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ABSTRACT

Frequency domain georadar data have several advantages over time domain data but
are much more cumbersome to acquire. A medical imaging technique developed in the
Department of Electrical Engineering at the University of Calgary known as "tissue sens-
ing adaptive radar" (TSAR) makes use of monostatic radar data acquired in the frequency
domain. Simulated data were generated and processed using a workflow that has been pre-
viously developed and implemented sucessfully on georadar data. We discover that the
simulated TSAR data are mixed phase, violating the minimum-phase assumptions of de-
convolution. We show through synthetic examples that deconvolution of these data does
not recover reflectivity accurately. Although nonstationary Gabor deconvolution has been
shown be effective when applied to georadar data, our work with the TSAR data shows
that we must take care to ensure that radar data be minimum phase during deconvolution,
especially with data acquired in the frequency domain.

INTRODUCTION

Many fields, including the earth sciences and medical imaging make use of the radar
reflection method. The method involves emitting controlled pulses of electromagnetic ra-
diation in the radio to microwave band from an antenna, which reflect off objects in their
path (Jol, 2009). Subsequent processing of the backscattered signal generates an image of
the region of interest. Analagous to acoustic impedance in seismic, radar reflections result
from a change in relative electric permitivity (εr) between media. From Davis and Annan
(1989), normal incidence reflection coefficients for radar (R) are given by:

R =

√
εr1 −

√
εr2√

εr1 +
√
εr2

(1)

where εr1 and εr2 are the relative electric permittivities of the incident and transmis-
sive media respectively. Assuming a low-loss geological environment, the relative electric
permittivity is related to the velocity of electromagnetic radiation in a medium (v) by:

v =
c
√
εr

(2)

where c is the speed of light in a vaccum (c ≈ 0.3 m/ns) (Fisher et al., 1992)
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Georadar

Georadar (also known as ground penetrating radar or GPR), is a geophysical application
of the radar reflection method used for exploration in the near-subsurface. It has been
used in a number of geological applications (Ferguson et al. (2012a), Rowell et al. (2010),
Ferguson et al. (2012b)), as well as archeological and engineering applications (Goodman
(1994), Jol (2009)). The majority of georadar data is aqcuired in the time domain, with
transmitters and receivers being at common offset (usually fixed to a cart). This is usually
done to speed up data acquisition. However, non-fixed recievers can be used to acquire
multi-offset data, which can be used for NMO velocity analysis (eg. Fisher et al. (1992)).
Additionally, Georadar data can be acquired directly in the frequency domain by using a
stepped-frequency continuous-wave (SFCW) system (Garbuz et al. (2009), Yedlin et al.
(2010)).

Georadar is analagous to seismic in a number of ways. Both methods involve active
controlled sources emitting energy into the subsurface. Receivers record reflected and
diffracted energy from physical property changes in the subsurface. Their respective ex-
pressions for reflection coefficients are of the same approximate mathematical form (equa-
tion 1). Two significant differences between seismic data and georadar data are scale and
attenuation. Georadar data deals with much smaller scale units than does seismic data.
Spatial units are in m to km (vs. m to km in seismic), temporal units are on the order of
magnitude of ns (vs. ms to s in seismic), velocities are given either as a fraction of c m/s or
as m/ns (vs. m/s to km/s in seismic), and frequencies are in the MHz to GHz range (vs. Hz
for seismic data). Georadar signals also attenuate much more strongly than seismic data.
Ferguson and Margrave (2012) determined that the attenuation factor Q is about an order
of magnitude lower for georadar than seismic, meaning that the attenuation effect itself is
much larger for georadar than for seismic. Attenuation in georadar data is strongly related
with the electrical properties of the shallow subsurface. It fares poorly in regions with liq-
uid water in the shallow subsurface, high-conductivity materials such was clay soils, and
regions with highly heterogeneous conditions such as rocky soils (Jol, 2009).

