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ABSTRACT 

We have studied a theory of linear slip nonwelded contact interfaces (Schoenberg, 
1980) and extended the theory to simulate the subsurface fracture features by developing 
a 2D/3D numerical forward modeling method and a method of analysis of the PP and PS 
seismogram characteristics  regarding the responses of the fractures (Cui, Lines and 
Krebes, 2012). In this paper we present a new AVO inversion equation that depends upon 
the theory of the linear slip nonwelded contact interfaces.  We use the assumption that the 
two half spaces are in imperfect contact due to the presence of fractures, meaning that 
only the stresses produced by the wave are continuous across a fracture, and that the 
displacements are discontinuous across the fracture. The new equation can be inverted 
not only to estimate the subsurface elastic parameters contrasts, but also to estimate eight 
parameters related to the fractured media. This paper  analyses fracture models and 
compares  the results of numerical forward modeling between media with interfaces in 
perfect welded contact (no fractures) and with interfaces in imperfect linear slip 
nonwelded contact (with fractures).  Inversion results of three models are also compared. 

INTRODUCTION  

The upper crust of the earth is considerably layered with complex geometry interfaces 
between layers with different elastic parameters as well as a single layer medium with a 
unique elastic parameter. The two half spaces in the limit of the interface either are in 
perfectly welded contact or are in imperfect non-welded contact. In 1980, Schoenberg in 
his pioneering work produced a theory of the linear slip non-welded contact interface, 
where the particle displacements are discontinuous across interface and the stresses are 
continuous across it. Additionally, the particle displacements are linearly proportional to 
the stresses in which the linear coefficients are named as specific tangential compliance ்ܵ and normal compliance ܵே,	 that are important parameters describing a fracture system. 
Also, as shown by Schoenberg and Douma (1988), ்ܵ  and ܵே  incorporate the 
displacement discontinuity of the penny-shaped crack model (Hudson, 1980), as well as 
Thomson’s anisotropic parameters ߝ		 ߜ ,  and ,Thomson)	ߛ		 1985)	 . The PP and PS 
reflection and transmission coefficients in the anisotropic VTI and HTI media with the 
theory of the linear slip nonwelded contact interface have been presented in 2011 (Cui 
and Lines, 2011).  Pyrak-Nolte (1990) has confirmed the model to be a non-welded 
contact interface theory by performing laboratory measurements. Schoenberg and Muir 
(1989) presented the group theory formula based on the effective medium theory (Backus, 
1962) to conveniently calculate the elastic moduli for the fractured and unfractured media. 
Nichols et al. (1989) and Hood (1991) show the solutions of the elastic moduli for a 
vertical fracture as a linear slip non-welded contact interface vertically embedded in the 
background medium. Schoenberg and Sayers (1995) expanded Hooke’s Law with the 
linear slip theory to find a relationship of the fracture compliances		்ܵ, ܵே with Young’s 
modulus, Poisson’s ratio of the rock parameters. Coates and Schoenberg (1995) applied 
the linear slip approach with equivalent medium theory to generate seismograms by 
employing the finite difference method with a staggered grid. Slawinski and Krebes 
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(2002) simulated seismograms of SH and P-SV wave propagation in the linear slip non-
welded contact interface by using 2D generalized homogeneous finite difference schemes. 
The fractured parameters ்ܵ and ܵே  can be estimated through an azimuthal simultaneous 
elastic inversion (Downton and Roure, 2010). In 2012, David Gray developed a method 
to estimate crucial stress and geomechanical properties in anisotropic media by 
employing the fractured parameters  ்ܵ and ܵே. A complex 3D fractal network wormhole 
model for the cold heavy oil production with sand (CHOPS) has been simulated that 
assumed three different directions of the fracture and this model is consistent with the 
phenomena of wormholes (Cui, Lines and Krebes, 2012). 

