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ABSTRACT

The convergence properties and physical interpretability of full waveform inversion
updates are key issues as we contemplate practical FWI. One extension of standard FWI
updates that has been only superficially broached by the seismic community is the idea that
the sensitivity, or Fréchet kernel, used in the gradient calculation could be improved by ac-
commodating higher order model/wavefield relations. We present and analyze an approach
to constructing a second order sensitivity, and demonstrate its natural accommodation of
nonlinear reflection amplitudes of the type encountered when contrasts causing reflections
are large. In a companion paper we have proposed a way for second order data-model in-
teractions to be properly incorporated in the inverse Hessian. Those are not incorporated
in the updates we study here, and evidently do not adversely affect the inclusion in FWI of
second-order reflectivity.

INTRODUCTION

Seismic full waveform inversion (Lailly, 1983; Tarantola, 1984), which is being pur-
sued in broadband land multicomponent settings by CREWES (Margrave et al., 2013; In-
nanen, 2014a), involves defining an objective function (usually based on a least-squares
norm) and a starting model, and iteratively updating towards the minimum, assuming no lo-
cal minima obstruct the path. Descent-based methods like Newton, quasi-Newton, Gauss-
Newton, and gradient-based (Virieux and Operto, 2009; Operto et al., 2013; Pratt, 1999;
Shin et al., 2001; Plessix et al., 2013) all make use of the local gradient of the objective
function. The idea is that in order to find a valley bottom, going downhill, or something
like downhill, is your best option.

The gradient is the multidimensional derivative of the objective function with respect
to the model parameters. Because the objective function is itself a function of the forward
model, the gradient calculation ends up involving the derivative of the forward modelling
functional with respect to the model parameters. This internal derivative can be studied in
the framework of the Fréchet derivative (McGillivray and Oldenburg, 1990) and/or Gâteaux
derivative, and specific forms can be arrived at via the Born approximation (e.g., Innanen,
2014b), or rejection of nonlinearity in the relationship between the perturbed field and the
perturbed medium (Tarantola, 1984), or via adjoint state techniques (Plessix, 2006; Liu and
Trompe, 2006; Yedlin and Van Vorst, 2010).

Wu and Zheng (2014); Wu et al. (2014) point out that within the Fréchet derivative the
linearization of the medium perturbation and field perturbation relationship has accuracy
and convergence consequences for full waveform inversion, and formally invoke a nonlin-
ear renormalized solution of the scattering problem with which to compute the sensitivity.
Such extensions have also been introduced in optical tomography (Kwon and Yazici, 2010).

We will do something similar but with a specific focus on reflected seismic amplitudes.
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We point out that at any one step in iterated inversion, the objective function itself is ap-
proximated quadratically — i.e., as a quantity with at most second-order variability with
respect to the model parameters. What we attempt is to calculate the sensitivities accurate
to the same order to which we have approximated the objective function – namely, second
order. This leads to updates which in any one step precisely account for first and second
order data-model behaviour. This may have significant applicability in the incorporation
of AVO in FWI. Standard FWI updates with the correct inverse Hessian additions have
been shown to be, iteration by iteration, equivalent to applying linearized AVO inversion
to reflection data (Innanen, 2014b). If our second order sensitivities have been constructed
properly, we should likewise be able to see second order AVO (Stovas and Ursin, 2001; In-
nanen, 2013) being correctly accounted for in each FWI iteration, when the FWI equations
are applied in circumstances matching those in which AVO / AVA is typically carried out.

This paper proceeds in two steps. After introducing the terms and equations, the inverse
scattering series, nominally itself a framework for inversion (Weglein et al., 2003), is used
to arrive at nonlinear sensitivity calculations. Essentially, the denominator of the ratio
δG/δs, prior to taking the limit δs → 0, is built up from the sum of the first and second
order inverse scattering solutions for the perturbation. The general scalar formula for 2nd
order sensitivities as included in a Gauss-Newton update is the result of this first step. The
second step is to demonstrate analytically that the first iteration of a reflection full waveform
inversion scheme using these sensitivities reconstructs a single interface correctly to second
order in one step. A rough illustration of the subsequent convergence over 10 iterations is
given, suggesting that the uptick in convergence is significant.

