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ABSTRACT 
In this paper, four methods of seismic wavelet estimation are investigated: the 

statistical method, the full wavelet method, the constant phase method and the Roy White 
method. The influences of algorithm parameters and data types on the wavelet estimation 
are also analyzed. It turns out that different wavelet estimation methods may give 
different results. They are influenced differently by parameter values and the data used. 
The best method needs to be determined for the dataset at hand and different parameter 
values need to be tested by trial and error. What is more, a minimum-phase wavelet is 
modeled as a linear-phase wavelet, which may make minimum-phase wavelet estimation 
more simple and robust.   

INTRODUCTION 
The seismic wavelet is the important link between seismic data and stratigraphy as 

well as rock properties of the subsurface. Seismic wavelet estimation is done to 
deconvolve the seismic trace, tie the well log to the seismic data, design inversion 
operator and etc. 

In the stationary case, the seismic trace ( )s t  can be modeled by the convolution of the 

seismic wavelet ( )w t  and the reflectivity ( )r t  plus noise ( )n t  (Sheriff and Geldart, 
1995) 

 ( ) ( ) ( ) ( )s t w t r t n t= • + . (1) 

Here we ignore all the other physical effects of wave propagation such as wavefront 
spreading, transmission loss, multiples, attenuation, and anything else conceivable. Noise 
( )n t  is assumed to be white and stationary. 
Two kinds of idealized wavelets are most common in geophysics. One is the minimum 

-phase wavelet, which models the recorded seismic wavelet. It has no energy before time 
zero and has the majority of its energy concentrated at the front. The other is the 
constant-phase wavelet, which models the residual wavelet after deconvolution. It has 
energy before time zero and has a constant-phase across dominant frequencies. Among 
constant-phase wavelets, the zero-phase wavelet, which is symmetrical about time zero, 
is the best for interpretation (Simm and Bacon, 2014). Figure 1 shows a minimum-phase 
wavelet and a 100-degree phase wavelet in the both time and frequency domains. They 
share the same amplitude spectrum. In the time domain, the trough of the minimum-
phase wavelet, where the absolute value of its amplitude is the maximum, is 10 samples 
away from the time zero while it is 3-sample-distance in the case of the constant-phase 
wavelet. 

Two reflectivity series are created as ( )r t . One is a synthetic of random time series. 
The other is calculated from the p-sonic and density logs of well 12-27 in the Hussar 
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experiment after log editing and depth-time conversion. Time zero is assumed to start at 
the top of the logs, neglecting the overburdens. Figure 2 shows the synthetic and real 
reflectivities in the both time and frequency domains. From the amplitude spectrum in 
decibels in panel b), we can observe that the synthetic reflectivity has the constant power 
at all frequencies while the power of real reflectivity is relatively low at low and high 
frequencies. So the synthetic reflectivity has a white spectrum while the real reflectivity 
has a colored spectrum. 

Convolving a reflectivity with a wavelet from above and adding random noise ( )n t , a 
seismic trace is created as is shown in Figure 3. The signal to noise ratio is 3 in the time 
domain. Here we ignore the drift time caused by anelastic attenuation. We assume the 
reflectivity time is well calibrated to the seismic time (aligned) or there is only a static 
time shift between them (misaligned). 

Next, the seismic wavelet ( )w t  will be estimated using the seismic trace ( )s t  only 

(the statistical method) or using both the seismic trace ( )s t  and the reflectivity ( )r t  (the 
full wavelet method, the constant phase method and the Roy White method). The 
influences of algorithm parameters (the data window length, desired wavelet length and 
data window type) and data types (noise-free or noisy, synthetic or real reflectivity, 
aligned or misaligned reflectivity) on the wavelet estimation in each method will also be 
tested and analyzed. 

 

 

FIG 1: A minimum-phase wavelet and a constant-phase wavelet is shown as a) the time domain 
waveforms, b) the amplitude spectra and c) the phase spectra. In panel a), the trough of the 
minimum-phase wavelet is 10 samples away from the time zero while 3 samples for the constant-
phase wavelet.  
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FIG 2: The synthetic and real reflectivities a) in the time domain and b) in the frequency domain. 

