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Higher order theory for analytic saddle point approximations to 
the Ρ̀Ρ́ and Ρ̀Ś reflected arrivals at a solid/solid interface  

P.F Daley 

ABSTRACT 

The high frequency solution to the problem of a Ρ̀Ṕ and Ρ̀Ś reflected wave at a plane 
interface between two isotropic homogeneous halfspaces at near grazing incidence is 
developed. In reflection seismology sub-critical reflections are often all that is required in 
data processing. A distorted (compared to the zero order geometrical optics 
approximation to the arrival) wavelet is seen on the traces in the area of grazing 
incidence. For a proper velocity distribution, there may an area in the vicinity of the 
critical point which also requires special treatment. This results in the zero order 
geometrical optics approximation being supplemented by a term involving Parabolic 
Cylinder Function of the order1 2 . Grazing incidence may occur in cross hole 
tomography or for a point source in a thin surface layer with a large velocity contrast at 
the interface with the subsequent layer. 

INTRODUCTION 

Ρ̀Ṕ reflected wave, Červený and Ravindra (1970) and Brekhovskikh (1980). In each of 
these works a different conformal mapping is introduced so as to incorporate a real 
parameter in the solutions by high frequency methods involving the evaluation of 
integrals of the Sommerfeld type. After stating this, it should be noted that the motivation 
for considering the Ρ̀Ś reflected arrival is partly due to the fact that in the Ρ̀Ṕ reflected 
case the saddle point location may be obtained analytically, while in the Ρ̀Ś case this must 
be done numerically.  

Another reason for considering this problem type is to introduce, in as simple a 
manner as possible, software for displaying the effects described above, which may be 
useful in the area of geophysical interpretation. To obtain analytical expressions for wave 
types such as the reflected Ρ̀Ṕ and Ρ̀Ś a thorough understanding of the formalism required 
to obtain solutions for these problems in the elastic case is an important and useful 
precondition. In the elastic case the saddle points and branch point lie on the real axis of 
the complex p-plane. 

Higher order approximations are required when the spherical nature of the incident (P 
– wave) must be considered. This occurs for shallow (less than about 1/4 of a wavelength 
associated with the predominant frequency of the source wavelet) point sources of P – 
wave. This may cause erroneous results at near vertical and at grazing incidence. 

What is considered here does not address those conditions of incidence but rather 
reflected arrivals that lie within a range of incident angles and as a result in an offset 
range that is considered in reflection seismology analysis. 
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Although plane wave reflection coefficients are what are of interest here, some aspects 
of spherically wave incidence must be introduced. Again, to keep the implementation of 
the theory as simple as possible, only 3 additional parameters, beyond those for the 
computation of plane wave reflection coefficients are required. These are the distance of 
both the source and receiver above the reflecting interface and some reference frequency, 
usually associated with the source wavelet being used in the acquisition of the seismic 
data being processed. 

THEORY 
Following the method presented in Aki and Richards (1980) for the analysis of the 

reflected potential due to a point source of P – wave incidence at a free surface, the 
following presentation of the underlying theory will be followed for consistency. In the 
case investigated here two elastic medium are considered. The parameters describing the 
two media are the waveP − velocities, 1 2 and α α , the waveS −  velocities, 1 2 and β β  
and the densities, 1 2 and ρ ρ . A P – wave source is located a positive distance h above the 
interface and a receiver is a positive distance z above the interface. The horizontal 
distance between the source and receiver is r . In terms of potentials the Ρ̀Ρ́ reflected 
arrival is given by 
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The horizontal and vertical components of displacement are obtained from 
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For the Ρ̀Ś problem, the potential is given by  
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so that with 

 ( ) ( )( )2 1, ,PS r z rz PS r r PSw w r rφ φ−= = ∂ − ∂ ∂w  (6) 

the resulting displacement components are  
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Fig. 1. Schematic of the incident rays due to reflection from a solid/solid interface between two 
elastic media in welded contact. 

Ρ̀Ś REFLECTED PARTICLE DISPLACEMENT VECTOR COMPONENTS 

Consider only the vertical component of Ρ̀Ś reflection, as all of the other three 
components of displacement may be solved for in a similar fashion.  
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Introducing the large order expansion for the Hankel function (Abramowitz and Stegun, 
1980).  

  ( ) ( ) ( ) [ ]1 21 4
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results in 
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or expanding has 
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which leads to 
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Note that terms in r p  have been left under the integral sign in the first integral. It is 
taken outside in the second integral as it is already a first order term, when compared to 
the zero order term in the first integral (in the geometrical optics sense, as it is of the 
order of ( ) 1iω − ). Define the exponential term as 

 ( ) 1 1f p rp h zξ η= + +  (15) 

so that the saddle point is given by the (numerical) solution of 
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Here 
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where a circumflex over a parameter indicates that it is evaluated at the saddle point.  

