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ABSTRACT

We answer the question: what happens when a seismic wave propagates from one re-
gion of constant velocity to another region of different velocity, through a smooth transition
zone – and can we detect this with seismic reflection data?

This work presents an exact analytic solution for the case of a linear ramp velocity in
the transition zone, and demonstrates that for long wavelengths, the ramp looks essentially
like a jump discontinuity in the medium, with the corresponding reflection and transmission
coefficients. For short wavelengths, the ramp provides essentially 100% transmission and
no reflection.

We describe the mathematical details of this frequency-dependent reflection and trans-
mission, and derive an estimate of the feature size of the transition zone that should be
detectable. If we can detect zero crossing in the middle of the frequency range of our seis-
mic measurements, for instance at 50Hz, we expect to be able to detect transition zones
with length on the order of L = c/100s−1, where c is the velocity of propagation.

A careful consideration is given to the two cases of varying the velocity parameter, one
via variations in the density of the propagation medium, the other in varying the modulus
of elasticity. The results are different, in particular there is a sign difference in the reflection
coefficient, and a large amplitude difference in the transmission coefficient.

We also present the numerical result for the transmission and reflection of a delta spike
through the velocity ramp, and observe the reflection is a broadened “boxcar” response,
whose width is directly related to the width of the transition zone. The transmission of the
spike, however, also results in a spike.

INTRODUCTION

Reflection seismic imaging is based on the principle that seismic waves are reflected
from discontinuities in the elastic impedance of various rock layers and structures within
the earth’s subsurface. This reflected wave energy can be measured with physical instru-
ments on the surface of the earth, and an image of the subsurface can be derived from the
discontinuities. Discontinuity, however, can be a matter of degree: a zone within the earth
where the impedance changes rapidly, but continuously, might appear like a sharp discon-
tinuity to a slowly changing, or low frequency, seismic wave. Reflection is also a matter of
degree: a transition zone, even if it is not very sharp, might generate reflections that are in
principle detectable at the surface.

As we move into imaging based on full waveform inversion, it is important to under-
stand the physical effects that such a transition zone might have on our seismic sensing
instruments. In particular, we would like to know what types of transition zones (how big
the zone, how rapid the transition) are detectable using our current instruments,
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Our approach in the paper is to start with a simple physical model of a velocity field
with a smooth transition zone, build a mathematical model of wave propagation through
this zone, and characterize both the reflection and transmission properties of the propaga-
tion. Here, we build analytic solutions that are exact answers for these specific physical
models, and compute exact formulas for the reflection and transmission data that we can
expect to receive. Of course, in seismic imaging, we are intensely interested in the numer-
ical solution of the wave equation representing the propagation of seismic energy through
complex geological structures. Exact analytic solutions are hard to come by in such situa-
tions, so simpler models will have to suffice.

Exact solutions to the one dimension wave equation are often possible; these can be
used to construct more general solutions in higher dimensions, but also have direct utility
of their own. In this short paper, we construct an exact solution for a wave propagating
through a linearly varying velocity field, and use it to answer specific physical questions.

Four questions are resolved. First of all, the reflection and transmission coefficients of a
monochromatic wave impinging on the interface should depend on frequency: we compute
an exact answer. We verify that in the limiting case of large wavelengths, the ramp looks
effectively like a jump discontinuity, with the corresponding reflection and transmission
coefficients for this discontinuous case. For very short wavelengths, we verify that there is
effectively 100% transmission of energy, and zero reflection.

Second, we examine what is the effect of varying the density parameter in the wave
equation, versus varying the modulus of elasticity. The solutions are different, and can be
seen in the computation of the reflection and transmission coefficients. In both cases, a
conservation of energy law is observed across the transition zone.

Third, we show the connection between frequency sensitivity of our seismic experi-
ment, and the types of transition zones we can detect. Essentially, the lower the frequencies
that can be accurately recorded, the longer the transition zone (or more slowly changing ve-
locities) that can be detected. Numerical estimates make this qualitative statement precise.