Terms and equations

Equations

The wave fields P giving rise to our seismic data will be assumed to satisfy the scalar
equation [

∇2 +
ω2

c2(r)

]
P (r, rs) = δ(r− rs) (1)

in the space frequency domain P = P (r, rs, ω) for a receiver at r and a source at rs. For the
purposes of inversion we express the velocity in terms of the squared slowness parameter
s: [

∇2 + ω2s(r)
]
P (r, rs) = δ(r− rs). (2)

Here s(r) is the actual distribution of wave velocities in the subsurface. We suppose we
have access to a reference medium s0(r), different from s(r), and also the wave field G
propagating through it, which satisfies[

∇2 + ω2s0(r)
]
G(r, rs) = δ(r− rs). (3)

A Lippmann-Schwinger or scattering equation can be developed relating P and G:

P (r, rs) = G(r, rs)− ω2

∫
dr′G(rg, r

′)δs(r′)P (r′, rs). (4)
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The second term on the right-hand side can therefore be equated to the difference between
P and G,

δG(rg, rs) = P (rg, rs)−G(rg, rs) = δP (rg, rs), (5)

which we can variously associate with a small change in the field at any notional point in
the medium (which we will refer to as δG, as in the left side of equation 5), or the residuals,
the difference between a modelled and a measured field on some well defined measurement
surface (which we will refer to as δP , as in the right side of equation 5).

Full waveform inversion quantities

Full waveform inversion is the search for the distribution of medium properties which
minimizes the sum of the squares of the differences between measured and modelled data.
We seek, in other words, the medium for which

φ(s) =
1

2

∑
s,g

∫
dω|δP (rg, rs)|2 (6)

is at its smallest value. This is typically done iteratively, that is we have in hand a current
model iterate sn−1(r) and we work to calculate an update δsn−1(r) in order to determine
the next model iterate:

sn(r) = sn−1(r) + δsn−1(r). (7)

In a Newton method the update has the basic form

δsn(r) =

∫
dr′H−1(r, r′)g(r′), (8)

where g is referred to as the gradient and H−1 is referred to as the inverse Hessian. These
are functional derivatives of the objective function φ:

g(r) =
∂φ(s)

∂s(r)
, H(r, r′) =

∂2φ(s)

∂s(r)∂s(r′)
, (9)

and H1 is the functional inverse of H . It can be shown (Margrave et al., 2011) that the
gradient is given by

g(r) = −
∑
g,s

∫
dω
∂G(rg, rs)

∂s(r)
δP ∗(rg, rs), (10)

where δP ∗ is the complex conjugate of the residuals (the difference between the data and
the current modelled field), in a product with the sensitivities or Jacobian ∂G/∂s. In this
paper we will not be concerned with the full form of the Hessian, but rather an approxima-
tion of it which when used forms a Gauss-Newton update:

H(r, r′) ≈ HGN(r, r
′) =

∑
g,s

∫
dω
∂G(rg, rs)

∂s(r)

∂G(rg, rs)

∂s(r′) (11)

Our focus in this paper will be on the sensitivities.
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LINEAR AND NONLINEAR SENSITIVITIES

In a companion paper, we point out that the full Newton update is inappropriate when
the sensitivities are approximated linearly (which we will define presently). Here we will
devise a response to this issue, and extend the sensitivity calculation to include low order
nonlinear corrections.

General sensitivities

Let us begin with a general discussion on forms for sensitivities. This requires us to
analyze a ratio of the change in the wave (i.e., δG) produced by a change in the medium
(i.e., δs) as the latter tends to zero. A common means to arrive at this relationship is through
the Born series:

δG(rg, rs) =− ω2

∫
dr′G(rg, r

′)δs(r′)G(r′, rs)

+ ω4

∫
dr′G(rg, r

′)δs(r′)

∫
dr′′G(r′, r′′)δs(r′′)G(r′′, rs)

− ...