It will be assumed that in the vicinity of the saddle point  
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At this point it is convenient to introduce the change of variable in terms of the real 
quantity y as (Červený and Ravindra, 1970) 
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( )1 22 2

1 4i
p pdp e

dy p
π−

−
=  (22) 

 41 idp e dy
p

πξ −=  (23) 

 4 41 1i idp e dp e dy
dy p p

π πξ ξ− −= → =  (24) 

 
22
1

2 3

ipd p d dp dp
dy dp dy dy p

    
= =    

    
 (25) 

 



Daley 

6 CREWES Research Report — Volume 25 (2013)  

  

Fig. 2. Parameterized saddle point contour given by equation (21) in the first quadrant of the 
complex p-plane. The portion of the contour Σε has been slightly modified to show that in the 
vicinity of the saddle point p0 the saddle point contour passes through the saddle point at an 
angle of –π/4. 

The quantities ( )PPR p  and ( )PSR p  are the displacement reflection coefficients specified 
in Aki and Richards (1980) and given in Appendices A and B together with their first and 
second derivatives with respect to p . 

In the integrals in equation (14), define 
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the following may be obtained 
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From this is follows, using equations (22) and (25) with the above that 
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Expanding ( )PSQ y in a Taylor series about 0p p=  ( )0y =  has 
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The second term in the above expansion will not contribute to the integral, leaving only 
the first and third terms. Thus equation (14) may be approximated as 
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A Taylor series expansion of ( )f p  in terms of y becomes 
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The above expansion has taken the truncated form because ( )0 0f p′ = . The following 

sequence of steps (equations (45) – (49) ) for the determination of ( ), ,zw r h t may then be 
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The third term is finite if ( )0K p  is used to define r . Based on the above derivation, the 
Ρ̀Ś radial vector component of displacement may be determined to be 
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Using a similar derivation as was used to obtain (50), the horizontal component of Ρ̀Ś is 
obtained as 
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Ρ̀Ρ́ REFLECTED PARTICLE DISPLACEMENT VECTOR COMPONENTS 

Consider now the case of Ρ̀Ṕ reflection at an interface between two elastic isotropic 
solid media. The expressions for the radial and vertical components of particle 
displacement, ( ),PP r zu u=u , are given by equations (3) and (4). If the same method as 
was used to obtain a modified saddle point approximation for the Ρ̀Ś case, the resultant 
expressions may be obtained as follows 
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 In this instance, some function values have different forms such as 

 ( ) ( ) 1f p rp h z ξ= + + . (55) 

The derivative of ( )f p  with respect to p  is equal to zero at 0p p= , which defines the 
saddle point. Also, for this problem 
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and the quantities ( )PPK p′  and ( )PPK p′′  follow with minimal derivation. The term 2
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Thus all quantites required to evaluate equation (53) and (54), except for the reflection 
coefficient ( )PPR p  and its first and second derivatives which may be found in the 
Appendices. 
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DISCUSSION AND CONCLUSIONS 
Plane wave reflection coefficients together with correction terms as a consequence of 

the saddle point related to a specific reflected ray being close to grazing incidence for Ρ̀Ṕ 
and Ρ̀Ś plane wave reflections at an interface between two elastic media have been 
presented The addition of the correction term is similar, but not equivalent to obtaining 
higher order terms in the infinite asymptotic series which describes a given reflection or 
transmission between two elastic media. 
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APPENDIX A: DISPLACEMENT REFLECTION COEFFICIENTS Ρ̀Ṕ AND Ρ̀Ś 
AND THEIR FIRST AND SECOND DERIVATIVES WITH RESPECT TO 

HORIZONTAL SLOWNESS 
Two elastic media are assumed  to be in welded contact. The parameters describing 

the two media are the waveP − velocities, ( )1,2j jα = , the waveS − velocities, 

( )1,2j jβ =  and the densities ( )1,2j jρ = . The upper medium is denoted as "1" and the 
lower as "2" . 

Ρ̀Ṕ Coefficient: 

The Ρ̀Ρ́ reflection coefficient, ( )PPR p , may be written as (Aki and Richards, 
1980) 
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Ρ̀S ́ Coefficient: 

The plane wave particle displacement Ρ̀Ś reflection coefficient, ( )PSR p , at an 
interface between two elastic media has the form (Aki and Richards, 1980) 
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′′ ′′ ′= + + +

′ ′ ′ ′ ′ ′ + + + + + + 
′′ ′ ′ ′′ ′′ ′ ′ ′ + + + + + + 
′′ ′ ′ ′′+ +

 (A.9) 

 2D EF GHp= +  (A.10)  

 ( ) 2 2D E F EF G H GH p GHp′ ′ ′ ′ ′= + + + +  (A.11)  

 
( ) ( )2

2
2 4 2

D E F E F EF
G H G H GH p p G H GH GH

′′ ′′ ′ ′ ′′= + + +

′′ ′ ′ ′′ ′ ′+ + + + +
 (A.12)  

 ( )
2

PP
EF GHpR p

D
−

=


 (A.13) 

 ( )PP
UR p
D

=  (A.14) 

 2U EF GHp= −   (A.15) 