Finally, we show the result of propagating a delta spike through the velocity ramp. Nu-
merically, we see the transmitted signal is still a spike, while the reflected signal broadens
into a boxcar-like pulse. The width of the boxcar (in time) is directly related to the time of
propagation across the transition zone. This can also be observed in the frequency domain
as a sinc function representing the reflected frequency response of the linear velocity ramp.

We consider two realistic physical examples, include the case of a rather rapid change
in velocity (a rapid change in a zone of length 100 meters) and the more gentle transition
typically seen in a sedimentary basin.

VELOCITY MODEL AND LOCAL SOLUTIONS

The one dimensional “elastic” wave equation for a displacement field u(x, t), of a dis-
turbance travelling along a weighted string under tension, with density ρ and modulus of
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elasticity (bulk modulus) K is given in the standard form

ρ(x)
∂2u

∂t2
=

∂

∂x

(
K(x)

∂u

∂x

)
. (1)

We use this form as the 1D model, since this is the model directly applicable to elastic
waves in three dimensions, with displacement u(x, t) measured by geophones. For clarity,
though, we note that the acoustic wave equation appears in a similar form,

1

K(x)

∂2p

∂t2
=

∂

∂x

(
1

ρ(x)

∂p

∂x

)
. (2)

where here p(x, t) represents acoustic pressure (which could be measured directly by hy-
drophones), ρ is density of the medium, and K(x) comes from the equation of state. In the
case of constant coefficients, these two equations are equivalent.

It is important to note that in the elastic equation (1), it is the modulus of elasticity that
appears inside the derivative, while in the acoustic equation (2), it is the density that appears
inside the derivative. For non-constant ρ,K, the position of these coefficients within the
derivative has important physical consequences – in particular on the sign of reflection
coefficients. However, throughout this article, we will only work with equation (1). The
ratio K/ρ = c2 is identified as the velocity of propagation, squared.

We model a situation where a wave propagates from a region of constant velocity c1
to second region of constant velocity c2, through a smooth transition zone of length L.
For simplicity, we specify a linear velocity ramp c(x) = c1 + mx in the transition zone,
0 < x < L, where m = (c2 − c1)/L is the slope of the velocity ramp. With such a ramp,
exact solutions can be obtained. We are primarily interested in determining what changes
in velocity, c1 to c2 and lengths of transition zones L can be detected using usual seismic
measurements for which exact analytic solutions can be obtained. A sample velocity field
is shown in Figure 1.
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FIG. 1. Velocity field varying from c1 = 1000m/s to c2 = 2000m/s, with a linear ramp over 100m.

Setting density ρ(x) = c−2(x) and constant modulus K = 1, we obtain a first case of
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the wave equation
∂2u

∂t2
= c2(x)

∂2u

∂x2
, (3)

solved via separation of variables, with u(x, t) = X(x)T (t) to obtain basic oscillatory
solutions

u(x, t) = eiω(±x/c1−t) x < 0, (4)

= (c1 +mx)1/2±
√

1/4−(ω/m)2e−iωt 0 < x < L, (5)
= eiω(±x/c2−t) x > L. (6)

We would then take linear combinations of these basic solutions, and apply boundary con-
ditions at the interfaces to obtain unique solutions in a given physical setup.

It is convenient to express the middle solution in the form

u(x, t) = c(x)ne−iωt, (7)

for exponents n = 1/2±
√
1/4− (ω/m)2. We call this the varying density case. Figure 2

shows a typical oscillatory wave moving through the transition zone. Notice that in the
transition from left to right in FIgure 2, the spatial wavelength is increasing, as is the
amplitude.
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FIG. 2. Waveform moving through the transition zone 0 < x < 100, varying density case.

A second solvable case of the wave equation is obtained by taking density ρ = 1
constant, and varying modulus in the form K(x) = c2(x), yielding the equation

∂2u

∂t2
=

∂

∂x

(
c2(x)

∂u

∂x

)
(8)

which has solutions of a similar form,

u(x, t) = eiω(±x/c1−t) x < 0, (9)
= c(x)ne−iωt 0 < x < L, (10)
= eiω(±x/c2−t) x > L. (11)
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with the change that here, the exponents are n = −1/2 ±
√

1/4− (ω/m)2. We call this
the varying modulus case. Figure 3 shows a typical wave in the transition zone. Notice
that from left to right, the spatial wavelength is again increasing, but the amplitude is now
decreasing, in contrast to the varying density case.
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FIG. 3. Waveform moving through the transition zone 0 < x < 100, varying modulus case.