(12)

which is subject to some manipulations we will turn to presently. First, however, we will
consider different degrees of accuracy with which the denominator of the ratio δG/δs can
be included in the sensitivity. Equation (12) can be formally inverted (e.g., Weglein et al.,
2003) through an expansion of δs(r) in series. We write

δs(r) = δs1(r) + δs2(r) + ..., (13)

where δsn(r) is defined to be nth order in δG(rg, rs), then substitute this series into equa-
tion (12) and equate like orders. At first order we obtain

δG(rg, rs) = −ω2

∫
dr′G(rg, r

′)δs1(r
′)G(r′, rs), (14)

whereas at second order we have∫
dr′G(rg, r

′)δs2(r
′)G(r′, rs)

= ω2

∫
dr′G(rg, r

′)δs1(r
′)

∫
dr′′G(r′, r′′)δs1(r

′′)G(r′′, rs),

(15)

etc. In a direct inversion formulation (e.g., Zhang and Weglein, 2009a,b) the right-hand
side of equation (13) is built up order by order, with equation (14) first being solved for
δs1(r), and then that result being used to solve for δs2(r) in equation (16), and so on. Here
we will consider the order-by-order construction of δs(r) not as an end in itself, but rather
as a means to calculate approximations for the denominator of the sensitivities δG/δs. We
define indexed sensitivities of the following form. At order one we have:(

∂G(rg, rs)

∂s(r)

)
1

= lim
δs→0

δG(rg, rs)

δs(r)
, δs(r) ≈ δs1(r); (16)
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whereas at order two we have(
∂G(rg, rs)

∂s(r)

)
2

= lim
δs→0

δG(rg, rs)

δs(r)
, δs(r) ≈ δs1(r) + δs2(r), (17)

or, generally, at order N we have(
∂G(rg, rs)

∂s(r)

)
N

= lim
δs→0

δG(rg, rs)

δs(r)
, δs(r) ≈

N∑
n=1

δsn(r). (18)

Linearized sensitivities

The general expression for sensitivities in equation (18) reduces to the familiar form
used in seismic FWI as follows. We begin with equation (14):

δG(rg, rs) = −ω2

∫
dr′G(rg, r

′)δs1(r
′)G(r′, rs). (19)

From this we must determine the ratio of δG and δs (in this case to be approximated by
δs1, the latter at a particular point in space r. To do this we replace δs1(r′) with

δs1(r
′) = δs1(r)δ(r− r′), (20)

from which we obtain

δG(rg, rs) = −ω2δs1(r)G(rg, r)G(r, rs). (21)

We then solve this for δs1(r) and make the first inverse Born approximation δs(r) ≈ δs1(r):

δs(r) ≈ δs1(r) = −δG(rg, rs)[ω2G(rg, r)G(r, rs)]
−1. (22)

This quantity∗ is now ready to be used in the denominator of the first order sensitivity
expression in equation (16):(

∂G(rg, rs)

∂s(r)

)
1

= lim
δs→0

δG(rg, rs)

δs(r)

= lim
δs→0

(
δG(rg, rs)

δG(rg, rs) [−ω2G(rg, r)G(r, rs)]
−1

)
= −ω2G(rg, r)G(r, rs),

(23)

