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Grid scaling 2-D acoustic full waveform inversion with a high 
frequency impulsive source 

Vladimir Zubov, Michael Lamoureux and Gary Margrave 

ABSTRACT 
Spatial grid multi-scaling with domain decomposition is developed in this study in 

order to obtain better convergence rate for the acoustic inverse problem for velocity field 
with self-adjoint dispersive operator. The model used in the study is based on the 2D 
acoustic wave equation boundary problem approximated with fourth-order spatial finite-
difference approximation and factorization in orthogonal spatial directions. Combinations 
of different spatial scaling in the case of one impulse point source and limited number of 
observation points (virtual geophones) is implemented in the paper to verify the ability to 
estimate the velocity field with suitable synthetic data. 

INTRODUCTION 
The velocity coefficients inverse problem for acoustic equation theory is well studied 

in last 40 years by many geophysicists (Tarantola, 1984; Shin 2007). There are many 
approaches solving this problem in time-frequency domain (Virieux 2009) with signal 
deconvolution (Margrave et al., 2011) or in time-spatial domain solution of the wave 
equation with finite-differential or finite-element approximation. 

In present study we use a finite-differential approximation in the acoustic forward and 
adjoint boundary problems for numerical solution of the forward problem. Then we apply 
a gradient method inversion approach (Tarantola, 1984) to velocity coefficient estimation 
problem with one impulse point source. With this approach we try to obtain a good 
observation angle from point source position. The main purpose of the study is to verify 
numerically with the synthetic data the inversion approach which is based on multi-
scaling also developed by many other researchers (Bunks et al., 1995) and domain 
decomposition with overlap. We also simulate the consequences of limitations in the 
observation equipment (virtual geophones) as well as in sources (considering just one 
shot for each subdomain). 

Grid scaling considered in the present paper is known as multi-scaling and means the 
use of finer grids for velocity finite-differential approximation in forward acoustic 
propagation and coarser grid for velocity inverse problem solution with gradient method. 
It also requires interpolation operators to transfer data from finer grid to the coarse one 
and back to the finer grid. 

Velocity coefficients inverse problem solution is implemented with the first-order 
gradient method. The choice of minimization direction on each step is made in order to 
avoid non-linearity of the inversion operator while performing a linear gradient search. 

FORWARD WAVE EQUATION BOUNDARY PROBLEM 
Let us consider forward boundary problem for acoustic wave equation in 2-D spatial 

domain Ω (1)-(3): 
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𝜕2

𝜕𝑡2
𝑢 = 𝑑𝑖𝑣(𝑐2∇𝑢) + 𝑓,  (1) 

𝑢(𝑡 = 0) = 0,   𝜕𝑢
𝜕𝑡

(𝑡 = 0) = 0,  (2) 

𝑢�(𝑥,𝑦) ∈ 𝜕Ω� = 0,  (3) 

where  

𝑢(𝑥,𝑦, 𝑡) – wave equation forward propagation solution in the area Ω×[0,T]; 

𝑐2(𝑥,𝑦) – velocity field defined in Ω; 

𝑓(𝑥,𝑦, 𝑡) – source function defined both in time and space. 

In the current study homogeneous initial and boundary conditions (2)-(3) are 
considered for simplicity of the problem and can be replaced with certain inhomogeneous 
conditions on 𝑢(𝑥,𝑦, 𝑡). 

The source function 𝑓(𝑥, 𝑦, 𝑡) is given with the formula (4): 

𝑓(𝑥,𝑦, 𝑡) = δ(𝑥 − 𝑥0,𝑦 − 𝑦0)𝑒− λ2(𝑡−𝑡0)2𝑠𝑖𝑛�𝜔λ(𝑡 − 𝑡0)� (4) 

with appropriate 𝜔 and λ so that |𝑓(𝑥0,𝑦0, 0)| < 𝜀 for the small 𝜀 which is considered 
close enough to 0. The time interval [0,T] for both forward and adjoint wave propagation 
is limited in the model with the distance from the source point (𝑥0,𝑦0) to  ∂Ω over the 
maximum of the wave propagation speed 𝑐2(𝑥,𝑦) allowed in the model which makes us 
put the source point (𝑥0,𝑦0) far away from the border ∂Ω. 