REFLECTION AND TRANSMISSION COEFFICIENT - VELOCITY JUMP

As an illustrative example, we consider the case of a reflection and transmission through
a simple velocity jump, of the form

c(x) = c1 x < 0, (12)
= c2 x > 0. (13)

Solutions are of the form

u(x, t) = eiω(±x/c1−t) x < 0, (14)
= eiω(±x/c2−t) x > 0. (15)

To compute reflection and transmission coefficients, set an incoming wave on the left of the
form eiω(x/c1−t), and hypothesize a reflected wave of the formReiω(−x/c1−t) and transmitted
wave on the right of the form Teiω(x/c2−t).

The initial wave and the reflected wave on the left sum together to give

uleft = eiω(x/c1−t) +Reiω(−x/c1−t) (16)

The transmitted wave stands alone, giving

uright = Teiω(x/c2−t). (17)

To obtain the coefficientsR, T , we impose continuity on displacement u across the interface
x = 0,

uleft = uright at x = 0 (18)
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and continuity of force

Kleft(∂xu)left = Kright(∂xu)right at x = 0, (19)

yielding

1 +R = T (20)
Kleft

c1
(iω − iωR) =

Kright

c2
iωT. (21)

There are two cases to consider. First, when the modulus K is constant, and ω 6= 0, the
system reduces to

1 +R = T (22)

1−R =
c1
c2
T, (23)

which has solution R = (c2 − c1)/(c2 + c1), T = 2c2/(c2 + c1).

In the second case, with varying modulus (Kleft = c21, Kright = c22), the system reduces
to

1 +R = T (24)

1−R =
c2
c1
T, (25)

which has solution R = −(c2 − c1)/(c2 + c1), T = 2c1/(c2 + c1). The negative reflection
coefficient indicates that there is a flip in polarity upon reflection.

Observe that in both cases, we have a conservation of energy constraint, namely

Kleft

c1
R2 +

Kright

c2
T 2 =

Kleft

c1
(1)2, (26)

where of course the (1)2 represents the energy of the initial wave impinging on the interface.

REFLECTION AND TRANSMISSION COEFFICIENTS - VELOCITY RAMP,
VARYING DENSITY

To compute reflection and transmission coefficients across a velocity ramp, set an in-
coming wave on the left of the form eiω(x/c1−t), and hypothesize a reflected wave of the
form Reiω(−x/c1−t) and transmitted wave on the right of the form Teiω(x/c2−t). In the transi-
tion region, set the wave to a linear combination of the solutions c(x)1/2±

√
1/4−(ω/m)2e−iωt.

This gives three regional solutions,

uleft = eiω(x/c1−t) +Reiω(−x/c1−t), (27)
utrans = Ac(x)n1e−iωt +Bc(x)n2e−iωt, (28)
uright = Teiω(x/c2−t), (29)

with n1 = 1/2 +
√
1/4− (ω/m)2, n2 = 1/2−

√
1/4− (ω/m)2. This corresponds to the

varying density case identified in Section 2.
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To find the four coefficients R, T,A,B, set four continuity conditions

uleft = utrans at x = 0, (30)
utrans = uright at x = L, (31)

Kleft (∂xuleft) = Ktrans (∂xutrans) at x = 0, (32)
Ktrans (∂xutrans) = Kright (∂xuright) at x = L. (33)

This yields the four equations

1 +R = cn1
1 A+ cn2

1 B, (34)
cn1
2 A+ cn2

2 B = eiωL/c2T, (35)
iω

c1
− iω

c1
R = mn1c

n1−1
1 A+mn2c

n2−1
1 B, (36)

mn1c
n1−1
2 A+mn2c

n2−1
2 B =

iω

c2
eiωL/c2T. (37)