As mentioned previously, georadar data can be acquired in both time (impulse) and fre-
quency (SFCW) domains. There are several significant advantages to acquiring frequency
domain data however:

• Frequency domain georadar data has greater measurement accuracy because it is
much easier to synthesize a pure tone at a given frequency than to measure a time
delay.

• SFCW systems have greater dynamic ranges and lower noise thresholds becuase they
can transmit higher power than impulse systems.

(Garbuz et al., 2009)

This is of great importance as impulse data is only recorded in 16-bit, and this limited
dynamic range results in clipping of stronger amplitude signatures and loss of low am-
plitude signatures (Gulati, 2011). However, time domain data requires much less time to

2 CREWES Research Report — Volume 25 (2013)



Data analysis - processing and imaging

acquire and as a result is still preferred in most cases over SFCW frequency domain data
(Garbuz et al., 2009).

TISSUE SENSING ADAPATIVE RADAR (TSAR)

Tissue sensing adaptive radar (TSAR) is a prototype alternative diagnostic breast imag-
ing method developed in the Department of Electrical Engineering at the University of
Calgary (Bourqui et al., 2012). It is designed to compliment other medical imaging tech-
niques in the detection of breast cancer. The motivation for developing the method is the
fact that there are significant contrasts in dielectric properties at microwave frequencies
between normal and malignant breast tissue (Fear et al., 2002). Following from this is the
idea that a radar reflection method could be developed to record these dielectric contrasts
as diffractions and reflections, and eventually generate an image of the breast highlighting
the number and location of possible cancerous growths.

The TSAR method uses a monostatic radar approach, whereby a single antenna scans
around the breast of the patient as it immersed in a tank containing canola oil (Figure 1). At
each scan location, measurements are taken at 1601 points over the frequency range from
50MHz to 15GHz. The process of moving the sensors and collecting measurements takes
less than 30 minutes for 1 breast scanned at up to 200 different antenna locations (Bourqui
et al., 2012).

The monostatic approach is novel and although it does not collect as much data as its
multistatic counterpart, the system can be designed to produce a focused beam, increasing
the reflected power from small features (Bourqui et al., 2012). This is beneficial due to
the potential for high attenuation in breast tissues. The custom antenna used is a balanced
antipodal Vivaldi antenna with a director (BAVA-D), (Bourqui et al., 2010). The director
narrows the beam of the antenna compared with a standard BAVA design, thus focusing
more energy into the breast and enhancing reflections.

Motivation

TSAR data represents a type of frequency radar data that has similar charcteristics to
georadar data. It is ideally suited for testing different processing and imaging workflows
that can be eventually applied to field georadar data. Another benefit is a fine enough
station interval to avoid spatial aliasing. This will an important factor in future work, as the
ulimate goal is to image the dataset in depth.

TSAR DATA SIMULATION

TSAR-like data were simulated using software developed by the Department of Elec-
trical Engineering at the University of Calgary. The simulation space consisted of a two
dimensional plane 16cm wide and 8cm deep of homogenous and lossless canola oil (εr ≈
2.5), with z corresponding to depth and x corresponding to the axis along which the an-
tenna was moved. Inclusions of higher relative permittivity at unknown locations were
added to the simulation, representing imaging targets such as possible tumors (Figure 2).
The BAVA-D (Bourqui et al., 2010) antenna was used, directed towards the negative z

CREWES Research Report — Volume 25 (2013) 3



Smith et. al

direction. Parameters for the aquisition geometry of the simulation are as follows:
Table 1. TSAR Simulation Parameters

Parameter Value
Sensor Spacing 0.001 cm
Number of Locations 101
Frequency Range 0 - 14.99 GHz
Frequency Step 10 MHz

TSAR PRE-PROCESSING

A number of pre-processing steps were undertaken before any deconlvolution or imag-
ing of the data was attempted. First, the antenna response was removed from the data. The
data were with and without inclusions present in the medium. With no inclusions present,
the recorded data represents just the antenna repsonse (Figure 3). This is used to remove
this noise from the data with inclusions present. The data were then loaded into Octave.
For each trace, the data were in the form of a complex number assosciated with a frequency
(4). The data were then transferred to the time domain using a band-limited inverse Fourier
transfrom (bltifft), available in the CREWES Matlab Toolbox.