The AVO method depending on the Zoeppritz equation is a very powerful tool to 
analyze the change in the offset that is dependent on the reflectivity along the interface. 
Studying of the seismic forward modeling not only can analyze the recorded wave 
characteristics, but also can invert the seismic reflection data to produce elastic 
parameters of the target, such as velocity reflectivity, impedance reflectivity.  Therefore, 
approximations to the Zoeppritz equation with the relatively higher accuracy are 
desirable in the practice of amplitude inversion. Aki and Richards (1980) published three 
parameters AVO inversion equations by the linear approximation of the Zoeppritz 
equation. Shuey (1985) further modified the Aki and Richards’s equation by using 
Poisson's ratio. Smith and Gidlow (1987) rearranged the Aki and Richards’s equation and 
applied an empirical relationship (Gardner et al, 1974) to the simplified AVO equation as 
the two parameters impedance reflectivity. The exact solution of the reflection 
coefficients with the theory of the linear slip nonwelded contact interface has been 
discussed in 2002 (Chaisri).  In this paper, we present amplitude AVO approximation 
expressions that have same terms, the offset dependent and approximated, as Aki and 
Richards’s AVO equation.      

THEORY: FORWARD MODELING 

A conventional wave that propagates at a perfect welded contact interface, the 
boundary conditions are continuous for both displacements and stresses. Whereas the 
boundary conditions of the linear slip nonwelded contact interface approach (Schoenberg, 
1980), where only the stresses are continuous across the interface, but the displacements 
are not. All displacements are the linear function of the stresses i.e. 
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	 							U୶ା − U୶ି = ்ܵσ୸୶ା(ି)												 							(1a)										 							U୸ା − U୸ି = ܵேσ୸୸ା(ି)															 			(1b)											 									σ୸୶ା(ି) = σ୸୶ି(ା)																 (1c)																		 								σ୸୸ା(ି) = σ୸୸ି(ା)									 													(1d)	Where										 											σ୸୶=μ(ப୙౰ப୶ + ப୙౮ப୸ )											 						(2a)		 	σ୸୸=λ ப୙౮ப୶ + (λ + 2μ	) ப୙౰ப୸ 									 									(2b)	
U and Ϭ express the displacement and stress, respectively. x, z are two components along 
the horizontal and vertical directions. ߤ and λ are lambda and mu as the rock properties. ்ܵ and ܵே are two complex frequency dependent interface compliance (Schoenberg, 
1980). Sign + and – denote the upper and the lower media of the interface, respectively. 
Substituting equations 2 to for equation (1), where the difference in displacement of x and 
z components at the interface 	 	U୶ା − U୶ି = ்ܵμ(∂୶U୸ + ∂୸U୶)		 (3a)	 							 		U୸ା − U୸ି = ܵே(λ ∂୶U୶ + (λ + 2μ) ∂୸U୸)								 		(3b)		 	
Using the generalized homogeneous FD algorithm (Korn and Stockl, 1982) to form a 
linear slip non-welded contact fracture at	z୬ାଵ/ଶ = (n + 1/2)∆z (Slawinski and Krebes, 
2002), 	 				∆U୫,୬ାଵ/ଶ୶ = ଵଶ ൫U୫,୬ାଵ୶ + U෩୫,୬୶ ൯ −	ଵଶ (U෩୫,୬ାଵ୶ + U୫,୬୶ )																		 																												= z୘μ୫,୬ାଵ(୙ౣశభ,౤శభ౰ ି୙ౣషభ,౤శభ౰ଶ∆୶ + ୙ౣ,౤శభ౮ ି୙෩ౣ,౤౮∆୸ )																																														= 	 z୘μ୫,୬ାଵ(ப୙ܢப୶ + ப୙ܠப୸ )										 		(4a)			 			σ୫,୬ାଵ୶୸ = z୘μ୫,୬ାଵ(୙ౣశభ,౤శభ౰ ି୙ౣషభ,౤శభ౰ଶ∆୶ + ୙ౣ,౤శభ౮ ି୙෩ౣ,౤౮∆୸ )	 (4b)	
Where, m and n denote real grid points along the x and y axis, respectively. μ୫,୬	=	μ୫,୬ାଵ=μ, λ୫,୬ = λ୫,୬ାଵ = λ are the isotropic medium parameters. U෩୫,୬୶  and U෩୫,୬ାଵ୶  are 
displacements as a fictitious point that have same location as real grid U୫,୬୶  and U୫,୬ାଵ୶ . 
The compliances	்ܵ and ܵே	are nonzero constants for all boundaries that exist between 
the grid rectangles. So the fictitious points of x-component (Equation 4) for z-normal grid 
boundary (a horizontal fracture) U෩୫,୬୶  and U෩୫,୬ାଵ୶  can be solved since there are two 

