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ABSTRACT

The kinematics of converted-waves is one the features that complicates the process-
ing of multicomponent data. The asymmetry of the converted-wave raypath prevents us
from using an important part of the methods developed for P-wave processing. To accom-
modate the issue of asymmetric raypath Grechka and Tsvankin (2002) and Grechka and
Dewangan (2003) proposed what they named the PP+PS=SS method. Their goal was to
generate pseudo-shear-wave data by convolution and correlation of PP and PS-wave data.
By taking advantage of the shared raypath between PS and PP data in the space domain
they were able to retrieve the kinematics of pure shear-wave data. Here, we propose mov-
ing the data to the plane-wave domain, where the shared features of PS and PP are more
evident. Although the P and S-leg of converted-wave events may follow different raypath
angles, they share the same rayparameter following Snell’s law. Recently, Tao and Sen
(2013) developed a mathematical framework for doing interferometry in the plane-wave
domain. They showed how the cross correlation-type reciprocity equation holds for data in
the rayparameter domain. Hence, data with shared rayparameters can be cross correlated to
get redatumed data. In this work I will be using seismic interferometry in the plane-wave
domain to extend the PP+PS=SS method to this framework. Access to the rayparameter
values will be achieved by the τ -p transform and cross correlation and convolution of PS
and PP data will be performed to reconstruct the kinematics of pure S-wave data.

Interferometry in the plane-wave domain

Plane wave interferometry uses the τ -p transform or "slant-stack" transform to compute
the ray parameter values (p) present in the data (Claerbout, 1975; Stoffa, 1989). In the
space-time (x-t) domain the τ -p transform stacks data along straight lines given by the
equation t = τ + px, where τ is the intercept time and x is the offset. In the frequency
domain the τ -p transformation is achieved by phase-shifts followed by summation in the
space coordinate. Equation 1 shows the expression for transforming shot gather data into
the τ -p domain.

D̂(xs|pr, ω) =
∫
D(xs|xr, ω)eiωprxrdxr, (1)

where D(xs|xr, ω) is the recorded data in the frequency domain, xs is the source posi-
tion, xr is the receiver position, pr is the receiver ray parameter, and D̂(xs|pr, ω) is the
transformed plane-wave gather from the original shot gather.

The inverse τ -p transform is given by,

D(xs|xr, ω) = ω2

∫
D̂(xs|pr, ω)e−iωprxrdpr. (2)

For a receiver gather the same equations hold but integration is performed over the shot
position coordinate (xs) and shot-ray-parameter values (ps).
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Seismic interferometry as introduced by Wapenaar (2004) and Schuster (2009) is based
in the cross correlation of frequency domain data and integration over the location coordi-
nates in order to retrieve or redatum data at different spatial locations. Equation 3 shows the
so called reciprocity equation of the correlation type after considering far field conditions
and ignoring amplitude effects.

Im [D(xB|xA, ω)] ≈
∫
D(x|xA, ω)D(x|xB, ω)∗dx. (3)

From equation 2 the complex conjugate of the data at the xB location can be written as,

D(x|xB, ω)∗ = ω2

∫
D̂(xB|p, ω)∗eiωpxdp. (4)

Substituting equation 4 into equation 3 results in,

Im [D(xB|xA, ω)] ≈ ω2

∫ ∫
D(x|xA, ω)D̂(xB|p, ω)∗eiωpxdpdx. (5)

Rearranging equation 5 we get,

Im [D(xB|xA, ω)] ≈ ω2

∫
D̂(xB|p, ω)∗dp

∫
D(x|xA, ω)eiωpxdx. (6)

Notice that the rightmost integral is the forward τ -p transform (equation 1) of the data
at location A. Therefore, equation 6 gives,

Im [D(xB|xA, ω)] ≈ ω2

∫
D̂(xB|p, ω)∗D̂(xA|p, ω)dp. (7)

Equation 7 suggests that, similar to cross correlation and sum over trace locations to
cancel out shared raypaths, in the τ -p domain this can be achieved by cross correlation and
summation over rayparameter values. Figure 1 depicts this idea. Since the direct ray from
the source location S* to the receiver location A, has the same ray parameter as the event
S*AOB, the traveltimes along the shared raypath are cancelled out by the cross correlation.
The output is a trace whose source appears to be at location A and whose receiver is located
at B.

Convolution-type interferometry in the plane-wave domain

A normalized version of the convolution-type reciprocity equation (Schuster, 2009;
Wapenaar et al., 2011) can be written as,

D(xB|xA, ω) ≈
∫
D(x|xA, ω)D(x|xB, ω)dx. (8)
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FIG. 1. Sketch showing how the cross correlation of the direct arrival from the stationary source
position S* with the raypath S*AOB cancels out the shared raypath S*A retrieving the traveltime as
if the source had been in at the location A. In the τ -p domain this cancellation is possible since the
raypaths share the same rayparameter.

