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ABSTRACT

At each stage of seismic processing we adopt an underlying physical or mathematical
model, and rely on its degree of incompleteness (relative to what is actually experienced
by a seismic wave) being either negligible, or irrelevant to the processing task in question.
For some tasks we can proceed with remarkably simplistic approximations, but in seismic
inversion, our choices are few: any parameter or process affecting the seismic wave has to
be included. The geophysical literature reflects the broad range of possible responses to this
issue: suppressing elastic conversions in order to use acoustic physics; selecting analysis
domains which boost P-wave influences over S-wave, etc. A smaller number of researchers
have grappled directly with incompleteness, through probabilistic and numerical schemes.
We may be able to come to grips with this problem more deterministically, if we learn to
view complex physical models as being perturbations of simple physical models. This will
be an important part of a meaningful attempt to apply full waveform inversion / IMMI to
multicomponent land data.

INTRODUCTION

A problem we are likely permanently stuck with in seismic inversion is that we don’t
have an equation that exactly expresses seismic wave propagation through a real geological
volume, we just have approximations. Approximations that have had at least moderate
success and staying power in our field (e.g., scalar, acoustic, elastic-isotropic, viscoelastic,
elastic-anistropic) are those which have found environments where the incompleteness of
the physics model is insignificant.

Note that insignificant might mean “the errors due to the incompleteness of the physics
model are small”, but it also might mean “the neglected physics is important generally, but
has no bearing the processing algorithm we are currently using”. What is, or is not, an
adequate physics model depends on whether the task at hand is this or that type of decon-
volution, deghosting, demultipling, imaging, inversion, etc. For instance, scalar physics
involving VP but not density is often satisfactory for imaging the locations of reflectors.
But for properly imaging reflectivity at depth, density, VS and Q may all be necessary,
since they dictate transmission losses through the overburden.

In full waveform inversion, there would seem to be few shortcuts: if a certain parameter
influences wave propagation, even if we have no interest in knowing it, then it must be
included in the inverse framework, even if only in a “garbage variable” through which
its associated data variations are explained. Of course, we don’t know what the full set
of parameters are for any given geological model and/or production process we would
like to investigate with seismic data. One is reminded of the “known-unknowns” political
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discussions of a few years ago∗.

The geophysical inversion literature contains many instances in which physics incom-
pleteness plays an important role. In full waveform inversion, a range of approaches, for
instance in which elastic codas are suppressed in order to use acoustic physics (Brenders
and Pratt, 2007), and in which certain domains suppress later-time events whose origins
tend to require more complex models (Shin and Cha, 2009) are reported, as are, more re-
cently, attempts to include as much elastic wave physics as possible (Jun et al., 2014). In
particular, Jun et al. attribute to Operto et al. (2013) the statement that “when applying an
acoustic FWI to real onshore data, incomplete modelling increases nonlinearity”. While
no doubt true, this may be too broad a characterization to allow for progress†. The purpose
of this paper is to begin framing a clearer characterization of the unavoidable incomplete-
ness of our seismic wave propagation model. Hansen et al. (2014) make very significant
progress accounting for imperfect physics in a GPR experiment, using a probabilistic for-
mulation. What we are after is something more deterministic, and accessible to analysis as
well as numerics.

FIG. 1. Just don’t forget the little fellow’s in there.

Incompleteness of the physics model technically falls within the domain of appraisal
and/or resolution analysis (Miller and Routh, 2007; Snieder, 1998; Oldenburg and Li,
1999), in the category of modelling errors (Hansen et al., 2014). But, here we will work
with it as if it is distinct from other ways a “true” model is badly constrained by a geophys-
ical experiment.

∗http://en.wikipedia.org/wiki/There_are_known_knowns
†Suppose one were to do AVO inversion on an event that had undergone strong attenuation in the over-

burden, but which had had its amplitudes preprocessed using elastic assumptions only. We could refer to the
resulting difficulty and error as being the result of increased nonlinearity, but we wouldn’t be accomplish-
ing much by doing so. It is difficult to imagine that for instance iterating the elastic AVO inversion in this
circumstance would lead us to, or even towards, the right answer.
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A GENERAL PERTURBATION MODEL

The idea as we see it currently is that a forward modelling equation like the wave
equation is expressed as an operator equation

L(r, ω|m)P (r, ω|m) = 0, (1)

that depends on space and time (or in this case frequency), and also on a general model
vector m. The vector m is a function of space— we view it as containing all of the in-
formation we could want to determine in a certain geological volume—but it has a second
dimensionality, which is the number and type of parameter we solve for. A realization of
m could therefore be of length M×N, where there are M model parameters and N volume
elements. Or, we could imagine equally well that there is a separate M length vector as-
signed to each of the N volume elements. The key point is that one m can be distinguished
from another by having different numerical values for a certain parameter, but also in the
number, and type, of parameters enumerated inside it.