In the inverse problem solution, where 𝑐2(𝑥,𝑦) is an unknown function, we assume 
that there is projection operator 𝑃𝑔𝑟𝑜𝑢𝑛𝑑 𝑙𝑒𝑣𝑒𝑙 defined on the set of virtual geophones on 
the boundary layer between air and soil which gives us some information about exact 
velocity propagation field 𝑐𝐸𝑋𝐴𝐶𝑇2 (𝑥,𝑦) as a result of observation the information recorder 
in virtual geophones point: 

𝑑𝑜𝑏𝑠 = 𝑃𝑔𝑟𝑜𝑢𝑛𝑑 𝑙𝑒𝑣𝑒𝑙𝑢,  (5) 

FINITE-DIFFERENTIAL APPROXIMATION SCHEME 
On the regular time-spatial grid we are using standard second-order factorizing 

scheme for second derivative in time and fourth-order scheme in space approximating 
differential equation (1) with the following scheme 

(𝐼 − ∆𝑡2 ∙ 𝜎Λ𝑥)�𝐼 − ∆𝑡2 ∙ 𝜎Λ𝑦�𝑢(𝑡𝑛+1) = �2𝐼 + ∆𝑡2(1 − 2𝜎)�Λ𝑥 + Λ𝑦�� 𝑢(𝑡𝑛) 

−�𝐼 − ∆𝑡2 ∙ 𝜎�Λ𝑥 + Λ𝑦�� 𝑢(𝑡𝑛−1) + ∆𝑡2 ∙ 𝑓, (6) 

where ∆𝑡 is a step of the time grid; Λ𝑥 and Λ𝑦 are forth order differential analogs of 

second spatial derivatives 𝜕2

𝜕𝑥2
 and 𝜕2

𝜕𝑦2
 respectively; I is an identity operator; 𝜎 is a 
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weighting factor which allows as allows a tradeoff between a pure explicit scheme 
without factorizing (σ = 0) and an absolutely stable semi-implicit scheme (σ = 0.25). 
Both schemes can be implemented but the semi-implicit absolutely stable scheme has 
some advantages and it is used in numerical experiments below. 

ADJOINT BOUNDARY PROBLEM 
Let us consider the standard adjoint problem corresponding to (1)-(3) defined in the 

same time-spatial area Ω×[0,T]: 

𝜕2

𝜕𝑡2
𝜑 = 𝑑𝑖𝑣(𝑐2∇𝜑) + 𝑔,  (7) 

𝜑(𝑡 = 𝑇) = 0,   𝜕𝜑
𝜕𝑡

(𝑡 = 𝑇) = 0,  (8) 

𝑢�(𝑥,𝑦) ∈ 𝜕Ω� = 𝑇,  (9) 

where 𝑔(𝑥,𝑦, 𝑡) is a source function for adjoint differential operator usually considered 
as a misfit data ∆𝑑 = 𝑑𝑜𝑏𝑠 − 𝑑𝑐𝑎𝑙 or a part of it. 

The adjoint operator is traditionally used in solving linear problems in finite spaces 
with gradient method whenever the gradient is proportional to adjoint operator as in this 
case. 

INVERSION ALGORITHM 
We are using the standard inversion approach proposed by Tarantola (Tarantola, 1984) 

which is well developed in his papers and used by many other researchers. 

For this we are considering the following integral 𝐼𝑡0(𝑥,𝑦) as a gradient of the velocity 
field 𝑐2(𝑥,𝑦) with the misfit function 𝜑: 

𝐼𝑡0(𝑥,𝑦) = ∫ (𝛻𝑢,𝛻𝜑)𝑑𝑡𝑡0
0 ,  (10) 

where [0,t0] is a window in time in which 𝜑 is defined as 

𝜑 = �∆𝑑, 𝑡 < 𝑡0
0,      𝑡 ≥ 𝑡0

�.  (11) 

Minimizing this gradient on the special subarea of Ω (defined below) we are trying to 
obtain the local minimum of the misfit ∆𝑑 which is close to the global one as soon as 
inverse problem is ill-posed and very sensitive to all kind of noise and global minimum is 
difficult to get. 