Note that instead of multiplication with a complex conjugate, in the convolution-type
interferometry we get a simple multiplication. As a result the phases of the functions inside
the integral are summed producing a new function with longer traveltimes.

Replacing the functions inside equation 8 by their inverse τ -p transforms we get,

D(xB|xA, ω) ≈
∫ [

ω2

∫
D̂(xA|p, ω)e−iωpxdp

] [
ω2

∫
D̂(xB|p′, ω)e−iωp

′xdp′
]
dx, (9)

Changing integration orders and adding the phases,

D(xB|xA, ω) ≈
∫ ∫

ω4D̂(xA|p, ω)D̂(xB|p′, ω)dpdp′
∫
e−ixω(p′+p)dx, (10)

The rightmost integral can be identified as a scaled delta function. Hence, equation 10
becomes,

D(xB|xA, ω) ≈
∫ ∫

ω4D̂(xA|p, ω)D̂(xB|p′, ω)
[
2π

ω
δ(p′ + p)

]
dpdp′, (11)

Using the sifting property of the delta function after integrating over p′,

D(xB|xA, ω) ≈ 2πω3

∫
D̂(xA|p, ω)D̂(xB| − p, ω)dp. (12)

Figure 2 shows how the addition of traveltimes along two raypaths with the same ray-
parameter value but pointing in opposite directions may return the two-way traveltime of a
reflection-like event. This depicts the result given in equation 12

The PP+PS=SS method

The PP+PS=SS method was introduced by Grechka and Tsvankin (2002) and Grechka
and Dewangan (2003) as a tool for computing pseudo-shear-wave data as an alternative to
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FIG. 2. Sketch showing how the addition of the traveltimes from the source location S* to receivers A
and B, leads to the two way traveltime as if the source had been in location A. Since the convolution
happens between rays with the same rayparameter but in opposite directions the resulting raypath
is symmetric as in a pure-P or pure-S-wave reflections.

processing converted-waves. The method they proposed is clearly related to the cross cor-
relation methods nowadays known as seismic interferometry. Figure 3 shows the rationale
behind the PP+PS method. There, the raypaths AOD and BOC represent PS events and
the raypath AOB is a PP reflection. Based on this construction the shear-wave traveltime
tSS(C,D) can be computed as:

tSS(C,D) = tPS(A,D)− tPP (A,B) + tPS(B,C) (13)

The traveltime in equation 13 can also be retrieved by cross correlation (traveltime
subtraction) and convolution (traveltime addition) as expressed in equation 14.

dΨS(xC |xD, t) =
∫ ∫

[dPS(xA|xD, t) ∗ dPP (xA|xB, t)∗ ∗ dPS(xB|xC , t)] dxAdxB (14)

where dPS(xA|xD, t) and dPS(xB|xC , t) are the PS data recorded at locations (xA|xD) and
(xB|xC) respectively, dPP (xA|xB, t)∗ denotes the complex conjugate of the PP data with
(xA|xB) coordinates, dΨS(xC |xD, t) is the pseudo-shear-wave data recorded between loca-
tions (xC |xD) and the ∗ symbol indicates time convolution. Notice, that time convolution
with the complex conjugate of the PP data is equivalent to time cross correlation.

A D C B 

P S S P 

O 

FIG. 3. Geometry of the reconstruction of SS traveltimes by using the PP+PS=SS method. AOD
and BOC represent converted-wave events and AOB depicts a PP reflection.

As we can see the PP+PS=SS method is posed in the x-t domain. Integration over the
xA and xB coordinates assures finding the stationary locations where the raypath of the PP
data overlaps the P-legs of the PS data. During integration, the authors propose using only
the data with half-offsets shorter than the critical PS offset.
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FIG. 4. Representation of the correlations and convolutions involved in the PP+PS=SS method. At
the left, we can see how the cross correlation of the PP reflection XAXB with the PS event XAXD

cancels out the downgoing P-wave leg of both events. The output is then convolved with a PS
event propagating in the opposite direction that cancels out the remaining P-wave leg recorded at
location XB . Moreover, the traveltime of the upgoing S-wave leg recorded at XC gets added to the
one recorded at XD. As a result, the SS traveltime between locations XC and XD is retrieved.

Pseudo-shear-wave data in the rayparameter domain

Invoking the convolution theorem equation 14 can be written in the frequency domain
as,

DΨS(xC |xD, ω) =
∫ ∫

DPS(xA|xD, ω)DPP (xA|xB, ω)∗DPS(xB|xC , ω)dxAdxB (15)

=

∫
DPS(xA|xD, ω)DPP (xA|xB, ω)∗dxA

∫
DPS(xB|xC , ω)dxB, (16)

The integration over dxA can be easily identified as the cross correlation reciprocity
equation (equation 3). From equation 7 we know that it can be solved in the τ -p domain.
On the other hand, integration over dxB with the output of the previous integral represent a
convolution-type reciprocity equation. The latter can also be computed in the τ -p domain
as shown in equation 12.