equations with two unknown fictitious points. Let 	∆x = ∆z = h , and δ = ୸౐ஜ୦ ,	 and Ø=
୸ొ(஛ାଶஜ)୦ , then the fictitious points U෩୫,୬୶  and U෩୫,୬ାଵ୶  are replaced by real grid points U୫,୬୶  and U୫,୬ାଵ୶ for the z-normal boundary or horizontal fracture. To be similar to U෩୫,୬୸  
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and U෩୫ାଵ,୬୸ .	 Thus the FD scheme of the P-SV propagation in the homogeneous medium 
with a linear slip non-welded contact interface should be  											܃୫,୬୲ାଵ = ୫,୬୲ିଵ܃− + ୫,୬୲܃2 + ଵ஡ (∆୲୦ )ଶ(۴ۼ෡۴(܃୫ାଵ,୬୲ − ୫,୬୲܃2 + ୫ିଵ,୬୲܃ ୫,୬ାଵ୲܃)෡ۼ+																										( − ୫,୬୲܃2 + ୫,୬ିଵ୲܃ )																									+ ଵସ (۴۵෡۴ + ۵෡)(܃୫ାଵ,୬ାଵ୲ − ୫ାଵ,୬ିଵ୲܃ − ୫ିଵ,୬ାଵ୲܃ + ୫ିଵ,୬ିଵ୲܃ ))	 (5)	
Where	܃ = ቂU୶U୸ቃ,				۴ = ቂ0 11 0ቃ,				ۼ෡ = ቎ ஜଵାஔ 00 ஛ାଶஜଵାØ ቏,		۵෡ = ቎ 0 ஜଵାஔ஛ଵାØ 0 ቏.	

Adding fictitious grid points in the FD scheme takes more physical insights into account 
to the fracture forward modeling because the medium and boundary conditions (BCs) are 
imposed explicitly. The equation of motion governs the displacements off the 
discontinuity fracture but the non-welded contact boundary conditions are applied at the 
discontinuity fracture. 	

THEORY: AVO INVERSION 

A compressional wave source going down the incidence and generate the reflected and 
transmitted four waves at the interface z. Figure 1 shows the incident a plane wave	pଵ̀, the 
reflected waves ଵ́݌ଵ̀݌			 ଵ́ݏଵ̀݌  ,  and the transmitted waves ଶ̀݌ଵ̀݌		 , ଶ̀ݏଵ̀݌		  . The media 
parameters are ߙଵ, ,ଵߚ ,ଶߙ ଵ andߩ ,ଶߚ  ଶ for the upper and lower medium respectively.  ݅ଵߩ
is incident angle, ݆ଵ  is 	݌ଵ̀ݏଵ́		reflection angle. The ݌ଵ̀݌ଵ́  and ݌ଵ̀ݏଵ́  amplitude reflectivity 
are also represented as a function of the elastic contrasts at an interface and be used to 
derive the linear approximation for conventional amplitude variation with offset (AVO) 
analysis, which can inverse for two or three elastic parameters. 
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Fig 1 Reflected and transmitted rays for an incident ݌ଵ̀-wave on an interface Z between two 
elastic isotropic media ߙଵ, ,ଵߚ ,ଶߙ	ଵ andߩ ,ଶߚ  .ଶߩ

Following the descriptions in Krebes’s course note book Geophysics 551, we use the 
harmonic wave to represent an incident and a plane wave		݌ଵ̀ = ܣ exp(݅ܛ)ݓ. ܠ − (ݐ  .(܌
Where A is the amplitude and assumed to be a unit.  ܛ. ܠ = s୶x + s୷y + s୸z describes a 
harmonic plane wave in the travel direction and d is for the wave polarization. Applying 
the linear slip nonwelded contact interface boundary condition (1) at interface z, the 
Zoeppritz equation is the result in the relationship of P-SV waves with the fracture 
parameters ்ܵ and ܵே (Schoenberg, 1980. Chaisri, 2002)  