An example is the one-parameter scalar operator

L(r, ω|c) = ∇2 +
ω2

c2(r)
; (2)

another is the two-parameter acoustic operator

L(r, ω|κ, ρ) = ∇ · 1

ρ(r)
∇+

ω2

κ(r)
, (3)

and the two-parameter viscoacoustic operator

L(r, ω|c,Q) = ∇2 +
ω2

c2(r)

[
1 +

i

2Q(r)
− 1

πQ(r)
log

(
ω

ω0

)]2
. (4)

This can go on, to include elastic, viscoelastic, anisotropic, etc. media. Let us imagine two
geophysicists, a right one and a wrong one. The right one has chosen a physical model
and operator, say L(r, ω|m), that adequately describes the geophysical experiment, and
the wrong one has chosen one, say L(r, ω|m′), which has either spurious parameters or
the wrong number of them. The right geophysicist has equations like the ones we have
described above, and the wrong one has others, namely

L(r, ω|m′)P (r, ω|m′) = 0, (5)

where perhaps an acoustic model

L(r, ω|κ′, ρ′) = ∇ · 1

ρ′(r)
∇+

ω2

κ′(r)
, (6)

rather than the more appropriate three-parameter viscoacoustic model is assumed. The
perturbation picture of incomplete physical modelling calls for a perturbation operator

V(r, ω|m,m′) = L(r, ω|m)− L(r, ω|m′), (7)
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to be defined to characterize the difference between the medium of the right geophysicist
and the wrong geophysicist. Now, neither the right geophysicist nor the wrong geophysicist
yet know the correct values of the parameters in the subsurface. So, there are two ways for
a general perturbation of this kind to take on nonzero values. If the two operators are in
agreement on the type of model to solve for, but the numerical values of these parameters
differ, V 6= 0. However, if the numerical values of shared model parameters between the
two types of model are equal, but there are extra parameters, also V 6= 0.

A perturbation operator of this kind can be included in a sensitivity calculation, in
principle. The Green’s operator or resolvent being

G = L−1, (8)

the perturbation in the field associated with any of the kinds of

V 6= 0

above is

δP = GVP. (9)

The question is, within this model, how, precisely and in detail, does the influence of
model-type errors co-mingle with standard errors? Where by standard errors we mean
discrepancies between correctly-chosen medium parameter estimates and their true values.

The coupling of known-unknowns with unknown-unknowns in amplitude inversion

To begin to grapple with this issue, we consider a difference quantity ∆, defined as the
difference between two reflection coefficients. The difference in general is

∆(θ, ω, ...|{parameter set 1}, {parameter set 2})
= R(θ, ω, ...|{parameter set 2})−R(θ, ω, ...|{parameter set 1}).

(10)

For example, parameter set 1 could be two-parameter acoustic, and parameter set 2 could
be three-parameter viscoacoustic:

R(θ|{κ1, ρ1}),
R(θ, ω|{κ2, ρ2, Q2}),

(11)

for a sensitivity of

∆(θ, ω|{κ1, ρ1}, {κ2, ρ2, Q2}) = R(θ, ω|{κ2, ρ2, Q2})−R(θ, ω|{κ1, ρ1}). (12)

Expanding in series about jumps across the boundary in each parameter, we have

∆(θ, ω|{κ1, ρ1}, {κ2, ρ2, Q2}) = ∆(1) + ∆(2) + ..., (13)

where

∆(1) =Γκ

[(
∆κ

κ

)
2

−
(

∆κ

κ

)
1

]
+ Γρ

[(
∆ρ

ρ

)
2

−
(

∆ρ

ρ

)
1

]
+ ΓQ

(
∆Q

Q

)
2

, (14)
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at first order, with coefficients Γx, and

∆(2) =Γκκ
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∆κ

κ

)2
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,

(15)

with coefficients Γxy, etc. At first order, equation (13), we see a separation of the sensitivity
into two independent sets of contributions. The first two terms represent jumps in the the
reflectivity due to our imperfect reconstruction of correctly-included parameters — “known
unknowns”. Whereas in the third term we have a linear contribution from the “unknown
unknown” — the parameter Q whose presence we are ignorant of in this example. At
second order, an even more interesting phenomenon appears. We have second order con-
tributions of the “unknown unknowns” (the ΓQQ term), and “known unknowns” (e.g., the
Γκκ term). However, we have cross-terms also, in which known- and unknown-unknowns
couple to determine the sensitivity. For instance, the ΓρQ term.

CONCLUSIONS

How exactly to use a formalism like this to analyze and manage incomplete physics is
not clear. A nominal approach is to analyze residuals in a given inversion methodology as
compared to the expected sensitivities in a certain modelling domain, and infer “the un-
modelled sensitivities” as being given by “one minus the modelled sensitivities”. Another
possibility is that one develops a library of model types and the interrelated ∆ operators
between them, and match the behaviour of our inversion as it proceeds. This is speculative;
we will proceed in the coming following the more cautious but compelling motivation that,
at the very least, a quantitative accounting of the missing physics in our inversion schemes
is needed.
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