∗Seeing an equation like (22) could make a practical observer question this whole process. First of all,
having that equation in hand, it would appear our job is done – we wanted to know δs(r), and there it is: a
formula for δs(r). Second of all, everything was prescriptive right up until equation (20), but then we made a
rather presumptuous looking replacement δs(r′)→ δs(r)δ(r− r′). Do we really think the Earth model is of
this form? By what right do we do this? The answer to the first question is, yes, this is, in a sense, a formula
for inversion for δs(r). You could actually use it, too, if your initial medium model and the actual model were
identical except at an infinitely local point r. If you could say with certainty that it was, then from a single
measurement of δG (at frequency ω) you could determine what that change was, to first order. Our interest in
more complicated differences between the initial velocity model and the actual Earth makes this impractical.
The short answer to the second question is that we did this not because the model δs(r′)δ(r − r′) was a
realistic model of the Earth, but, rather, because the particular δG associated with the model δs(r′)δ(r− r′),
not the δG caused by the full perturbation, is the δG called for by the definition of the gradient formula.
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from which we recover the standard form for the full waveform inversion sensitivities as it
is currently used in the geophysics community.

Sensitivities associated with 2nd order collocated scattering

The usefulness of the general expression in equation (18) is that it permits us to extend
beyond equation (23) to nonlinear forms if desired. Here we will advance one such form
and subsequently analyze it. We will now assume a second order medium, meaning we ac-
cept the approximation δs(r) ≈ δs1(r)+ δs2(r). Having determined δs1(r) in the previous
section:

δs1(r) = −
δG(rg, rs)

ω2G(rg, r)G(r, rs)
, (24)

it remains to use equation (16) and determine δs2(r). Inclusion of a second order term
invokes “double scattering”, i.e., contains a picture of wave data which admits propagation
from the source to a scatter point, propagation from that scatter point to a second scatter
point, followed by propagation to the receiver. Here we will restrict ourselves to a subset
of these contributions to the wave field, in which the two scattering points are collocated in
space. The data-medium nonlinearity we are including is, in other words, only that which
appears from local interactions of the wave with the medium. This restriction is put in place
by assuming the forms

δs1(r
′) = δs1(r)δ(r− r′),

δs1(r
′′) = δs1(r)δ(r− r′′),

δs2(r
′) = δs2(r)δ(r− r′).

(25)

These forms when substituted into equation (16) lead to

δs2(r) = ω2δs21(r)G(r, r). (26)

The field G grows without bound as the source and receiver points converge, bringing
the meaning of the quantity G(r, r) into question. However, such issues are seen in the
Fourier domain to be easily managed by taking principle values of inverse Fourier transform
integrals, so we will not dwell on the value of G(r, r) at the moment but assume it can be
assigned a finite value. Substituting equation (24) into equation (26) we have

δs2(r) = ω2δs21(r)G(r, r)

= ω2

[
− δG(rg, rs)

ω2G(rg, r)G(r, rs)

]2
G(r, r)

=
δG(rg, rs)δG

∗(rg, rs)

ω2G(rg, r)G(r, rs)G∗(rg, r)G∗(r, rs)
G(r, r),

(27)

and thus the sum δs1 + δs2 is

δs(r) ≈ δs1(r) + δs2(r)

= − δG(rg, rs)

ω2G(rg, r)G(r, rs)

[
1− δG∗(rg, rs)G(r, r)

G∗(rg, r)G∗(r, rs)

]
,

(28)
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which permits us to form the denominator of the 2nd order sensitivity formula in equation
(17). Because δs2 is second order in δG, by definition, we notice that in forming the ratio
δG/δs there will be a “left over” δG not folded into the sensitivity expression. This free
variation in the field we replace with the residuals δG(rg, rs)→ δP (rg, rs):

δs(r) = − δG(rg, rs)

ω2G(rg, r)G(r, rs)

[
1− δP ∗(rg, rs)G(r, r)

G∗(rg, r)G∗(r, rs)

]
, (29)

so that we have, finally,(
∂G(rg, rs)

∂s(r)

)
2

= lim
δs→0

δG(rg, rs)

δs(r)

= lim
δs→0

δG(rg, rs)

[
− δG(rg, rs)

ω2G(rg, r)G(r, rs)

(
1− δP ∗(rg, rs)G(r, r)

G∗(rg, r)G∗(r, rs)

)]−1
= −ω2G(rg, r)G(r, rs)

(
1 +

δP ∗(rg, rs)G(r, r)

G∗(rg, r)G∗(r, rs)

)
,

(30)

as the form for the second order sensitivity matrix.

