. (2007).

• Improve the accuracy of the Laplacian forward difference operator by going to a sixth
order scheme, hence allowing even higher velocity changes(ie dynamic range) and a
smaller grid size. The cost will be in terms of computational time which may change
by an order of magnitude.

• Elimination and suppression of the sources of noise from the model, this is primarily
directed to eliminating the point source diffraction effects coming from the sides of
the model.

• More efficient computational schemes such a parallel processing need to be imple-
mented for more complex, higher resolution datasets. Otherwise this method be-
comes prohibitively expensive in terms of computational resources and time required
to do the migration and inversions.
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APPENDIX A
Table 1: Model Run input parameter values

Model Size 2500mx1000m
Model Grid Spacing 5m

Model Time Sampling Rate 4ms
Model Time Step 0.5ms
Number Sources 500

Number Recievers 500
Number of Shotpoints 500

Receiver Spacing 5m
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Table 2: Table of Velocity model parameters for 5m grid models.

Velocity Model Reflector# Depth(m) Layer # Velocity(m/s) R Coeff
Flat single reflector 1 300 1 2500 0.2308

2 4000

Flat multilayer 1 310 1 2500 0.0476
2 315 2 2750 0.0435
3 670 3 3000 0.0400
4 675 4 3250 0.0370
5 980 5 3500 0.0345
6 985 6 3750 0.0323

7 4000

Anticline 1 145 1 2500 0.0476
2 150 2 2750 0.0435
3 380 3 3000 0.0400
4 385 4 3250 0.0370
5 750 5 3500 0.0345
6 755 6 3750 0.0323

7 4000
body 3200

body_top 3100.4
body_bottom 3350

Low Velocity channel 1 120 1 2500 0.0476
2 125 2 2750 0.0435
3 460 3 3000 0.0400
4 465 4 3250 0.0370
5 840 5 3500 0.0345
6 845 6 3750 0.0323

7 4000
body 2397.6

body_top 2698.8
body_bottom 2948.8
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APPENDIX B: MATHEMATICAL APPENDIX

BASIC SCATTERING THEORY

In the field of forward scattering(Clayton and Stolt (1981)) the Lippmann-Schwinger
equation is crucial for solving acoustic scattering problems, the derivation of this equation
can be found in [reference to L-S derivation here] this equation is given by

G = Gr +GrV G, (16)

where V is the scattering potential and G is the Green’s function operator which is the
solution to the linear isotropic acoustic wave equation

LP =

(
ω2

K
+∇ · 1

ρ
∇
)
P = 0, (17)

where

L =

(
ω2

K
+∇ · 1

ρ
∇
)
, (18)

and L for the reference medium is

Lr =

(
ω2

Kr

+∇ · 1

ρr
∇
)
, (19)

so the Green’s function is simply the inverse of this operator.

G = L−1, (20)

and where ρ and K are the density and bulk modulus respectively. G andGr are the Green’s
function perturbation and the Green’s function reference operator (the slowly varying back-
ground about which it is perturbed).

This has is only a very brief overview of the essential basis of scattering theory, a
more through examination requires a detailed understanding of Partial Differential Equa-
tion methods such as Transform methods see Constanada (2010), plus the use of Green’s
function operator methods see Duffy (2001). For a through mathematical approach to mul-
tidimensional inversion the book by Bleistein et al. (2001) is recommended. The appli-
cation of Green’s theorem to many types of problems in geophysics can be found in the
review paper by Ramirez et al. (2009). A very through review of inverse scattering theory
and it’s application in seismic exploration can be found in Weglein et al (2003).

The Inversion Algorithm for a Constant Background

We will follow the inversion algorithm outlined in Clayton and Stolt (1981) and use
their notation as well. The Born approximation of the Lippmann-Schwinger equation is
given by the series expansion of the implicit equation

G = (I −GrV )−1Gr, (21)
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which related the Green’s operator G in the actual medium and the reference operator Gr

and which can be expanded as a series called the Born-Neumann series see Morse and
Feshbach (1953) .

G = Gr

∞∑
i=0

(V Gr)
i. (22)

We approximate the total wavefield truncating the expansion. The direct wave in the wave-
field is the zeroth order term, Gr and the primary reflections are approximated by the first
order term GrV G.
So for the direct wave and the primary reflections we will have

G = Gr +GrV G. (23)

Subtraction of the Direct Wave from the Gathers

The observed wavefield D is defined as D = (G−Gr)S(ω), and so

D = (G−Gr)S(ω) = (GrV G)S(ω). (24)

Consequently in order to do a proper inversion of the wavefield, the direct wave Gr

first needs to be subtracted from the seismic profiles. This is done for the current testing
purposed by directly subtracting the two wavefields G and Gr.