The iterative minimization problem can be formulated as the following: 

𝑚𝑖𝑛(𝑥,𝑦)∈𝜕Λ�𝐼𝑡0(𝑥,𝑦)�
2
,  (12) 

where Λ is a subarea of Ω far from the source point (x0,y0) in which 𝐼𝑡0�(𝑥,𝑦) ∈ Λ� < 𝜀 
for and on the border of Λ �𝐼𝑡0�(𝑥, 𝑦) ∈ 𝜕Λ�� ≥ 𝜀 > 0. In other words we are considering 
the set of independent grid points on which the projection of Hessian function is close to 
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diagonal (there are no guarantee that the diagonal is zero-vector) enough and the problem 
locally behaves like a set of independent problems for each grid point of 𝜕Λ, standard 
first order gradient method automatically gives us a good approximation accuracy. In 
numerical experiments Λ is just a set of spatial coarse grid points and can be easily 
determined. 

The process is iterative, the minimization problem is very non-linear and the interval 
[0, 𝑡0] is extended monotonically as iterations proceed to involve more information about 
misfit data ∆𝑑. 

In this minimization problem grid scaling plays a key role because we consider the 
velocity field function 𝑐2(𝑥, 𝑦) defined on the coarse grid and both u and ϕ are defined 
on a much finer grid (Figure 1). This gives us an opportunity to approximate the source 
function f and generate forward and adjoint solutions which are able to detect all 
gradients of the velocity field defined on the coarse grid. In this case a higher frequency 
source f is more preferable over lower frequency sources. 

 

FIG 1. Regular grids used in grid scaling: Black –grid for wave propagation (u and ϕ); Blue – fine 
grid for velocity field used 𝑐2 in finite-difference approximation of (1); Red – coarse grid for 𝑐2 
used in gradient minimization (12) 

As we see from the figure, velocity 𝑐2(𝑥,𝑦) is originally defined on the coarse grid 
and then interpolated to the fine grid to be applicable in approximating (1) and (6). This 
also ensures the velocity field is smooth.  

Minimization is obtained by gradient method with fixed step implemented on a coarse 
sub-grid (𝜕Λ). The fixed-step gradient method has advantages over other search methods 
– it is very fast and effective due to high nonlinearity of the posed inverse problem and 
due to high sensitivity of the misfit data to the changes in the velocity field. Excessively 
large steps can result in unnecessary fluctuations in velocity and affect the convergence 
as well as accuracy. 
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NUMERICAL EXPERIMENT 
In this practical part we combine sources of different frequencies together imaging 

different sub-domains of given spatial computational domain with synthetic data. For 
this, we will make a set of basic assumptions which determine the problem and define the 
way to solve it numerically: 

• The computational area consists of an air layer and a soil layer which defines the 
topography of the ground. 

• The acoustic model in air layer is known and determined with velocity field; 

• The very first layer in soil is also known as soon as it is considered physically 
observable and set of virtual geophones (observation points) is put on the upper 
border of this layer (on the surface of the ground); 

• High frequency source is located in the middle of known first layer in soil and 
source signature is known; 

• The velocity field in soil is determined on a locally refined rectangular grid 
which consists of two regular grids of different resolution put together such that 
upper part of the soil is determined on a finer grid and lower part on a coarser 
grid (Figure 2); 

• The velocity-coefficient inverse problem is solved separately in each sub-
domain to decrease a total computational expense; 

• Low frequency source is located in the area observable with high frequency 
source inversion and its signature is also known; 

• a minimal density of virtual geophones for both inversion problems on fine and 
coarse grids is taken the same as corresponding velocity grid size but for a 
quicker convergence (with synthetic data approximation error is equal to zero 
and convergence rate is the only critical to density) it is considered higher than 
minimal; 
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FIG 2. Spatial grid for velocity coefficient problem defined in soil layer. 