GAUSS-NEWTON UPDATES WITH LINEAR/NONLINEAR SENSITIVITIES

We have pointed out that the nonlinearity included in the sensitivities is associated
with collocated scattering, and thus (we expect) it will be most appropriate for dealing
with “local” nonlinear wave/medium relations (e.g., nonlinear AVO). Because the nonlinear
components of the inverse Hessian contribute off-diagonally (Innanen, 2014b), and thus are
not involved with collocated scattering points, our expectation is that the inverse Hessian
will not contribute significantly to the nonlinear updates we are currently interested in. We
will thus focus on the nonlinear sensitivities, and de-emphasize nonlinear inverse Hessian
contributions, forming Gauss-Newton updates of the following kind. Given a gradient of
order n,

gn(r) = −
∑
g,s

∫
dω

(
∂G(rg, rs)

∂s(r)

)
n

δP ∗(rg, rs), (31)

the associated Gauss-Newton update is

δsGNn(r) = −
∫
dr′H−1GN(r, r

′)gn(r
′), (32)

where

HGN(r, r
′) =

∑
g,s

∫
dωω4G(rg, r

′)G(r′, rs)G
∗(rg, r)G

∗(r, rs). (33)
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1st order Gauss-Newton step

The general Gauss-Newton update with nth order sensitivities in equation (32) reduces
to the standard Gauss-Newton update

δsGN1(r)

= −
∫
dr′H−1GN(r, r

′)g1(r
′)

= −
∫
dr′H−1GN(r, r

′)

[∑
s,g

∫
dωω2G(rg, r

′)G(r′, rs)δP
∗(rg, rs)

]
,

(34)

used in seismic FWI given linearized (n = 1) sensitivities.

2nd order / collocated scattering Gauss-Newton step

Using the second order sensitivities arrived at in equation (30), we have instead:

δsGN2(r)

= −
∫
dr′H−1GN(r, r

′)g2(r
′)

= −
∫
dr′H−1GN(r, r

′)

[∑
s,g

∫
dωω2G(rg, r

′)G(r′, rs)

(
1 +

δP ∗(rg, rs)G(r
′, r′)

G∗(rg, r′)G∗(r′, rs)

)]
.

(35)

We will investigate this update formula with an analytic and numerical example in the next
section.

AN EXAMPLE OF THE 2ND ORDER GAUSS-NEWTON STEP

The character of a second order Gauss-Newton update can be investigated both an-
alytically and numerically. To focus on its behaviour in relation to precritical reflection
amplitudes, we will consider the reconstruction of a single scalar boundary using data at
normal incidence. Primarily our interest is in the accuracy of a single update, but we will
make some rough remarks about the convergence over several iterations.

One-interface model

The model we study is illustrated in Figure 1. We will assume a homogeneous back-
ground medium (Figure 1a) characterized by velocity c0. The true model to be determined
is illustrated in Figure 1b. It gives rise to a single reflected primary with reflection coef-
ficient R = (c1 − c0)/(c1 + c0). As we shall see, with perfectly sampled, full bandwidth
data, and assuming that we know the correct velocity c0 in the uppermost medium, at any
given FWI iteration the reconstruction will have the basic form illustrated in Figure 1c. The
interface is correctly located and its shape is correctly reconstructed, but the “height” of the
step is not the same as that of the true model (c′1 rather than c1). The aim here will be to
quantify the rate at which c′1 converges to c1.
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Qualitative insight can be arrived at by viewing this as a full 1D experiment in itself,
or a “zoom in” on a region of an Earth model where a jump in P-wave velocity overlies a
background whose variation is smooth enough to locally appear homogeneous.

(a)

(b)

(c)

z10

c0

c1

c0

c1

c0

c1

c01

c01

c01

z !
FIG. 1. Analytic model used to investigate the character of a second order Gauss-Newton update.
(a) Homogeneous initial model characterized by c0. (b) True model consisting of a single interface
at depth z1. (c) Any instance of a FWI update will tend to be in error by the velocity value estimated
below the interface (i.e., c′1 rather than c1.