Setting r1 = (c2/c1)
n1 , r2 = (c2/c1)

n2 and k1 = mn1/iω, k2 = mn2/iω, these equations
are written in matrix form as

1 1 −1 0
r1 r2 0 −1
k1 k2 1 0
k1r1 k2r2 0 −1




cn1
1 A
cn2
1 B
R

eiωL/c2T

 =


1
0
1
0

 . (38)

Invert the matrix M in Equation 38 to obtain the solution, and note that the coefficients
A,B,R, T depend on frequency ω:

cn1
1 A
cn1
1 B
R

eiωL/c2T

 = M−1


1
0
1
0

 . (39)

Figure 4 shows a plot of the reflection and transmission coefficients, as well as a check
on conservation of energy, for a sample case where the velocity ratio is c2/c1 = 2 and a
moderate length transition zone with slopem = 10. This corresponds to the velocity model
in Figure 1, where the transition zone has length 100m. The plot verifies that

|R(ω)|2 + 1

2
|T (ω)|2 = 1. (40)

Observe that for frequency ω ≈ 0, we obtain

|R(ω)| ≈ 1

3
=
c2 − c1
c2 + c1

, |T (ω)| ≈ 4

3
=

2c2
c2 + c1

, (41)

which agrees with the solution for a simple jump, as discussed in the last section. Physi-
cally, this says for low frequency sources (long wavelengths), the ramped velocity change
looks a lot like a simple jump.
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FIG. 4. Frequency dependent coefficients: reflection (lower), transmission (upper), and energy
check (middle).

We also observe that for frequency ω large, we obtain

|R(ω)| ≈ 0,
1

2
|T (ω)| ≈ 1, (42)

which says that there is very little energy in the reflected signal, and lots of energy in the
transmitted signal. That is to say, high frequency sources (short wavelength) pass through
the ramp with very little change in energy, although the amplitude changes by a factor of√
2.

Also notice that at about 7 Hertz, there is a notch (zero) in the reflection coefficient,
which is replicated at higher frequencies. This resonant phenomena should be detectable
in the seismic signal if there is sufficient resolution at low frequencies.

For a longer transition zone with a more modest slope of, say 1/s, more typical of the
gradual linear increase in velocity seen in a sedimentary basin, this zero in the reflection
response moves to lower frequencies (0.7Hz), as shown in Figure 5. This suggests seismic
data in much lower frequency ranges would be required to see this gradual velocity increase
in the seismic recording.

REFLECTION AND TRANSMISSION COEFFICIENTS - VELOCITY RAMP,
VARYING MODULUS

We can solve for reflection and transmission coefficients for the second variant of the
wave equation,

∂2u

∂t2
=

∂

∂x

(
c2(x)

∂u

∂x

)
, (43)
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FIG. 5. Frequency dependent coefficients: reflection (lower), transmission (upper), and energy
check (middle).

using the same system of equations, except change coefficients n1, n2 to

n1 = −1/2 +
√

1/4− (ω/m)2, n2 = −1/2−
√

1/4− (ω/m)2. (44)

Notice that the modulus of elasticity K(x) = c2(x) is continuous across all interfaces, so it
can be eliminated from the system of equations 30–33.

Figure 6 shows a plot of the reflection and transmission coefficients, as well as a check
on the conservation of energy, with

|R(ω)|2 + 2|T (ω)|2 = 1, (45)

where the coefficient 2 = K/c comes from the right hand side of the wave field.

We observe the reflection coefficients look very similar to the previous case. The trans-
mission coefficient differs by a factor of two.

In particular, for ω small, we obtain a value of T (ω) ≈ 2/3, which agrees with the jump
case (Section titled “Velocity Jump") using a varying bulk modulus. For large ω, there is
almost no reflected energy, and the transmitted signal carries almost all the energy, while
its amplitude is reduced by a factor of 1/

√
2. And again, there is a a notch in the reflection

response at about 7 Hz.
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FIG. 6. Frequency dependent coefficients: reflection (lower), transmission (middle), and energy
check (top).