൦ αଵPcos ݅ଵݔଵ cos ݅ଵαଵݎଵ ൪ =
൦ −αଵP − cos ݆ଵ αଶP − ଶݔ௑ܵ߱ܫ cos ݅ଶ cos ݆ଶ − ଶcosݎ௑βଶܵ߱ܫ ݅ଵ −βଵP cos ݅ଶ − ேαଶγଶܵ߱ܫ −βଶP − ଶݔேܵ߱ܫ cos ݆ଶݔଵ cos ݅ଵ βଵݎଵ ଶݔ cos ݅ଶ βଶݎଶ−αଵݎଵ ଵݔ cos ݆ଵ αଶݎଶ ଶݔ− cos ݆ଶ ൪ ێێێۏ

ۑۑےPଵ̀Pଵ́Pଵ̀Sଵ́Pଵ̀Pଶ̀Pଵ̀Sଶ̀ۍ
 (6) ېۑ

௑(ே)ܵ߱ܫ  always appear in combination meaning the  ܵ௑  and  ܵே  frequency dependent 

(Chaisri, 2002). Where ܫ		 = √−1 .  ܲ = ୱ୧୬ ௜೙ఈ೙ = ୱ୧୬ ௝೙ఉ೙  is ray parameter. ݔ௡ = ௡ଶߚ௡ߩ2 ௡ݎ	 , = ௡(1ߩ −  ௡ଶܲଶ), and n=1 or 2 denote upper and lower media. The left matrix ofߚ2
these equations is the incident wave and the right matrix is the scattered wave. Simplified 
above matrix equation, 	 M[Pଵ̀Pଵ́ Pଵ̀Sଵ́ Pଵ̀Pଶ̀ Pଵ̀Sଶ̀]୘ = N,					or																																									 MX=N							
According to Cramer’s rule,		X୩ = ୢୣ୲	(୑ౡ)ୢୣ୲	(୑) .  M୩ is the matrix M with column k replaced 

by the column vector N. Thus, 

															 						Pଵ̀Pଵ́ = ୢୣ୲	(୑ొష౦౦)ୢୣ୲	(୑) = ൦୒భభ ୫భమ ୫భయ ୫భర୒మభ ୫మమ ୫మయ ୫మర୒యభ ୫యమ ୫యయ ୫యర୒రభ ୫రమ ୫రయ ୫రర൪ୢୣ୲	(୑) 							 	(7a)	
																											 			Pଵ̀Sଵ́ = ୢୣ୲	(୑ొష౦౩)ୢୣ୲	(୑) = ൦୫భభ ୒భమ ୫భయ ୫భర୫మభ ୒మమ ୫మయ ୫మర୫యభ ୒యమ ୫యయ ୫యర୫రభ ୒రమ ୫రయ ୫రర൪ୢୣ୲	(୑) 			 (7b)	

Straight forward to solve linear algebraic Equation (7a) for PP wave, the exact reflectivity 
solution of PP wave propagation at the fracture  
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                            Pଵ̀Pଵ́ = R௪ + ݅߱ܵ௑R௡௢௡_௪௫ 	+ ݅߱ܵேR௡௢௡_௪ே 	 (8)	
Equation (8) contains conventional perfect welded contact amplitude reflectivity R௪ and 
unconventional imperfect nonwelded contact amplitude reflectivity R௡௢௡_௪୶  and R௡௢௡_௪୒  
with the fracture parameters combination ்ܵ and ܵே, respectively.  X , N upper subscript 
indicates the tangential and normal components. In the amplitude reflectivity of the 
perfect welded contact part	R௪, it assumed that all incident and transmission angles are 
real and less than 90଴(Aki and Richards, 1980), and it followed  

∆݅ = ݅ଶ − ݅ଵ = tan ݅ ߙߙ∆  

∆݆ = ݆ଶ − ݆ଵ = tan ݆ ߚߚ∆  

α = ஑మା஑భଶ , β = ஒమାஒభଶ ,	 ρ = ஡మା஡భଶ , ∆α = αଶ − αଵ,  ∆β = βଶ − βଵ, ∆ρ = ρଶ − ρଵ,  