Analytic evaluation of sensitivities and Gauss-Newton update

The wave field P measured above (i.e., to the left in Figure 1) the interface at zg = zs =
0 is given analytically by

P (zg = 0, zs = 0) =
1

i2k
+R

ei2kz1

i2k
, (36)

where k = ω/c0. The first term is the direct arrival, and the second term is the reflection
from z1. The Green’s function for the first iteration is

G(z, z′) =
eik|z−z

′|

i2k
. (37)

Thus, the complex conjugate of the residuals for the first iteration, P ∗(0, 0)−G∗(0, 0), is

δP ∗(0, 0) = −Re
−i2kz1

i2k
. (38)

Putting these into the linearized sensitivity formula, we obtain(
∂G(0, 0)

∂s(z)

)
1

= −ω2G(0, z)G(z, 0) = −ω2 e
i2kz

(i2k)2
=
c20
4
ei2kz; (39)
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substituting them into the second order sensitivity formula produces instead(
∂G(0, 0)

∂s(z)

)
2

= −ω2G(0, z)G(z, 0)

[
1− δP ∗(0, 0)G(z, z)

G∗(0, z)G∗(z, 0)

]
= −ω2 e

i2kz

(i2k)2

[
1−

(
−Re

−i2kz1

i2k

)(
1

i2k

)(
e−i2kz

(−i2k)2
)−1]

=
c20
4
ei2kz

[
1 +Rei2k(z−z1)

]
.

(40)

These each lead to a different gradient, g1 and g2 respectively:

g1(z) = −
∫
dω

(
∂G(0, 0)

∂s(z)

)
1

δP ∗(0, 0)

= −
∫
dω
c20
4
ei2kz

(
−Re

−i2kz1

i2k

)
=
c20R

4

∫
dω
ei2k(z−z1)

i2k

=
c30R

8

∫
d2k

ei2k(z−z1)

i2k

=
πc30R

4
S(z − z1),

(41)

and

g2(z) = −
∫
dω

(
∂G(0, 0)

∂s(z)

)
2

δP ∗(0, 0)

= −
∫
dω
c20
4
ei2kz

[
1 +Rei2k(z−z1)

](
−Re

−i2kz1

i2k

)
=
c30R

8

∫
d2k

[
ei2k(z−z1)

i2k
−R2 e

i2k(2z−2z1)

i2k

]
=
πc30
4

[R− 2R2]S(z − z1).

(42)

The last line above is a consequence of the property of the Heaviside function S(ax+ b) =
S(x− b/a) if a > 0 (Bracewell, 1978). To complete a single first- or second-order Gauss-
Newton update we form the approximate Hessian operator

HGN(z, z
′) =

∫
dωω4G(0, z′)G(z′, 0)G∗(0, z)G∗(z, 0)

=

∫
dωω4 e

i2k(z′−z)

(i2k)4

=
c50
32

∫
d2kei2k(z

′−z)

=
c50π

16
δ(z − z′),

(43)
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whose inverse is

H−1GN(z, z
′) =

16

c50π
δ(z − z′). (44)

Combining the gradients and Hessians, we finally produce the two updates:

δsGN1(z) = −
∫
dz′H−1GN(z, z

′)g1(z
′)

= −
(
4R

c20

)
S(z − z1),

(45)

generated with linearized sensitivities, and

δsGN2(z) = −
∫
dz′H−1GN(z, z

′)g2(z
′)

= −
(
4R− 8R2

c20

)
S(z − z1),

(46)

with second order sensitivities.

Convergence of Gauss-Newton updates formed with 1st vs 2nd order sensitivities

There are two ways to discuss and compare equations (45) and (46) to gain insight
into their convergence properties when iterated. First, we can ask how close is each first
iteration to the true model? And second, we can actually iterate the formula. The former is
a more precisely defined, analytic question (though it requires us to assume the convergence
rate is determined by the accuracy of the first iteration), and the second is numerical in
nature.