 

FIG 3: a) Reflectivities calculated from well 12-27. The red one is 30 samples (0.06 s) advanced 
relative to the blue one. b) Seismic traces from the convolution of the blue reflectivity in panel a) 
with the minimum-phase wavelet in Figure 1 without and with noise. c) Seismic traces from the 
convolution of the blue reflectivity in panel a) with the constant-phase wavelet in Figure 1 without 
and with noise. Thus, the blue reflectivity in panel a) is aligned with seismic traces in panels b) 
and c) while the red reflectivity not. 
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THE STATISTICAL METHOD 
The statistical method estimates the wavelet from the seismic data alone. Take the 

seismic trace ( )s t  and calculate its autocorrelation we get  

  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

s

w r rn nr n

t w t r t n t w t r t n t

w t r t w t r t w t r t n t

n t w t r t n t n t
t t w t t w t t t

φ

φ φ φ φ φ

= − • − + − • • +      
= − • − • • + − • − •

+ − • • + − •

= • + − • + • +

 (2) 

(Margrave, 2013), where •  indicates convolution; ( )s tφ , ( )w tφ , ( )r tφ  and ( )n tφ  is the 

autocorrelation of ( )s t , ( )w t , ( )r t  and ( )n t  respectively; ( )rn tφ  and ( )nr tφ  is the 

crosscorrelation of ( )r t and ( )n t . Assume ( )r t  and ( )n t  are two different random series 
with infinite lengths 

 ( ) P ( )r rt tφ δ= , (3) 

 ( ) P ( )n nt tφ δ= , (4) 

 ( ) ( ) 0rn nrt tφ φ= =  (5) 

where Pr  and Pn  is the power of ( )r t  and ( )n t . Using equations 3, 4, and 5, equation 2 
becomes 

 
( ) P ( ) P ( )

( )
s r w n

w

t t t
a t

φ φ δ
φ

= +
≈

 (6) 

where a  is a constant. In the frequency domain, equation 6 is 

 2 2| ( ) | | ( ) |S f a W f≈  (7) 

where ( )S f  and ( )W f  is the Fourier transform of ( )s t  and ( )w t . Thus, the amplitude 
spectrum of the wavelet can be determined from the autocorrelation of the seismic trace. 
However, by taking autocorrelation, all the phase information is lost. So a minimum or 
constant phase has to be supplied. 

The estimation procedure is: 
1. Extract ( )s t  of a window length. In the real case, the window is usually over the 

zone of interest. Since ( )s t  is stationary here, the window location does not matter. 
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2. Calculate ( )s tφ . The number of autocorrelation lags is equal to the number of the 
estimated wavelet samples. A longer autocorrelation will estimate a longer wavelet, 
whose amplitude spectrum is closer to the seismic and thus less smooth. 

3. Apply a Gaussian or Bartlett window to ( )s tφ  in order to get a smoothed 
amplitude spectrum. 

4. Calculate the Fourier transform of ( )s tφ  and take its square root to get | ( ) |W f . 

5. Supply a minimum or constant phase ( )w fϕ  

 ( )( ) | ( ) | wi fW f W f e ϕ=  (8) 

where the minimum-phase ( )m fϕ  is calculated by     

 ( ) (ln(| ( ) |))m f H W fϕ =  (9) 

where H denotes the Hilbert Transform (Margrave, 2013).  

6. Calculate the inverse Fourier transform of ( )W f  to get ( )w t . 

Figure 4 shows the results of estimating the minimum-phase wavelet by the statistical 
method. The minimum-phase is supplied to get the time domain waveform. To analyse 
the influence of a certain parameter value or a data type on the result, only one variable 
changes at one time while others keep the same. Panels a) and b) show the estimated 
wavelets from the seismic trace for different window lengths. A longer window gives 
more accurate estimation. In panels c) and d), the desired wavelet lengths, or the 
maximum correlation lags, are different. The shorter one produces a smoother amplitude 
spectrum and a less oscillatory time-domain wavelet. Panels e), f), g) and h) exhibit 
different window types applied to the time-domain autocorrelation. After applying the 
Gaussian or Bartlett window, the amplitude spectrum becomes smoother and the time-
domain wavelet is less oscillatory. The Gaussian window does a better job than the 
Bartlett window. In panels i) and j), wavelet estimation is done on a noise-free and noisy 
seismic trace respectively. Accurate estimation can be still got in the presence of noise. 
Panels k) and l) compare the wavelets estimated from seismic traces created by the 
synthetic and real reflectivities. The estimation in the real reflectivity case is a little 
distorted, the reason may be that the statistical algorithm assumes the reflectivity 
spectrum is white while the real one is colored. Thus, the algorithm assigns all the 
variations in the trace spectrum including the effect from colored spectrum to the wavelet.  
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FIG 4: Minimum-phase wavelet estimation by the statistical method.  