Then, 

R௪(ݐ) ≈ 12ቆ1 − 4 ൬βα൰ଶ sinଶ ݅ቇ ∆ρρ + 12cosଶ ݅ ∆αα − 4 ൬βα൰ଶ sinଶ ݅ ∆ββ  = 	A(݅)ݎఈ + B(݅)ݎఉ + C(݅)ݎఘ = R௪෪ 	(ݐ)
Where 	ݎఈ, 	ݎఉ and 	ݎఘ are compressional, shear velocity and density  reflectivity. A, B and 
C is function of incident angle and depends on the background model or geometry. 

As the imperfect nonwelded contact interface parts, it deduced as same approximation as 
the perfect part 	R௪	to the ray parameter p.   R௡௢௡_௪୶ (ݐ) ≈ X(݅) +	A୶(݅)ݎఈ + B୶(݅)ݎఉ + C୶(݅)ݎఘ = R௡௢௡_௪୶ ෫(ݐ) 	R௡௢௡_௪୒ (ݐ) ≈ N(݅) +	A୒(݅)ݎఈ + B୒(݅)ݎఉ + C୒(݅)ݎఘ = R௡௢௡_௪୒ ෫(ݐ) 	R௡௢௡_௪୶෫ 		and		R௡௢௡_௪୒෫ 	are	arranged	terms	as		ݎఈ,		ݎఉ	and		ݎఘ	as	following	normal	perfect	welded	contact	part		approximation	R௪෪ ,		thus	the	equation	(8)	can	be	redefined	Pଵ̀Pଵ́ ≈ R௪෪ + ݅߱ܵ௑R௡௢௡ೢ୶෫ 	+ ݅߱ܵேR௡௢௡ೢ୶෫ = 																														 (݅߱ܵ௑X(݅) + ݅߱ܵேN(݅)) +	(A(݅) + 	݅߱ܵ௑A୶(݅) + ݅߱ܵேA୒(݅))ݎఈ +	(B(݅) + 	݅߱ܵ௑B୶(݅) + ݅߱ܵேB୒(݅))ݎఉ +	
  (C(݅) + 	݅߱ܵ௑C୶(݅) + ݅߱ܵேC୒(݅))ݎఘ		 (9)	
The fractured interface amplitude reflectivity Pଵ̀Pଵ́ depends on incident angle and plus the 
fluctuations of the fracture. Figure 2 shows the PP wave reflection coefficient curves that 
are the exact solution in Equation 6 and the approximation solution in Equation 9 of the 
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linear slip nonwelded contact interface with a certain frequency. This proved that the 
AVO approximation Equation 9 of the nonwelded contact linear slip interface reaches 
accuracy in conventional incident angle range. 

Let 	ݎఈ = ఉݎ = ఘݎ = 0,  

  Pଵ̀Pଵ́ ≈ ݅߱ܵ௑X + ݅߱ܵேN      (10) 

Equation 10 clearly expresses that the fractures can be detected even though the fractures 
are embedded in a single medium with non impedance contrast. The fracture features 
cause a phase change because of a complex number that carries on the amplitude and 
phase properties of a signal.  