Figure 4 illustrates the processes involved in equation 16. The leftmost integral runs
over positions xA looking for the stationary position where the downgoing P-wave legs of
the PP and PS events being cross correlated cancel. On the other hand, the second integral
performs a convolution searching for the stationary position where the P-wave leg of the
PS event originating at xB cancels out the remaining P-wave traveltime from the previous
integration while adding the S-wave traveltime from the interface to the surface. The final
result is that all the P-wave legs get cancelled and the S-wave traveltimes get added.

Numerical experiments

To test all the mathematical framework explained before, synthetic data were computed
using a raytracing algorithm. Figure 5 shows the velocity model used for the ray tracing.
The model is made of one flat interface at 1000 m depth, with constant P and S-wave
velocities. Synthetic shot records were computed using 251 receivers with a 4m spacing,
for a maximum offset of 1000 m. Figure 6 shows the vertical and horizontal component
shot gathers with the PP and PS events recorded on each. Amplitudes have been normalized
trace-by-trace to focus just on the kinematics of the events.

The first step to reconstruct pure S-wave traveltimes from PP and PS data in the plane-
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FIG. 5. Velocity model used for computing synthetic traces.

wave domain is to apply a τ -p transform to the input data. Figure 7 shows the input data
transformed to the τ -p domain. The first thing we notice is that undesired events appear on
the data. Two flat events at 1s and 1.5s on the PP and PS data are prominent. When work-
ing with convolution and cross correlation methods, care must be taking to assure that the
data involved in these operations are actual events. Cross correlation of coherent numeri-
cal noise with the actual events may produce unphysical events in the output. Additional
filtering may be needed in this case to remove the numerical artifacts introduced by the τ -p
transform.
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FIG. 6. PP (left) and PS (right) synthetic events computed by ray-tracing. Trace-by-trace normal-
ization has been applied to focus just in the kinematics of the events.

6 CREWES Research Report — Volume 26 (2014)



Computing pseudo-shear-wave data

p x 1000 (s/m)

τ
 (

s
)

τ−p PP data

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p x 1000 (s/m)
τ
 (

s
)

τ−p PS data

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

FIG. 7. τ -p transform of the synthetic data shown in Figure 6.

After cross correlating and convolving the τ -p data as discussed in the previous section
we get what can be interpreted as the τ -p transform of the pseudo-shear-wave data we
are trying to retrieve (Figure 8). It is important to note how the presence of the artifacts
produced by the τ -p transformation has resulted in the generation of even more fake events,
after cross correlations and convolutions have been computed.

Finally, the pseudo-shear-wave τ -p data are transformed back to the x-t domain. The
result of this is shown in Figure 9. There we can see how the retrieved SS data follows
very closely the red line indicating the expected SS traveltimes. Both traveltimes begin
to disagree for offsets larger than 550m. This is very close to the critical offset for PS
conversions we expect from the velocity model used. Assuming a P-wave arriving with an
incident angle of 90◦, the maximum S-wave emergence angle can be computed following
Snell’s law as θcritS = sin−1(Vs/Vp). The maximum offset we may expect for a SS reflection
with that angle is xcritss = Z tan(θcritS ), where Z is the depth to the interface. Plugging in
the values we have in our model we get a maximum offset of 577m. Beyond that offset
the retrieved traveltimes underestimate the actual SS traveltime. This is a result of adding
traveltimes that do not reach the angles required for an actual SS event at those offsets.

The scaling and filtering issues we can see in Figure 9 are beyond the scope of this work
and will be addressed in a different study.
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FIG. 8. τ -p transform of the pseudo-shear-wave data after performing all correlations and convolu-
tions required for the PP+PS=SS method.
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FIG. 9. Pseudo-shear-wave data after inverse transformation to the x-t domain. The red line indi-
cates the expected SS traveltimes.
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CONCLUSIONS

The PP+PS=SS method in the plane-wave domain appears to be able to retrieve the
kinematics of pure S-wave reflections given PP and PS data. This may be useful to sim-
plify the processing and analysis of converted-wave data. Pure S-wave reflections can be
processed using the same methods developed for P-waves, without the need for accounting
for complicated asymmetrical raypaths.

For this method to be successful, the algorithm used for the τ -p transformation must be
relatively free of artifacts. The PP+PS=SS method relies on the use of cross correlations
and convolutions that predict new events from pre-existing ones. Hence, it is important that
the input to this process only contain the events we need in the reconstruction. Otherwise,
unphysical events or crosstalk will be present in the output data. Alternative ways of getting
access to the rayparameter domain should be considered. Using a radial transform instead
of a τ -p transform might alleviate the introduction of artifacts into the data, since it is an
artifact-free, exactly invertible transform.
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