a) b) 

c) d) 

e) f) 

g) h) 

i) j) 

k) l) 
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Similar results are obtained by estimating the constant-phase wavelet by the same 
method. Figure 5 shows the estimated constant-phase wavelet from the noisy seismic 
trace created by the real reflectivity choosing suitable parameter values.  

 

FIG 5: Constant-phase wavelet estimation by the statistical method. 

THE FULL WAVELET METHOD 
The full wavelet method uses both the seismic and reflectivity to determine the 

amplitude and phase spectra of the wavelet by applying a least-square filter which shapes 
the reflectivity to the seismic. An exact wavelet can be extracted without assumption 
about its amplitude or phase. However, this method is very sensitive to the quality of 
seismic-to-well ties (Hampson-Russell Software, 2013). 

For simplicity, a five-sample seismic trace ( ) [ (0), (1), (2), (3), (4)]s t s s s s s=  and a five-

sample reflectivity ( ) [ (0), (1), (2), (3), (4)]r t r r r r r=  are used to estimate a three-sample 

wavelet ( ) [ ( 1), (0), (1)]w t w w w= −  to illustrate this algorithm. The wavelet is designed to 
have samples before time zero to make it more general. In other word, if the wavelet to 
be estimated is a causal one, the samples before time zero should be zero. 

Equation 1 can be written as the following design equation neglecting the noise ( )n t  

 

(1) (0) 0 (0)
( 1)(2) (1) (0) (1)
(0)(3) (2) (1) (2)
(1)(4) (3) (2) (3)

0 (4) (3) (4)

r r s
wr r r s
wr r r s
wr r r s

r r s

   
   −        =     

    
   
   

. (10) 

To find the least squares solution to equation 10, multiply it by the transpose of the 
leftmost matrix 

 

(1) (0) 0
(1) (2) (3) (4) 0 ( 1) (1) (2) (3) (4) 0(2) (1) (0)
(0) (1) (2) (3) (4) (0) (0) (1) (2) (3) (4)(3) (2) (1)
0 (0) (1) (2) (3) (1) 0 (0)(4) (3) (2)

0 (4) (3)

r r
r r r r w r r r rr r r
r r r r r w r r r r rr r r

r r r r w rr r r
r r

 
  −         =       

    
 
 

(0)
(1)
(2)

(1) (2) (3) (3)
(4)

s
s
s

r r r s
s

 
        

  
 
 

, (11) 
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(0) (1) (2) ( 1) ( 1)
(1) (0) (1) (0) (0)
(2) (1) (0) (1) (1)

r r r rs

r r r rs

r r r rs

w
w
w

φ φ φ φ
φ φ φ φ
φ φ φ φ

− −    
    =    
    
    

. (12) 

A stability factor is added to (0)rφ  to make the solution stable. Solving equation 12 can 
get the estimated wavelet.  