Deconvolution and Subtraction of the Wavelet

Before the inversion can be done the source wavelet must be subtracted or deconvolved
from the transformed wavefield as illustrated below, a small stability factor ε has been
added to the algorithm to prevent any singularities from occurring during this operation.

D′(km, kh, kz) =
−1

ρr

D(km, kh, ω)

S(ω) + ε
, (25)

Direct Inversion

The first step in the inversion is to Fourier transform the wavefield from source xg
and receiver xs coordinates to source-receiver wavenumbers kg, ks, we will drop the prime
notation of the deconvolved wavefield for convenience.

D(kg, ks, ω) =
1

2π

∫
dxg

∫
dxse

−ikgxgD(xg, xs, ω)eiksxs , (26)

=

∫
dx′
∫

dz′G+
r (kg, 0|x′, z′;ω)V (x′, z′;ω)G+

r (x′, z′|ks, 0|;ω)S(ω), (27)

Where G+
r (kg, 0|x′, z′;ω) and G+

r (x′, z′|ks, 0|;ω) are Green’s operators and have the
form given by
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G+
r (kg, 0|x′, z′;ω) =

iρr√
2π

e−i(kgx
′−qg |z′|)

2qg
, (28)

G+
r (x′, z′|ks, 0|;ω) =

iρr√
2π

ei(ksx
′+qs|z′|)

2qs
, (29)

and

qg =
ω

νr

√
1−

ν2rk
2
g

ω2
, (30)

qs =
ω

νr

√
1− ν2rk

2
s

ω2
, (31)

So placing the Green’s operators into the integral equation we get

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i(kgx

′−qg |z′|)

2qg
V (x′, z′;ω)

ei(ksx
′+qs|z′|)

2qs
S(ω), (32)

Here V is the scattering potential or the structure we are trying to image, this potential
is given by the difference of the two wave operators L and Lr

V =

(
ω2

K
− ω2

Kr

)
+∇ ·

(
1

ρ
− 1

ρr

)
∇, (33)

Replacing K and ρ by dimensionless media operators as follows

L = ω2a1
K

+∇ · a2
ρ
∇, (34)

where a1, a2 are

a1 =

(
Kr

K
− 1

)
, a2 =

(
ρr
ρ
− 1

)
, (35)

Now evaluating the equation relating the data to the scattering potential using V above

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i(kgx

′−qg |z′|)

2qg

[(
ω2

K
− ω2

Kr

)
+∇ ·

(
1

ρ
− 1

ρr

)
∇
]
ei(ksx

′+qs|z′|)

2qs
S(ω),

(36)
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and and substituting in a1 and a2 then integration by parts we get

D(kg, ks, ω) =
−ρ2r
2π

∫
dx′
∫

dz′
e−i[(kg−ks)x

′−(qg+gs)z′)]

4qgqs
×[

ω2

ν2r
a1(x

′, z′) + (qgqs − kgks)a2(x′, z′)
]
S(ω),

(37)

Note the absolute value signs around z′ are dropped if we assume a1(x, z) and a2(x, z)
are zero for z < 0.

The above equation is of the same form as a double Fourier transform in the x′ and z′

variables if we do some rearranging

D(kg, ks, ω) =
−ρ2rS(ω)

2π4qgqs

∫
e−i(kg−ks)x

′
∫
ei(qg+gs)z′×[

ω2

ν2r
a1(x

′, z′) + (qgqs − kgks)a2(x′, z′)
]

dz′ dx′,

(38)

the result of the evaluation yields

D(kg, ks, ω) =
−ρ2rS(ω)

4qgqs

[
ω2

ν2r
a1(kg − ks,−qg − qs)

+ (qgqs − kgks)a2(kg − ks,−qg − qs)
]
,

(39)

Change of Coordinates to ω, qg, qs space

In order to solve for a1 and a2 we will need to change to midpoint/offset coordinates
from the source/receiver system.