The geologic factors and their corresponding elastic parameters, such as velocities 
reflectivity, density reflectivity at the interface, are the ultimate objective of geoscience. 
It is not hard to do the amplitude inversion because the amplitude reflectivity Equation 9 
approximated to the elastic parameters reflectivity format as the compression velocity 
reflectivity, the shear velocity reflectivity and the density reflectivity. Equation 9 rewrites    																		 	 	 	 ݉ܩ					 = ݀		 	 	 	 	 (11)	
G as a linear operator depending on the geometry. m is the unknown parameter, for 
example,  ݎఈ ఉݎ		, 	and		ݎఘ .	 	 d is the received seismic data. Least squares method was 
employed to solve Equation 11   	 ݉ܩ்ܩ			 = 																																														்݀ܩ 											݉ = 														்݀ܩଵି[ܩ்ܩ] 		൥ݎఈݎఉݎఘ൩ = ܩ்ܩ] + 	The (12)   ்݀ܩଵି[ܫߣ addition	 of	 a	 matrix	ܫߣ	tends	 to	 stabilize	 the	 calculation	 of	[ܩ்ܩ]ିଵ	(Lines	and	Treitel,	1984).	The	Equation	12	can	solve	eight	unknown	elastic	parameters	and	the	 description	 media	 will	 ignore	 the	 density	 changing,	 such	 as	 fracture	parameters ்ܵ , 		ܵே ,	 common	 velocities	 reflectivity, ݎఈ	, 	 ఉݎ	 	and	 four	 fractured	velocities	reflectivity	(fracture	compliance	multiplying	velocities	reflectivity).	
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FIG. 2. PP reflection coefficients for the linear slip nonwelded contact interface. Shown are the 
exact solution (green line, equation (6)), the approximation solution (red line) based on equation 
(9). The model parameters are Vp1=3100m/s, Vs1=1500m/s, Vp2=2900m/s, Vs2=1300m/s,    ்ܵ = 0.127x10ି଼  m/Pa, ܵே = 0.269x10ିଽm/Pa 

APPLICATIONS  

We have implemented the Matlab code to present numerical results for both modeling 
and inversion. The homogeneous isotropic medium parameters have shown in Figure 3. 
The fracture parameters  ்ܵ = 0.127x10ି଼ m/Pa and ܵே = 0.269x10ିଽm/Pa. The finite 
difference scheme depends on the discrete grid variable (Lines, Slawinski and Bording, 
1999). In order to avoid a problem of the FDs edge effects, it is helpful to extend spatial 
grids until the effective primary wave is reflected from the fracture without the interfering 
coming from the four edge reflections. Thus the geometry has 400x400 spatial grids, its 
steps are ∆x=∆z=h=5.0 m and the time step is 0.0001ms. The source is located at the 
175x200 of the model. The receiver arrays are arranged horizontally above the source at a 
distance of 10 grids. The Ricker wavelet was introduced as a source wavelet that is 
generated from an analog expression and using the CREWES software. Ricker	 (t)=(1-2Л૛fଶtଶ)exp(−Л૛fଶtଶ). (See CREWES software: wavenorm.m). We set up three models: 
the model one works on only an impedance contrast interface; the model two is for a 
combination of the impedance contrast and a horizontal fracture at the same depth; the 
model three merely works for a fracture embedded in a single  homogeneous medium.    
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FIG. 3. Models.  Model 1 is a case of the normal perfect welded contact impedance contract. 
Model 2 is a combination case of the perfect welded contact and imperfect nonwelded contact 
interface. Model 3 is a case of a fracture embedding in single homogenous medium.   . 

 As we know, the seismogram recorded the seismic wave as being sensitive to the 
impedance contrast at the interface, but it is convolution of the wavelet and the interface 
reflectivity. To address the wavelet factors of the seismic data must properly be 
conditioned or processed to meet the assumptions inherent in the AVO model.  A 
practical implementation issue is the undoing of the convolution to remove the wavelet 
effects from the seismic data and get back to the true reflectivity series so that ideally the 
seismic wavelet should have a uniform amplitude spectrum and a consistent phase in the 
seismic records.  

For a better understanding of the fracture’s properties, it is useful to investigate 
numerically PP and PS amplitude variation in the synthetic seismograms from three 
models. Figure 4 shows raw shot records, deconvolution processed shot records and their 
spectrum analysis in three columns (for three models) and three rows (showing raw, 
decon shots and their amplitude spectrum). The shot records demonstrate that the 
amplitude is a variation with the incident angle and PP has stronger amplitude than PS. 
The shot record of the model 3 (m3) is clear that the fracture feature is reflection 
generator to result in seismic reflectivity. The reason is due to the displacement 
discontinuity across the fracture, even though model 3 has not the impedance contrast to 
create seismic reflections. The amplitude spectrum illustrate that deconvolution enhance 
the frequency width and get amplitude spectrum close white, while the rest abnormal 
amplitude are reflecting the subsurface structure. For example, the deconvoluted 
amplitude spectrums of the model 3 (green color) showing notches are explicit that the 
subsurface fracture cause the wave amplitude frequency dependent. We also study that 
the fractured interface model 2 is a linear combination in a fracture (the model 3) and an 
impedance contrast interface (the model 1). The waves from three models with a certain 
frequency are exhibited in the Figure 5: The blue line is showing a wave of the model 1 
as a pure impedance contrast interface. The solid red line is displaying a wave of the 
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model 2 as the fractured impedance contrast interface. The green line is a presentation of 
a wave of the model 3 for a fracture. The summation of model 1 and model 3 result in the 
red dash line that is almost equal to the red solid line being model 2. Figure 6 shows the 
muted CDP gathers that have PP reflections and 120 fold for each model.   