The estimation procedure is 

1. Extract ( )s t  and ( )r t of a window length.  

2. Choose a certain wavelet length.  

3. Build the normal equation 12 and calculate ( )r tφ and ( )rs tφ  of the corresponding 
lags.  

4. Solve equation 12 to get the estimated wavelet. 

Figure 6 shows the time-domain results of estimating wavelets by the full wavelet 
method. Panel a) is the estimated wavelets from the seismic trace of different window 
lengths. Longer windows give more accurate estimation. The desired wavelet lengths in 
panel b) are different and it turns out they do not affect waveform. Panel c) exhibits 
wavelet estimation from noise-free and noisy seismic traces. The noisy one has 
unrealistic trembling compared to the noise-free one. As is shown in panel d), wavelets 
are estimated from the synthetic and real reflectivities and they appear quite similar. The 
wavelets in panel e) are estimated from the aligned and misaligned reflectivities shown in 
the Figure 3 panel a). The latter one seems to own a right waveform but an obvious time 
shift. The maximum crosscorrelation coefficient between it and the true wavelet is close 
to 1 at the -30 lags. The negative lag value means it is delayed relative to the true one.  
Convolve the misaligned reflectivity with this delayed wavelet to get a synthetic trace in 
panel f), which matches quite well with the true seismic trace in Figure 3 panel b). Thus, 
the advancement of the reflectivity relative to the seismic trace is compensated by the 
delay of the estimated wavelet and this can be proved by mathematics. 

Based on equations 10-12, assume ( )r t  is advanced by two samples relative to ( )s t , 
namely ( ) [ (2), (3), (4),0,0]r t r r r=  in this case. So equation 10 becomes 

 

(3) (2) 0 (0)
( 1)(4) (3) (2) (1)
(0)0 (4) (3) (2)
(1)0 0 (4) (3)

0 0 0 (4)

r r s
wr r r s
wr r s
wr s

s

   
   −        =     

    
   
   

. (13) 

Equation 13 is essentially 
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(3) (2) 0 (0)
( 3)(4) (3) (2) (1)
( 2)0 (4) (3) (2)
( 1)0 0 (4) (3)

0 0 0 (4)

r r s
wr r r s
wr r s
wr s

s

   
   −        − =     −    
   
   

. (14) 

We are actually calculating ( ) [ ( 3), ( 2), ( 1)]w t w w w= − − − , which is delayed by two 

samples by regarding it as ( ) [ ( 1), (0), (1)]w t w w w= − . 

Panel g) and h) test the constant-phase wavelet estimation. The former one is 
estimated from the noise-free trace and synthetic reflectivity while the latter one is from 
the noisy trace and the real reflectivity which suffers from unrealistic trembling. 

 

FIG 6: Wavelet estimation by the full wavelet method. 
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THE CONSTANT PHASE METHOD 
The constant phase method uses the seismic data to determine the amplitude spectrum 

the same way as the statistical method. Then the reflectivity is used to determine the 
phase by constraining the wavelet phase to an approximate constant. The statistical 
wavelet, which is the starting solution, suffers from invalidity of the white reflectivity 
assumption. With the reflectivity available, the distortion can be corrected via dividing 
the statistical wavelet spectrum by the smoothed reflectivity spectrum (Hampson-Russell 
Software, 2013). 

The procedure modified from Hampson-Russell Software manual is 

1. Estimate the amplitude spectrum of the wavelet using the seismic data alone by the 
statistical method. 

2. Calculate the amplitude spectrum of the reflectivity and smooth it. Divide the 
wavelet amplitude spectrum from 1 by this smoothed reflectivity amplitude 
spectrum. 

3. Apply a series of constant-phase rotations ranging from -180 to 179 degrees with 1 
degree interval to the wavelet amplitude spectrum after correction. 

4. For each constant-phase rotation, calculate its time-domain wavelet. Convolve this 
wavelet with the reflectivity to get a synthetic trace. Calculate the maximum 
crosscorrelation coefficient between this synthetic trace and the seismic trace 
among a range of lags. 

5.  Choose the maximum coefficient among the 359 ones. The corresponding 
constant-phase is the estimated wavelet phase and the lag where to get this 
coefficient value indicates a time shift existing between the seismic trace and 
reflectivity. 