Determination of Time Correction to Z = 0

After converting the data to the time domain, we needed to identify the location in time
corresponding to the z = 0m depth. In this case we can calbirate the antenna using at least
two perfectly electrically conducting (PEC) plates placed at known depths (Figure 6). The
plates are designed to generate strong radar reflections due to their dielectric properties.
We record the signal with each individual plate in and define the location of each plate in
the time domian as the maximum of the envelope of the reflections (Figure 7).

As we know the actual distance between the vertical plates, know the difference in
travel times between them, and assume the medium is homogeneous, we can estimate the
velocity of the medium v as:

v = 2 ∗
(

z2 − z1
tPEC2 − tPEC1

)
(3)

where z1 and z2 are the depths of the two PEC plates with respect to z0 = 0 m (which
in our case are 0.02 and 0.08 m respectively) (Figure 6), and tPEC1 and tPEC2 are the time
domain locations of the envelope peaks from the respective peaks. Using this formulation,
the velocity of the medium was calculated to be ≈ 0.191 m/ns. This compares favourably
with 0.190 m/ns, which is the calculated radar velocity of canola oil using Equation 2,
assuming εr = 2.5.

Since we now know the radar velocity of the medium along with the PEC location in
distance, we were able to calaculate the location of z = 0 in the time domain and the
corresponding time shift required to datum the data properly to be 1.4513 ns.
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Frequency Filtering

After shifting the TSAR data to the proper datum, a filter was applied to the data in
order to remove high frequency noise associated with instrument noise. The amplitude
spectra for the TSAR data traces were weighted by the ampitude spectrum of the TSAR
pulse used as the source in the simulation (figures 9 and 10). The source tsar pulse has a
form of:

v(t) = v0 · (t− t0) · e
−(t−t0)

2

τ2 , (4)

,

where v0 is used to adjust the amplitude, τ = 62.5ps and t0 = 4τ (Bourqui et al., 2010).

NONSTATIONARY GABOR DECONVOLUTION

nonstationary deconvolution has been shown previously to be a superior pre-processing
flow for radar data (Ferguson et al., 2012a). the nonstationary deconvolution accounts for
attentuation in the source wavelet and thus is able to recover substantially more signal at
later arrival times. this workflow is based on gabor deconvolution algorithms developed at
CREWES.

minimum phase assumption

An excellent overview of Gabor Deconvolution is given by Margrave et al. (2011). One
of the major assumptions utilized by this method (and many other types of seismic and
radar signal processing methods) is that of minimum phase. Since the TSAR is acquired
in the frequency domain and does not necessarily meet this requirement. To demonstrate
this, we attempt to construct a minimum-phase version of the TSAR pulse using the meth-
ods outlined in Lamoureux and Margrave (2007a), Lamoureux and Margrave (2007c), and
Lamoureux and Margrave (2007b). These make use of the cepstrum function available in
MATLAB. Although our results are preliminary, they show that the TSAR pulse is indeed
NOT minimum phase, and this needs to be dealt with for future processing and imaging,
especially for deconvolution (Figures 12, 13, and 14).

CONCLUSIONS / FUTURE WORK

TSAR data were sucessfully converted from their raw form into the time domain, da-
tumed and filtered successfully. We wish to pursue nonstationary Gabor deconvolution as
our next processing step, however cannot guarantee accurate results due to the mixed phase
nature of the TSAR wavelet. This is also of huge significance to other forms of radar, no-
tably georadar. The next step is to develop a method to overcome this limitation, and to
evenutally move on to imaging the data and improving the images that we can develop of
the breast using this technique.
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a) b)

FIG. 1. 3D illustration of the prototype TSAR system. View of the scan pattern used for measure-
ment a). Each sphere corresponds to an antenna location. A plan view of the device is shown in
b). The laser is used to determine the distance from the antenna aperture to the irregular surface
of the skin on the breast (Bourqui et al., 2012).