 2D EF GHp= +  (A.16) 

 ( ) 2PP
U UDR p
D D
′ ′ ′ = − 

 
 (A.17) 

 ( ) ( ) ( )2

2 3

2 2
PP

U D UD U DUR p
D D D

 ′ ′ ′′ ′+′′
′′  = − +

 
 

 (A.18) 

 ( ) 2 2U E F EF G H GH p GHp′ ′ ′ ′ ′= + − + −     (A.19) 

 ( ) ( )2

2

2 4 2

U E F E F EF

G H G H GH p p G H GH GH

′′ ′′ ′ ′ ′′= + + −

′′ ′ ′ ′′ ′ ′+ + − + −

  

     
 (A.20) 
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APPENDIX B: REQUIRED QUANTITIES FOR APPENDIX A  
The quantities requiring definition in the above reflection coefficients and their first 

and second derivatives with respect to p are given by: 

 ( ) ( )1 22 2 , 1, 2. 1i i i ip p i pξ α−= − = =  (B.1) 

 ( ) , 1, 2.i ip iξ ξ′ = − =  (B.2) 

 ( )2 3 , 1, 2.i i ip iξ ξ′′= − =
 (B.3) 

 ( ) ( )1 22 2
2, 1, 2. 3, 4. 1i j j jp p i j pη β−

−= − = = =  (B.4) 

 ( ) , 1, 2.i ip iη η′ = − =  (B.5) 

 ( )2 3 , 1, 2. 3, 4.i j ip i jη η′′= − = =
 (B.6) 

 1 2E b cξ ξ= +  (B.7) 

 1 1 2 2E b b c cξ ξ ξ ξ′ ′ ′ ′ ′= + + +  (B.8) 

 1 1 1 2 2 22 2E b b b c c cξ ξ ξ ξ ξ ξ′′ ′′ ′ ′ ′′ ′′ ′ ′ ′′= + + + + +  (B.9) 

 1 2E b cξ ξ= −%
 (B.10) 

 1 1 2 2E b b c cξ ξ ξ ξ′ ′ ′ ′ ′= + − −%
 (B.11) 

 1 1 1 2 2 22 2E b b b c c cξ ξ ξ ξ ξ ξ′′ ′′ ′ ′ ′′ ′′ ′ ′ ′′= + + − − −%
 (B.12) 

 1 2F b cη η= +  (B.13) 

 1 1 2 2F b b c cη η η η′ ′ ′ ′ ′= + + +  (B.14) 

 1 1 1 2 2 22 2F b b b c c cη η η η η η′′ ′′ ′ ′ ′′ ′′ ′ ′ ′′= + + + + +  (B.15) 

 1 2G a dξη= −  (B.16) 

 1 2 1 2G a d dξη ξη′ ′ ′ ′= − −  (B.17) 

 1 2 1 2 12G a d d dξη ξη ξη′ ′′ ′′ ′ ′ ′′= − − −  (B.18) 

 1 2G a dξη= +
 (B.19) 

 1 2 1 2G a d dξη ξη′ ′ ′ ′= + +%
 (B.20) 

 1 2 1 2 1 1 22 2G a d d d dξη ξη ξη ξη′′ ′′ ′′ ′ ′ ′′ ′ ′= + + + +%  (B.21) 

 2 1H a dξ η= −  (B.22) 



Ρ̀Ṕ and Ρ̀Ś reflection coefficients 

 CREWES Research Report — Volume 25 (2013) 15 

 2 1 2 1H a d dξ η ξ η′ ′ ′ ′= − −  (B.23) 

 2 1 2 1 2 12H a d d dξ η ξ η ξ η′′ ′′ ′′ ′ ′ ′′= − − −  (B.24) 

 

 

with 

 ( ) ( )2 2 2 2
2 2 1 11 2 1 2a p pρ β ρ β= − − −

 (B.25) 

 ( )2 2
2 2 1 14a p ρ β ρ β′ = − −

 (B.26) 

 ( )2 2
2 2 1 14a ρ β ρ β′′ = − −

 (B.27) 

 ( )2 2 2 2
2 2 1 11 2 2b p pρ β ρ β= − +

 (B.28) 

 ( )2 2
2 2 1 14b p aρ β ρ β′ ′= − − =  (B.29) 

 ( )2 2
2 2 1 14b aρ β ρ β′′ ′′= − − =  (B.30) 

 ( )2 2 2 2
1 1 2 21 2 2c p pρ β ρ β= − +

 (B.31) 

 ( )2 2
1 1 2 24c p aρ β ρ β′ ′= − − = −  (B.32) 

 ( )2 2
1 1 2 24c aρ β ρ β′′ ′′= − − = −  (B.33) 

 ( )2 2
2 2 1 12d ρ β ρ β= −

 (B.34) 

 0d ′ =  (B.35) 

 0d ′′ =  (B.36) 

 a b c′ ′ ′= = −  (B.37) 

 a b c′′ ′′ ′′= = −  (B.38) 
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