Based on key assumptions listed above, numerical experiment is run in the following 
way: 

1. For a given exact velocity propagation field (Figure 3) and some initial 
approximation of the velocity field (Figure 4), given source function (Figure 
5) in upper sub domain of the soil (which plays the role of weathered layer) 
with fine grid of velocity field as well as corresponding waves propagation, 
the imaging problem is solved with 7 high frequency point sources regularly 
distributed along the subsurface layer (Figure 6). It is important to put the 
source in the known velocity field and not to put it directly on the surface (in 
this case most of energy goes into the air, the accuracy of imaging as well as 
the convergence rate decrease significantly) on the other side. All 7 imaging 
problems for high frequency sources are solved together via domain 
decomposition with overlapping. 

2. After the successful convergence of the velocity field in upper layer to some 
approximation of the exact velocity (Figure 7) we put low frequency source 
somewhere in already known velocity field and solve the problem for lower 
soil layer with coarse spatial grid of velocity (Figure 8). 
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FIG 3. Exact velocity field 𝑐𝐸𝑋𝐴𝐶𝑇2 (𝑥,𝑦). 

 

FIG 4. Initial approximation of the velocity field 𝑐𝐴𝑃𝑃𝑅𝑋2 (𝑥,𝑦). 

 

FIG 5. Time component of the impulse point source 𝑓(𝑥,𝑦, 𝑡). 
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FIG 6. High frequency sources distribution and corresponding velocity field sub grid with 
overlapping. 

From the Figure 6 we see that each inversion problem of 7 considered on the fine grid 
due to domain decomposition should proper overlap not only with its neighbours from 
sides but also with the coarse grid sub domain. As a result, one row of the coarse grid is 
attached to each fine grid sub domain. 

 

FIG 7. The convergence of an approximate solution 𝑐𝐴𝑃𝑃𝑅𝑋2 (𝑥,𝑦) on a fine grid. 

Based on Figures 7 and we can numerically confirm that the approximate solution 
𝑐𝐴𝑃𝑃𝑅𝑋2 (𝑥,𝑦) converges to the projection of 𝑐𝐸𝑋𝐴𝐶𝑇2 (𝑥,𝑦) on the fine grid. 
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FIG 8. The convergence of an approximate solution 𝑐𝐴𝑃𝑃𝑅𝑋2 (𝑥,𝑦) to 𝑐𝐸𝑋𝐴𝐶𝑇2 (𝑥,𝑦) on a coarse grid. 

Comparing the convergence results presented in Figure 8 with exact velocity field 
presented in Figure 3, we can conclude that approximate velocity successfully converges 
to the exact velocity almost without oscillations. All techniques implemented in this 
study work perfect mostly due to simplicity of the considered inversion problem and 
indicate the potential of their applicability for the elastic equation. 

The total number of iterations depends on grid resolution, gradient method stepping 
limitations and fine grid scaling. In this particular numerical experiment there where 
performed about 5000 iterations of gradient method. 

CONCLUSION 
The multi-scaling approach performed together with the domain decomposition 

method shows its effectiveness and numerical stability while applied to acoustic equation 
inverse coefficient problem. The ability to combine different scaling grids together via 
overlapping allows solution of inversion problems for high and low-frequency sources 
simultaneously on multi-core computer and increases the convergence rate. A higher 
resolution grid defined on surface layer increases accuracy of deeper layers velocity 
coefficient inversion. 

High frequency source inversion is considered as a precondition of the low-frequency 
source problem. On the other hand, low-frequency source inversion can be used as high-
frequency source post-processing or in some inversion verification procedure. A number 
of sources of different frequencies processed together can significantly decrease the total 
computation cost of inversion on the one hand, and provide the reasonable accuracy of 
the approximate velocity field on the other hand. 
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