ANALYTIC SOLUTION TO REFLECTION COEFFICIENT

Using Cramer’s rule, and a little help from MathematicaTM, one can obtain an exact
solution for the reflection coefficient

R(ω) =
r1 − k1r1 − k2r1 + k1k2r1 − r2 − k1r2 + k2r2 − k1k2r2
r1 − k1r1 + k2r1 + k1k2r1 − r2 − k1r2 + k2r2 + k1k2r2

(46)

which simplifies to

R(ω) =
(r2 − r1)(n1 + n2)

2(r1 − r2)(iω/m) + 2(r1 + r2)
√

1/4− (ω/m)2)
. (47)

In the varying density case, we have n1 + n2 = 1, and setting a =
√
1/4− (ω/m)2,

we obtain

R(ω) =
(c2/c1)

a − (c2/c1)
−a

2(iω/m) [(c2/c1)a − (c2/c1)−a] + 2a [(c2/c1)a + (c2/c1)−a]
. (48)

Note that R(0) = (c2− c1)/(c2+ c1), so there is a positive reflection in this varying density
case, at low frequencies.

In the varying modulus case, we have n1 + n2 = −1, and we get exactly the negative
of this previous solution,

R(ω) = − (c2/c1)
a − (c2/c1)

−a

2(iω/m) [(c2/c1)a − (c2/c1)−a] + 2a [(c2/c1)a + (c2/c1)−a]
. (49)
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Here, we find R(0) = −(c2 − c1)/(c2 + c1), so there is a negative reflection in this varying
modulus case, at low frequencies.

This is not surprising: it is well known that the reflection coefficients in the wave equa-
tion changes sign depending on whether one has a change in density, or a change in bulk
modulus. The above calculation confirms this is true for each frequency reflecting off a
velocity ramp.

A similar procedure will give the analytic solution for the transmission coefficients.

DETECTING THE RAMP

The plots of the reflection frequency response in Figures 4, 5, and 6 are suggestive of a
sinc function. For ω/m large, we have the approximation

a =
√

1/2− (ω/m)2 ≈ iω/m, (50)

which yields an approximation for the reflectivity response in Equation (48) as

R(ω) ≈ (c2/c1)
iω/m − (c2/c1)

−iω/m

4(iω/m)(c2/c1)iω/m
(51)

≈ sinc(
ω

m
log

c2
c1
)
log c2

c1

2
(c2/c1)

−iω/m. (52)

Ignoring the phase shift (c2/c1)−iω/m, we see the reflectivity is approximately a sinc func-
tion, scaled by a factor 1

2m
log c2

c1
.

To detect the ramp, it is reasonable to require that the first zero of the sinc function
occur somewhere in the seismic band – from this data we can make an estimate of the
shape of the sinc function. The first zero occurs at

ω

m
log

c2
c1

= π, (53)

or equivalently in frequency f = ω/2π as

f =
m

2 log c2
c1

. (54)

In the model for Figure 4, we have a velocity ratio c2/c1 of 2, and a slope of m = 10s−1,
which puts the first notch at frequency

f =
10

2 log 2
= 7.21Hz. (55)

in good agreement with the notch displayed in the figure. In Figure 5, the notch moves to

f =
1

2 log 2
= 0.721Hz, (56)

as expected.
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It is also useful to express the notch frequency in terms of the length of the transition
zone. With m = (c2 − c1)/L and log c2

c1
≈ c2/c1 − 1 this gives the first zero of the sinc

function appearing at

f ≈ (c2 − c1)/L
2(c2/c1 − 1)

=
c1
2L
. (57)

With f set in the middle of the seismic band, say perhaps f = 50Hz, we get an estimate
of a detectable transition zone of length L with

L ≈ c1
2 · 50

=
c1
100

. (58)

So, for instance, with an initial wave speed velocity of c1 = 1000m/s, we can expect to
detect a transition zone of length L ≈ 10m. A shorter transition of length L ≈ 1m would
put the first zero of the sinc function at about 500Hz, which is likely outside what we
can detect reliably with current technology. In such a case, the transition zone effectively
appears as a jump in reflectivity. A much longer transition of length L ≈ 100m puts the
zero at 5Hz, which would require some careful low frequency processing to detect.