The reflection coefficient, which provides our update with all of its useful amplitude
information in this example, is

R =
c1 − c0
c1 + c0

=
1− c0/c1
1 + c0/c1

. (47)

The “perfect” update δs, taking us from a homogeneous background to the precise correct
interface size c1, is

δs = s1 − s0 = −s0
(
1− s1

s0

)
= −s0

(
1− c20

c21

)
. (48)

The fraction in the reflection coefficient can be written

c0
c1

=

(
1 +

δs

s0

)1/2

= 1 +
1

2

(
δs

s0

)
− 1

8

(
δs

s0

)2

+ ..., (49)

which means R can be expanded in orders of the perfect FWI update:

R =
1

4

(
δs

s0

)
+

1

8

(
δs

s0

)2

+ ... . (50)
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Supposing the second order term in equation (50) to be large enough to signify, let us now
substitute this form for R into the result in equation (46):

δsGN2(z) =
1

c20

[(
δs

s0

)
+

1

2

(
δs

s0

)2

− 1

2

(
δs

s0

)2
]
S(z − z1)

=
1

c20

(
δs

s0

)
S(z − z1)

= δs S(z − z1).

(51)

This means the candidate update δsGN2(z) is exact (i.e., indistinguishable from δs(z) =
δsS(z − z1)) to second order. The difference between first and second order sensitivities
is the third term in the square brackets in equation (51). Notice that if it had been absent,
the nonlinear character of R (the second term in square brackets) would have produced a
second order discrepancy between the GN update and the exact update; the second order
sensitivity term suppresses this.

Figures 2–4 illustrate the numerical convergence boost we achieve by having each iter-
ation correct to second order rather than first order. The effect is naturally more noticeable
as contrasts increase. The convergences are approximate, as the Green’s functions are ap-
proximated to zeroth order at every iteration.
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FIG. 2. Convergence over 8 iterations of the reconstruction of the single scalar interface. Normal-
ized data; model; log data; and log model errors are considered. In this case the actual medium
properties were c0 = 1500m/s; c1 = 1600m/s.

CONCLUSIONS

FWI is being pursued by CREWES in application to broadband land multicompo-
nent. The standard descent-based methods like Newton, quasi-Newton, Gauss-Newton,
and gradient-based are likely means by which iterative updating will take place, but given
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FIG. 3. Convergence over 8 iterations of the reconstruction of the single scalar interface. Normal-
ized data; model; log data; and log model errors are considered. In this case the actual medium
properties were c0 = 1500m/s; c1 = 1600m/s.
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FIG. 4. Convergence over 8 iterations of the reconstruction of the single scalar interface. Normal-
ized data; model; log data; and log model errors are considered. In this case the actual medium
properties were c0 = 1500m/s; c1 = 1600m/s.
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the occasional importance of nonlinearity in reflection amplitudes, we may be able to do
better by conceiving of sensitivities which go beyond first order.

We have calculated the sensitivities accurate to the same order — 2nd — to which
we have approximated the objective function – namely, second order. Consequent rough
analysis of convergence indicates an exceedingly rapid convergence of parts of the model
determined by reflection amplitudes (phase has not as yet been tested). Furthermore, we
see analytically that the first update in the construction of a single boundary gives the cor-
rect answer to second order, in contrast to the standard sensitivities-based gradient, which
produces updates in a similar circumstance accurate to leading order.

This research is an offshoot of our general FWI / IMMI research. In particular it is
a forward-looking addendum to the multicomponent elastic updates we contemplate for
IMMI on broadband land data (Margrave et al., 2013); assuming the (at least) partial use of
reflection amplitudes, their intrinsically nonlinear character (Stovas and Ursin, 2001) can
be leveraged according to the approach we have discussed here. Any means by which we
can increase convergence rates must be vigorously sought.
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