Figure 7 shows the results of the constant phase method. Panel a) shows the amplitude 
spectra in decibels of the well log reflectivity, true wavelet, estimated wavelet by the 
statistical method and the estimated wavelet by the constant phase method, which is 
corrected after dividing by the reflectivity amplitude spectrum convolved with a 14 Hz 
width Gaussian window smoother. According to panel a), the red one is more consistent 
with the true one than green one from 0 to 125 Hz due to the correction while the high 
frequency components of the red one are unstable because the denominator is very small 
at high frequencies due to the anti-aliasing filter applied to the reflectivity. However, that 
should not be a problem since these high frequency components are not very useful for 
geophysics exploration and are always contaminated by noise. After filtering the 125-250 
Hz components out and apply the correct constant-phase of 100 degrees, we get the time 
domain wavelets in panel b). Clearly, the estimated wavelet after amplitude spectrum 
correction by the constant phase method is more accurate than the one without correction. 
The wavelet estimation in panels c) and d) are all done with the real reflectivity. Panel c) 
compares the noise-free and noisy cases. They both give decent estimations about the 
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constant-phase and the time shift. But the estimated wavelet is contaminated with noise. 
The wavelets in panel d) are obtained from the aligned and misaligned reflectivities. They 
both estimate decent phase. In the misaligned case, it detects the right time shift. The 
impacts of the data window length and the desired wavelet length are the same as the 
statistical method since they estimate the wavelet amplitude spectrum in the same way. 

 

FIG 7: Wavelet estimation by the constant phase method. 

THE ROY WHITE METHOD 
The Roy White method estimates the wavelet by correlating the well log and seismic 

data. There are two steps modified from White and Simm (2003): 

1. Search the best tie location using the coherence function assuming ( )r t  is noise 
free 

 ( )

2

*

* *

( , ) ( )

[ ( , ) ( , ) ] ( ) ( )
f

f f

R m f S f
G m

R m f R m f stab S f S f

 
 
 =

+

∑

∑ ∑
 (15) 

where *  denotes complex conjugate, ( , )R m f  is ( )r t  shifted by m samples relative to 
( )s t  in the time domain and then applied the forward Fourier transform. ( )r t  is delayed 

when 0m >  and delayed when 0m < . ( )S f  is the Fourier transform of ( )s t . stab  is a 
stability factor to make the division stable. 

 CREWES Research Report — Volume 26 (2014) 11 



Cui and Margrave 

The coherence function ( )G m is essentially the crosscorrelation between ( )r t  and 
( )s t  normalized by the autocorrelations of  ( )r t  and ( )s t . It measures the proportion of 

energy in the seismic trace that can be predicted from the well-log reflectivity. 

We search for N  to maximize the coherence function 

 ( ) max[ ( )]G N G m= , –M ≤ m ≤ M (16) 

where ( )r t  and ( )s t  reaches the best alignment after ( )r t  is shifted by the N . 

2. Estimate the wavelet at the best tie location, where equation 1 in the frequency 
domain neglecting the noise is 

 ( ) ( , ) ( )S f R N f W f= . (17) 

Multiplying equation 17 by *( , )R N f  on both sides we get  

 * *( , ) ( ) ( , ) ( , ) ( )R N f S f R N f R N f W f= . (18) 

Divide equation 18 by *( , ) ( , )R N f R N f  on both sides and add stab  to the 
denominator to make the division stable  

 
*

*

( , ) ( )( )
( , ) ( , )

R N f S fW f
R N f R N f stab

=
+

. (19) 

Calculate the inverse Fourier transform of ( )W f  to get the estimated wavelet  

 ( ) [ ( )]w t IFT W f= . (20) 

Thus, the length of seismic trace and reflectivity analysed is equal to the length of the 
estimated wavelet. 

Figure 8 is the results of the Roy White method. Panels from a) to d) estimate wavelets 
from the noise-free synthetic reflectivities. In panel a), the seismic trace and reflectivity 
used are aligned and but the coherence function predicts some lags of the reflectivity 
relative to the seismic trace in both constant-phase and minimum-phase wavelet 
estimation. Similar to the full wavelet method, the predicted lags are compensated by the 
same lags of the estimated wavelet relative to the true wavelet in the opposite direction in 
panels c) and d). These unrealistic lags are caused by the embedded waveform since the 
coherence function curve looks very similar to the absolute value of the corresponding 
embedded wavelet and the number of samples between the wavelet trough (maximum 
absolute value) and time zero (Figure 1 panel a)) is equal to the corresponding unrealistic 
lag. Those demonstrate that the coherence function reaches the maximum value by 
matching the wavelet troughs. Panel b) shows the misaligned case where the detected 
lags are the sum of the real lags and the unrealistic lags. Panels c) and d) also compare 
impact of the trace and reflectivity lengths. It turns out that shorter length can avoid 
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trembling side lobes. Panels from e) to g) work on the misaligned synthetic reflectivity 
case to test the influence of noise. The coherence function in panel e) still work well but 
the estimated wavelet is contaminated with noise. Panels from h) to j) work on the noise-
free and the misaligned case to test the influence of real reflectivity. The coherence 
function in panel h) still works well and the estimated wavelets are quite similar from the 
synthetic and real reflectivities. 