VARYING DENSITY AND BULK MODULUS

One can carry out the same analysis where both density and modulus are varying, in
the form

ρ(x) = c(x)α−2 (59)
K(x) = c(x)α (60)

for some fixed α, with x in the interval [0, L], and extend by continuity to constants on the
rest of the real line. Solutions in the transition region are of the form

u(x, t) = c(x)ne−iωt, (61)

where n = (1 − α)/2 ±
√
(1− α)2/4− (ω/m)2. We skip the details – the same matrix

inversion is required.

The case α = 1 would be particularly interesting, for in this situation a monochromatic
waveform in the transition zone would maintain a constant amplitude, in contrast to the
increase (Figure 2) or decrease (Figure 3) in amplitude shown earlier. This interesting case
is not discussed further here.

TRANSMISSION, REFLECTION OF A DELTA SPIKE

It is interesting to ask how an arbitrary waveform impinging on the velocity ramp
is transformed into two resulting waveforms, the reflected waveform and the transmitted
waveform. In principle, this can be computed by convolving the initial waveform with the
filter response of the ramp, for both reflection and transmission.

The filter response is simply the result of initiating a delta spike on the left of the
velocity ramp, and allowing it to travel into the ramp, creating a reflected and a transmitted
waveform.
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Conveniently, we have already computed the filter response for the ramp in the fre-
quency domain, as Equations 46 and 47 represent analytic solution for reflection. Taking
the inverse Fourier transform will give the filter response in space.

However, computing the exact inverse Fourier transform by hand is beyond what we
are able to do in this short paper. As an alternative, we can simply sample in the frequency
domain, then numerically compute the inverse Fast Fourier Transform. Again working with
our velocity model from Figure 1, we consider the case of a transition zone of 100m, where
the velocity changes from 1000 m/s to 2000 m/s. Figure 7 shows the resulting reflection for
a impulsive source, which is the impulse response of the ramp in reflecting a delta spike.
Observe that exactly one reflection is obtained, but it is much wider than a delta spike,
about 0.15 seconds long.
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FIG. 7. Reflectivity impulse response of a delta spike, slope m = 10/s.

In Figure 8, we show the reflection impulse response for the case of a much longer
transition zone of 1000m, where the velocities change again from 1000m/s to 2000m/s, for
a slope of one. We obtain a much broader reflected pulse, about 1.4 seconds long. It is
interesting to observe that 1.4 seconds is about twice the amount of time it takes a signal to
propagate across the transition zone at these speeds, which makes physical sense since the
impulse, as it is being reflected, has to travel twice across this zone.

The same computation can be performed on the transmission coefficients, resulting in
the transmitted waveform shown in Figure 9. Observe there is a much narrower spike in
this transmitted case, essentially a delta spike itself.
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FIG. 8. Reflectivity impulse response of a delta spike, slope m = 1/s.

FUTURE WORK

Our next step is to extend this modelling by exact solution to 2D and 3D models, where
the transition zone varies linearly in only one dimension. We expect the same qualita-
tive behaviour, and would like to extract information on what frequencies are necessary to
observe the linear velocity ramps.

CONCLUSIONS

We have demonstrated an exact analytic solution to the 1D wave equation for a physi-
cal medium with a linear velocity ramp sandwiched between two constant velocity regions.
From this, we computed reflection and transmission coefficients for the ramp, both numeri-
cally and analytically, showing that these coefficients are frequency dependent. Asymptot-
ically, they behave like the coefficients for a jump discontinuity in velocity. The results for
varying density, and varying modulus of elasticity are different – reflecting the important
physical observation that it is not enough to know only the velocity field. One must know
the density and elasticity in the non-constant case. Finally, we numerically computed the
transmitted and reflected waveforms that result when a delta spike impinges on the velocity
ramp, observed that the reflected waveform is actually broadened into a boxcar. Examples
were presented with physically relevant models with realistic physical velocity, density,
and modulus of elasticity. We observed that the slow increase in seismic velocities seen in
typically sedimentary basins can only been seen in seismic data that faithfully records very
low frequencies.
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FIG. 9. Transmission impulse response of a delta spike.
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