We have the following definitions the midpoint wavenumber km = kg − ks,
the half offset wavenumber kh = kg + ks
which in the space domain x,z correspond to

xm =
xg + xs

2
(40)

and
xh =

xg − xs
2

(41)

and a new independent variable

kz = −qg − qs = − ω
νr

√
1−

ν2rk
2
g

ω2
− ω

νr

√
1− ν2rk

2
s

ω2
, (42)
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Solving for ω, qg and qs we have the expressions

ω(km, kh, kz) = −νrkz
2

√
(1 +

k2m
k2z

)(1 +
k2h
k2z

), (43)

qg(km, kh, kz) = −kz
2

(1− kmkh
k2z

), (44)

qs(km, kh, kz) = −kz
2

(1 +
kmkh
k2z

, (45)

Now that we have expressions for ω, qg, qs the the Direct Fourier transform computed
in these coordinates and data can be transformed back after the inversion.

Writing the equation for the wavefield using these new variables substituted according
to the definitions above we get

D(km, kz, kh) =
−ρ2rS(ω)

4qgqs

[
ω2

ν2r
a1(km, kz) + (qgqs − kgks)a2(km, kz)

]
, (46)

When transformation variables are substituted in and simplified we obtain the system
of equations which need to be inverted.

D(km, kz, kh) = −ρr
[ 2∑

i=1

Ai(km, kh, kz)ai(km, kz)

]
S(ω), (47)

where

A1 = (km, kh, kz) =
1

4

(k2z + k2h)(k2z + k2m)

k4z − k2mk2h
, (48)

and

A2 = (km, kh, kz) =
1

4

(k2z − k2h)(k2z + k2m)

k4z − k2mk2h
, (49)

so we must compute D’ as follows

D′(km, kz, kh) =
−1

ρr

[
D′(km, kz, kh)

S(ω)

]
, (50)

After the deconvolution stage we are left with

D′(km, kz, kh) =

[ 2∑
i=1

Ai(km, kh, kz)ai(km, kz)

]
, (51)

of which we need to determine the ai(km, kz) through perhaps a least squares method.
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APPENDIX C: AN IRREGULAR HIGH VELOCITY BODY

This model is included as an appendix in this paper as a test of both the migration/in-
version algorithm and because it does not add significantly to the main discussion but helps
to further illustrate points made in the main text.

The velocity model (fig.30) is of a body of irregular shape and size, the background
velocity is the same as previous models at 2500 m/s. The velocity of the body is set to 6000
m/s, geologically this model might be seen with a shallow subsurface volcanic intrusion
with the magma chamber filled with solidified felsic(granitic) material, ie a pluton. The
most noticeable features here is the body itself is completly surrounded in low velocity
material, there are no other layers present to reflect seismic energy back into the body from
below.

The migrated image in figure 31 displays clearly the upper surface in the correct orien-
tation and depth, the curvilinear nature is also imaged correctly. The areas which are not
imaged and have no reflections are the steeply dipping portions of the rounded body on the
left side and the vertical feature on the right. Imaging the reflector on the bottom side of
this body is much more challenging, the relatively linear, sloped section is not in the correct
position though the depth and dip are approximately correct.

The images of the pertubations in bulk modulus (fig.32) and density (fig.33) reproduce
the migrated images, with the exception that internal body features are for the most part
averaged out during the inversion stage. As in the anticline case, a large number of kh
values were used, 150 in this case but also the corresponding number of kz values were
increaded to 75 from 50. This avoided the selective resolution effect mentioned in the
Clayton and Stolt (1981) paper.

The relative amplitudes of the two pertubation images are also distinctly different, with
the density pertubatiobn being much stronger then the bulk modulus. There is a large bright
red feature which shows up in the density pertubation image at x=1400m, this hotspot is
due to a tuning effect of seismic waves. In the original velocity model at this position is
a narrowing on the body so that the lower and upper reflectors come within about 50m of
each other, the two reflectors are interfering with each other reinforcing the amplitude of
the feature at that position.

In figure 34 we can see some features in this noisy image which do follow what is ex-
pected from the model. The upper surface reflector has a relatively large negative velocity
change, the lower sloped reflector, although in the wrong position shows a large positive
velocity change. This is what is expected when transitioning between the two media. Al-
though there are erroneous areas such as the more steeply dipping portions of the upper
reflector which shows the opposite velocity from the rest of the reflector, this is because
combining the bulk modulus and density pertubation maps there are areas of almost zero
pertubation in the bulk modulus image which causes a sign change when computed using
equation 10.
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FIG. 30: Irregular high velocity model
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FIG. 31: Irregular high velocity model, deconvolved synthetic data, x=1195m
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FIG. 32: Inverted bulk Modulus pertubation image for an irregular high velocity model
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FIG. 33: Inverted density pertubation image for an irregular high velocity model
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FIG. 34: Velocity pertubation image for the irregular high velocity model
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