                      FIG 8: Wavelet estimation by the Roy White method. 

MODELING THE MINIMUM-PHASE AS A LINEAR-PHASE 
It is interesting to notice that the minimum-phase and constant-phase wavelets in 

Figure 1 panel a) have very similar waveforms and there is a time shift between the two. 
The similarity can be explained by modeling the minimum-phase wavelet as a linear-
phase on most approximate to it. Figure 9 shows the procedure of modeling the 
minimum-phase wavelet (the same blue curves in panels a), c) and e)) as the linear-phase 
wavelet (the red curve in panel e). Panels b), d) and f) are the phase spectra of the 
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wavelets in panels a), c) and e) respectively. First, take the amplitude spectrum of the 
minimum-phase wavelet and supply a zero-phase to get a zero-phase wavelet (red curve 
in panel a)). Then, apply a series of constant-phase rotations ranging from -180 to 179 
degrees with 1 degree interval to the zero-phase wavelet. For each constant-phase 
rotation, calculate its time-domain wavelet and calculate the maximum crosscorrelation 
coefficient between this constant-phase wavelet and the minimum-phase wavelet. Choose 
the maximum coefficient among the 359 ones, which is about 0.97 at a time shift of 0.016 
s (panel e)). The corresponding constant-phase to maximize the correlation is 125 degrees 
(panels c) and d)). Thus, the minimum-phase wavelet in this case can be modeled as a 
125-degree constant-phase wavelet with a 0.016 s time shift, which is essentially a linear-
phase wavelet shown in panel f), where the linear-phase line is nearly tangent to the 
minimum-phase curve. 

This approximation is consistent with the procedure of seismic-to-well ties, in which 
the reflectivity calculated from the well log data is convolved with a zero-phase wavelet 
to create a synthetic seismogram. Then, the synthetic seismogram is stretched or 
squeezed, namely time shifted, as well as constant-phase rotated to match the seismic 
trace with minimum phase wavelets embedded.  What is more, this approximation makes 
the minimum-phase wavelet estimation easier since the linear phase is more simple and 
more robust in the presence of noise.     

 

FIG 9: The procedure of modeling the minimum-phase wavelet as the most approximate linear-
phase wavelet.   
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CONCLUSIONS 
The characters of all the four wavelet estimation methods are summarize in Table 1. 

 Statistical 
method 

Full wavelet 
method 

Constant 
phase method 

Roy White 
method 

Data used Seismic Seismic and well log 

Wavelet 
estimated 

Any wavelet 
with supplied 

phase 
Any wavelet Constant- 

phase wavelet Any wavelet 

Data window 
length 

Longer data length gets  more accurate 
estimation 

 Data window 
length=desired 
wavelet length, 
longer length 

causes trembling 
side lobes 

Desired wavelet 
length 

Shorter length 
produces 
smoother 
amplitude 

spectrum and 
more stable 
waveform 

No influence 

Shorter length 
produces 
smoother 
amplitude 

spectrum and 
more stable 
waveform 

Noise Robust 
unrealistic 
trembling 
waveform 

Robust in 
estimating 
phase and 

lags, 
unrealistic 
trembling 
waveform 

 

Robust in 
estimating lags, 

unrealistic 
trembling 
waveform 

 

Real log  
reflectivity Distorted Robust Robust Robust 

Misalignment N/A Robust Robust Robust 
Table 1: Summary of wavelet estimation methods. 

Different wavelet estimation methods have different characteristics. They are 
influenced differently by parameter values and data used so they may give different 
results. The best method needs to be determined for the dataset at hand and different 
parameter values should be tested by trial and error. Certain minimum-phase wavelets 
can be modeled as the linear-phase wavelets, which may make minimum-phase wavelet 
estimation more simple and robust.   
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