16 cm

8 cm

Canola Oil (εr ≈ 2.5)

Simulated Tumor

TSAR Antenna

(x0, z0)

FIG. 2. Schematic of TSAR simulation space. See Table 1 for acquisition parameters.

FIG. 3. Illustration of the antenna only response in the TSAR simulation space.
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FIG. 4. Raw simulated TSAR data from a single trace, with the upper image representing the raw
frequency domain data and the lower image being the time domain reconstruction using bltifft from
the CREWES toolbox.
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FIG. 5. Raw simulated TSAR data for the entire record. Raw frequency domain data a), and time
domain reconstruction using bltifft from the CREWES Matlab toolbox.
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Canola Oil 
(εr ≈ 2.5)

BAVA-D 
Antenna

(t0, z0)

z2 = 0.08 m

z1 = 0.02 m

PEC Plate1

PEC Plate 2

∆z = 0.06 m

FIG. 6. Schematic illustrating the determination of the z0 = 0 m location in time. Two perfectly
electrically conducting (PEC) plates were individually placed in the simulation at known z locations
and two-way-traveltimes (TWT) from each reflection recorded. Using this information, the velocity
of the medium was estimated, as well as the time shift needed to reposition to z0 = 0 m on the
simulation data.

a)

b)

FIG. 7. View of the reflections from the perfectly electrically conducting (PEC) plates located at
z1 = 0.02 m a), and z2 = 0.06 m b). The envelope of the PEC reflections are shown with the blue
dashed line, and the envelope peaks were used to estimate the time shift required to move z0 = 0
m to zero time. Note that the amplitude of these reflections are much weaker than the signature of
the antenna response (Figure 3, illustrating why it must be removed first.
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FIG. 8. Reconstructed time domain TSAR data records. Raw input data in a), with time corrected
data in b). The data in b) were shifted by the delay calculated using the principles outlined in (Figure
6.)
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FIG. 9. Ultrawideband pulse used as input in simulation of the TSAR data. The analytic form of the
pulse is given in equation 4.
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FIG. 10. Comparison of amplitude spectra of trace 35 of the TSAR data blue and synthetic TSAR
pulse green, (Figure 9). The amplitude spectra of the pulse was used to filter out the noisy parts of
the data spectrum above ≈ 8 GHz, corresponding to instrument noise.

12 CREWES Research Report — Volume 25 (2013)



Data analysis - processing and imaging

-0.004

-0.002

0

0.002

0.004

0 0.5 1 1.5 2

Am
pl

itu
de

Time (ns)

Filter Trace Comparison, Station Location 35

FIG. 11. Comparison of a TSAR data trace before and after weighting by the spectra of the TSAR
pulse.
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FIG. 12. Estimation of minimum phase equivalent of the TSAR pulse using the method described
in Lamoureux and Margrave (2007b). THe input TSAR pulse and spectrum are in the top row.
The second row contains the amplitude spectrum truncated to 9 GHz and the resultant TSAR time
signal. The third row contains the minimum phase estimation as given by the MATLAB function
rceps with its corresponding spectra, and the bottom row gives the result of upsampling by inserting
a 0 between each datapoint.
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FIG. 13. Illustration of the different results obtained from the rceps function as a function of number
of time samples in the input TSAR trace. The rows in this figure each translate to the third row in
12.
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FIG. 14. Illustration of different phase spectra obtained from the rceps function as a function of
number of time samples in the input TSAR trace. The rows in this figure each translate to the third
row in 12, showing the phase spectra in the left column as opposed to the amplitude spectra.
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