 

Fig. 4. Three models raw shot records on the first row. Three processed deconvolution shot data 
on the second row. The third row shows spectrum analysis for three model shot records. 
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  FIG. 5.  Model1 + Model3 =Model2.  The blue line is showing a wave of the model1 as an   
impedance contrast interface. The solid red line is displaying a wave of the model 2 as fractured 
impedance contrast interface. The green line is presentation of a wave of the model 3 for merely 
fracture. The summation of model 1 and model3 result in the red dash line that is almost equal to 
red solid line being model 2. 

 
FIG. 6.  CDP gathers are for three models.  

Three synthetic seismograms have been decomposed individually into a single frequency 
in order to satisfy a demanding of the AVO inversion Equation 10, and the summation of 
all components of the AVO inversion results as the elastic parameters description for 
each model  
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Figure 7 is the inversion result of the model 1. Both the P wave reflectivity and the shear 
wave reflectivity indicate that an impedance contrast interface media parameters has been 
inverted at 137 ms in time. Model 2, is the fractured impedance contrast interface, and 
inversion results have been presented in the Figure 8. a2 and b2 represent the elastic 
velocities reflectivity at the fractured impedance contrast interface. c2 and d2 are 
fractured parameters that imply a fracture exists and its parameter ்ܵ  and ܵே  can be 
solved by surface record seismic data. e2 and f2 are the inversed solution of the fracture 
compliances multiplying the  P wave velocity reflectivity, as well as g2 and h2 are the 
fracture compliances multiplying the shear wave velocity reflectivity.  Those eight 
inversion results provide extra information to indicate the subsurface fractures. We 
discussed above that the linear slip nonwelded contact interface is a reflector to generate 
the reflection being recorded at the surface. The records has been inversed and shown in 
the Figure 9.  a3 is for tangential compliance	்ܵ by inversion of the record of the model 3, 
as well as b3 is the inversion result for the normal compliance ܵே. 

CONCLUSIONS 

The fracture as a linear slip nonwelded contact interface has been studied and 
simulated. This work helps us not only to learn the subsurface fracture characterizations, 
but also to research new AVO inversion methods under the linear slip nonwelded contact 
interface theory.  The new AVO approximation equation is accurate in the conventional 
incident angle by the comparison exact solution with its approximation solution. The new 
AVO method inversion can solve more than six elastic parameters except the 
conventional P and shear wave velocity reflectivity. Those inversion results obviously 
describe the medium elastic and fractured properties. Thus this research can help us to 
indicate the existing fracture and contribute to the analysis of the reservoir permeability 
characterization.   
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FIG. 7.  Inversion results of the velocity reflectivity for the model 1 as conversional impedance 
contrast interface.  a1 is a shear wave velocity reflectivity. b1 is a P wave velocity reflectivity. 

 

 
FIG. 9.  Inversion results of the tangential and normal compliances of the model 3 as a fracture 
embedding in single medium. a3 is for a tangential compliance of the fracture. b3 is for a normal 
compliance of the fracture. 
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FIG. 8. Inversion results of the media elastic parameters for the model 2 as a fractured 
impedance contrast interface. There are: a2, b2 are for velocities reflectivity. c2, d2 are for 
fracture compliances. e2, f2 are the fracture compliances multiplying the P wave velocity 
reflectivity. g2, h2 are the fracture compliances multiplying the shear wave velocity reflectivity. 
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